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Deciphering spatial genomic heterogeneity
at a single cell resolution in multiple myeloma
Maximilian Merz 1,2,14✉, Almuth Maria Anni Merz1,14, Jie Wang3,14, Lei Wei 3,14, Qiang Hu 3,

Nicholas Hutson3, Cherie Rondeau1, Kimberly Celotto1, Ahmed Belal4, Ronald Alberico4, AnneMarie W. Block5,

Hemn Mohammadpour6, Paul K. Wallace7, Joseph Tario7, Jesse Luce8, Sean T. Glenn8, Prashant Singh8,

Megan M. Herr 9, Theresa Hahn 9, Mehmet Samur 10,11,12, Nikhil Munshi 12,13, Song Liu3,15,

Philip L. McCarthy9,15 & Jens Hillengass 1,15✉

Osteolytic lesions (OL) characterize symptomatic multiple myeloma. The mechanisms of

how malignant plasma cells (PC) cause OL in one region while others show no signs of bone

destruction despite subtotal infiltration remain unknown. We report on a single-cell RNA

sequencing (scRNA-seq) study of PC obtained prospectively from random bone marrow

aspirates (BM) and paired imaging-guided biopsies of OL. We analyze 148,630 PC from 24

different locations in 10 patients and observe vast inter- and intra-patient heterogeneity

based on scRNA-seq analyses. Beyond the limited evidence for spatial heterogeneity from

whole-exome sequencing, we find an additional layer of complexity by integrated analysis of

anchored scRNA-seq datasets from the BM and OL. PC from OL are characterized by dif-

ferentially expressed genes compared to PC from BM, including upregulation of genes

associated with myeloma bone disease like DKK1, HGF and TIMP-1 as well as recurrent

downregulation of JUN/FOS, DUSP1 and HBB. Assessment of PC from longitudinally collected

samples reveals transcriptional changes after induction therapy. Our study contributes to the

understanding of destructive myeloma bone disease.
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Multiple Myeloma (MM) is a heterogeneous disease with
survival ranging from months to decades1. Malignant
plasma cells (PC) for histopathology and genetic

assessment are isolated from iliac crest bone marrow aspirates in
routine practice. However, PC are not homogeneously distributed
within the bone marrow. Osteolytic lesions (OL) are areas of
circumscribed bone loss caused by malignant PC infiltration.
While OL can be visualized by positron emission computed
tomography (PET/CT) in up to 80% of patients, their underlying
biology remains to be clarified. Some patients show subtotal PC
infiltration of the bone marrow in the iliac crest without signs of
bone destruction while in the same patients, PC cause bone dis-
ease in distant locations such as the vertebral bodies. Therefore,
OL might represent regions of increased infiltration as well as
areas containing biologically different PC.

Efforts have been made to classify MM patients based on copy
number changes2, mutational burden2 and gene expression pro-
filing (GEP)3–6. Recently, a retrospective multi-region whole
exome sequencing (WES) study showed for the first time spatial
genomic heterogeneity of paired samples from random bone
marrow aspirates and distant lesions7. Since focal lesions before
and after therapy are associated with adverse outcome8, site-
specific high-risk PC populations might be responsible for
treatment resistance and relapse. Therefore, sampling PC solely
from the iliac crest might not be representative due to intra-
patient spatial heterogeneity.

Furthermore, cancers are not composed by an aggregation of
genetically identical cells, and bulk tissue sequencing might
obscure biologically relevant differences between cells. Among
several emerging technologies to interrogate tumors at a single-
cell resolution, single-cell RNA sequencing (scRNA-seq) can
identify treatment resistant clones and subpopulations respon-
sible for metastatic spread in several human cancers9–12. The first
scRNA-seq study in MM examined 20,568 PC from bone mar-
row samples from 29 patients with a variety of plasma cell dis-
orders. This analysis demonstrated PC heterogeneity in MM and
identified circulating tumor cells as well as measurable residual
disease (MRD) after therapy10. More recently, scRNA-seq was
used to study asymptomatic, symptomatic and relapsed patients
as well as modes of resistance to chimeric antigen receptor T-cell
therapy13–16.

In this work, we conduct a scRNA-seq analysis of 148,630
freshly purified PC obtained prospectively from random bone
marrow aspirates and paired imaging-guided biopsies of OL in 10
patients with symptomatic MM. We demonstrate that scRNA-seq
of PC from OL is feasible in a prospective clinical trial. Based on
single cell transcriptomics, we observe inter- as well as intra-
patient heterogeneity. While we show limited spatial hetero-
geneity based on WES, scRNA-seq identifies significant differ-
ences between both locations. Assessment of PC sampled after
induction therapy shows transcriptional changes compared to
baseline findings. Our study adds an additional layer of com-
plexity to spatial heterogeneity in MM and contributes to the
understanding of myeloma bone disease.

Results
Single cell RNA sequencing of plasma cells from guided
biopsies of osteolytic lesions and corresponding bone marrow
identifies inter-patient heterogeneity. We implemented a
translational workflow (Fig. 1) to obtain and purify viable PC
from OL and corresponding BM samples from patients with
newly diagnosed or relapsed MM. The bone marrow biopsies
from the iliac crest (bone marrow sample, BM) were obtained and
processed at the same time as OL biopsies since differences in
sample processing times might cause changes in MM gene

expression17. We performed scRNA-seq on paired samples from
10 patients (7 with newly diagnosed and 3 relapsed/refractory
MM) with one patient having 2 OL biopsied. In three patients
with NDMM, we obtained subsequent samples after induction
therapy. Patient characteristics are summarized in Table 1,
treatment is summarized in supplemental Table 1. With the
exception of patient RRMM01 with para-medullary spread from
an OL of the right clavicle, all samples were acquired from intra-
medullary lesions. There were no significant differences between
both locations regarding the purity of isolated and sequenced PC,
underlining the feasibility of our protocol and comparability of
paired samples. In total, 94.8% of cells from OL (n= 70,036) and
95.7% of cells from BM (n= 71,580) were PC (Fig. 1).

Clustering of 148,746 single cells from BM and OL (median
7712 cells/sample) created a map of distinct populations based on
transcriptomes from individual patients and locations (Fig. 2A,
B). Cells from individual patients clustered together in both, BM
and OL (Fig. 2C). This was also observed when merging cells
from both locations (Fig. 2D) which demonstrated that inter-
patient heterogeneity outweighed spatial heterogeneity and
determined clustering patterns of malignant PC. Clusters with
overlapping cells from different patients were later identified as
few contaminating, non-PC (Fig. 2E).

To investigate inter-patient heterogeneity, we identified
marker genes for malignant PC clusters from each individual
patient (Fig. 3A, B). As expected, the genes for cyclin D1-3
(CCND1-3) were preferentially expressed in patients with IgH
translocations (NDMM02, NDMM04 and NDMM06) as
detected by FISH (Table 1). Furthermore, genes associated
with myeloma bone disease (DKK1 and FRZB), cytokine
signaling (IFI27 and IL6R) and EDNRB were identified as
marker genes for PC clusters from individual patients. All of the
aforementioned genes were previously described as character-
istic genes elevated in the molecular subtypes of MM that were
derived from bulk GEP18,19. Besides these known marker genes,
we identified STMN1 to be preferentially expressed in small
subsets of malignant PC (Fig. 3B). No significant differences for
the identified marker genes were found between BM and OL.

Since we observed vast inter-patient heterogeneity, we
performed a gene set enrichment analysis (GSEA) using the
curated MM subtype gene sets from the Molecular Signature
Database (MSigDB) to assess whether our findings are consistent
with the molecular classification of MM that was established with
GEP. In agreement with the single gene analysis, gene-set analysis
showed that patients could be grouped according to the molecular
classification of MM. The respective classification differentiates
7 MM subtypes influenced by the presence of genetic lesions such
as translocations and a hyperdiploid karyotype as well as low-
incidence of bone disease or increased expression of proliferation-
associated genes. Beyond the genetic and phenotypic differences
between the groups, the molecular classification is also of
prognostic significance with adverse outcome for patients in the
proliferation (PR) group. We demonstrate that scRNA-seq reveals
inter-patient heterogeneity and identifies MM subtypes that are
consistent with the well-established molecular classification of
MM. For example, patient RRMM02 in the low bone disease (LB)
group showed higher expression of IL6R and EDNRB and
NDMM02 in the MAF group (MF) showed higher levels of
CCND2 and lower levels of DKK1 (Fig. 3C).

Intra-patient heterogeneity based on scRNA-seq. After inves-
tigating inter-patient heterogeneity using scRNA-seq data, we
aimed at deciphering intra-patient heterogeneity on the tran-
scriptional level. We performed clustering (Fig. 4A) and differ-
ential expression analysis (Fig. 4B), GSEA (Fig. 4C), and inferred
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CNVs (Fig. 4D) from PC for each individual patient. Specifically,
we looked for genes that were recurrently differentially expressed
in PC clusters and that have been associated to play a role in the
pathogenesis and prognostication of MM. A summary of the
differential expression analysis for each individual patient is
available at Supplemental Data 1.

We identified clusters of malignant PC characterized by the
overexpression of genes encoding the microtubule-associated
proteins STMN1 and TUBA1B (Fig. 4A, B). GSEA showed that
gene sets associated with proliferation, oxidative phosphorylation
and MYC targets were significantly enriched in these clusters
(Fig. 4C). However, no significant differences in CNVs were
identified in STMN1-positive clusters compared to the remaining
malignant PC (Fig. 4D).

The respective clusters were found in all patients and locations
(Fig. 4E, F), which was also confirmed by non-negative matrix
factorization (Supplemental Fig. 1). No significant differences in
the number of cells expressing STMN1 were found between OL
and BM, except for patient RRMM01 with para-medullary disease
(Fig. 4G). Since GSEA demonstrated an association with path-
ways connected to proliferation, we assigned cell cycle scores to
PC (Fig. 4H) and found that cells mapped to clusters residing
predominantly in synthesis (S)-Phase compared to the remaining

malignant PC in G1-Phase (Fig. 4H). To ensure that differences
in cell cycle stages did not introduce bias into further analyses on
spatial heterogeneity, we compared both locations and did not
find significant differences between OL and BM (Fig. 4I).

The number of PC in S-Phase and the proliferation index are
well-established factors for adverse outcome in MM18. STMN1 is
among the 15 genes associated with high-risk disease in the GEP
score identified by the Integroupe Francophone du Myelome4.
Higher expression levels of STMN1 and TUBA1B are associated
with shorter progression-free and overall survival in the
CoMMpass dataset of the Multiple Myeloma Research Founda-
tion (https://research.themmrf.org/, Supplemental Fig. 2).
Furthermore, STMN1 was associated with refractory and resistant
disease in a recent scRNA-seq study20. To further objectify the
potential prognostic significance of the respective clusters, we
mapped expression of genes in the University of Arkansas for
Medical Science 17 high-risk gene score (UAMS17) onto single
PC and found an overlap between STMN1 expression and higher
UAMS17 gene expression levels (Fig. 4J).

This underlines that scRNA-seq characterized intra-patient
heterogeneity and recurrent subclusters of transcriptionally
different PC among different patients and locations. We provide
a link between well-established factors for adverse outcome. Since

Fig. 1 Acquisition of viable plasma cells from imaging-guided biopsies of osteolytic lesions and bone marrow. Eligible patients with newly diagnosed
(NDMM) or relapsed/refractory multiple myeloma (RRMM) were discussed in a multidisciplinary tumor board before the initiation of therapy. Patients
consented to an imaging-guided biopsy of an osteolytic lesion (OL) in addition to the routine diagnostic bone marrow aspirate from the iliac crest (BM). To
minimize changes in gene expression due to delayed sample processing, aspirates of the BM and OL were performed and analyzed on the same day as
follows: (1A) Plasma cells (PC) were isolated using CD138 positive selection; Clinical samples were investigated by flow cytometry (1B) and
immunohistochemistry (1C) to confirm the diagnosis2 Fluorescence-activated cell sorting (FACS) was performed for quality control (QC)3; cells were
subjected to single cell RNA sequencing (scRNA-seq). The rest of the PC were frozen at −80 °C and later analyzed by whole exome sequencing (WES).
After assessment of QC parameters4, low quality cells were filtered out5. Standard Seurat workflow was performed to cluster all cells6. After identification
of contaminating non-malignant PC (yellow, PC in blue)7 the respective cells were removed in silico8 for further analyses9. Malignant PC were identified by
restricted heavy and light chain expression10. QC parameters were comparable between OL and BM and ca. 95% of captured and sequenced cells from BM
and OL were PC underlining feasibility of our workflow.
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the respective clusters accounted only for a small number of
malignant PC in each individual patient they would have been
missed by bulk sequencing (Supplemental Fig. 2).

Limited evidence for spatial heterogeneity in patients with
intra-medullary lesions from whole-exome sequencing. Next,
we aimed at characterizing spatial heterogeneity. Whole-exome
sequencing (WES) has been utilized to investigate spatial genomic
heterogeneity in MM based on banked, frozen PC in a retro-
spective study7. To explore whether scRNA-seq on freshly iso-
lated PC could reveal another layer of complexity of spatial
heterogeneity, we performed WES on all paired samples. The
comparison of PC with matched normal germline cells identified
a total of 1103 somatic mutations, including 1063 SNVs and 40
Indels (Fig. 5A). Among these somatic mutations, 665 were
predicted to cause an amino acid alteration, 72 were truncating
and 366 were silent mutations. Supplemental Data 2 gives an
overview of the individual variant calls from the WES analysis.
For each patient, we quantified the similarity between the BM and
OL by calculating the Jaccard score, defined as the ratio between
shared mutations and all mutations. Patient NDMM03 was
excluded from calculations since only limited numbers of
malignant PCs were captured from the BM.

In 8 out of 10 patients (NDMM02 to NDMM07 and RRMM02
and RRMM03), the percentage of shared mutations between the
bone marrow and OL were ∼80% or higher, suggesting the BM
and OL were highly consistent (Fig. 5A, B). In the patient with 2

OL (NDMM06), the Jaccard scores among all 3 locations (BM
and two OL) were above 97% with a clonal TP53 mutation
present in all three locations.

WES revealed relevant spatial heterogeneity in 2 out of 10
patients: For patient NDMM01, 75% of all mutations were shared
between the bone marrow and OL, and 25% of mutations were
only present in the OL including a BRAF V600E mutation. For
patient RRMM01 with an OL of the right clavicle with para-
medullary spread, only 20% of all mutations were shared, with
24% of the mutations found only in the bone marrow, and 56% of
the mutations unique to the OL. Two distinct BRAF mutations
were detected: V600E was found in BM, and a different activating
Class 2 BRAF mutation (G469R) in the OL. The latter mutation
causes resistance to the BRAF inhibitor vemurafenib21. Further-
more, we detected an additional NRAS mutation (G12D) in the
OL. NRAS mutations have been associated to drive spatially
divergent resistance to vemurafenib in BRAFmut MM22. These
examples occurred in the absence of exposure to vemurafenib and
demonstrate that treatment with a BRAF inhibitor would most
likely be ineffective against PC from different locations these
patients.

Single cell RNA sequencing revealed another layer of com-
plexity and links site-specific gene expression to the develop-
ment of osteolytic lesions. After analyzing WES from malignant
PC from the OL and BM, we investigated whether the observed
similarities between both locations are also reflected by scRNA-seq

Fig. 2 Clustering cells from different locations and patients. To investigate whether malignant plasma cells (PC) from different patients A or locations
B clustered jointly on Uniform Manifold Approximation and Projection (UMAP) plots, we first merged samples separately from bone marrow and osteolytic
lesion C. PC from individual patients are depicted by specific colors. Merging the entire dataset revealed that cells from individual patients clustered
together D. The only regions with overlapping cells from different patients were identified as few contaminating, non-PC E. This provided evidence that
inter-patient heterogeneity was more significant compared to spatial heterogeneity.
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data. Therefore, average gene expression of PC from the OL and
BM were correlated to each other (Fig. 5B). In agreement with
WES findings, we found a high concordance of average gene
expression between both locations. However, in every patient,
outliers in both directions were observed (Fig. 5B).

To identify genes that are differentially expressed in PC from
both conditions, we performed an integrated analysis after
anchoring datasets from OL and BM for each individual patient
as described before23. This process identifies pairwise correspon-
dences between PC from different origins—called anchors—to
transform datasets into a shared space. By aligning PC from BM
and OL we were able to directly compare single PC gene
expression from both locations. After applying the integration
procedure, malignant PC were robustly detected in all datasets
and the same PC clusters were identified in BM and OL. In all

patients, we were able to find marker genes that were
differentially expressed in malignant PC from OL when
compared to malignant PC from BM. Overall, 1140 genes were
identified that were differentially expressed between OL and BM
(Fig. 5C). Genes that have been associated with the development
of myeloma bone disease such as DKK1, HGF (Fig. 5C) and
TIMP-1 (Fig. 5C)24,25 were among the markers with higher
expression levels in OL (Fig. 5C, D). Furthermore, in agreement
with the first scRNA-seq analysis in MM10, we found LAMP5 to
be upregulated in PC from the OL (Fig. 5C, D).

Genes that were recurrently downregulated in PC from OL
were JUN (Fig. 5C) and FOS (Fig. 5C, D) (6 of 10 patients), dual
specificity phosphatase 1 (DUSP1, Fig. 5C, 5 of 10 patients) and
hemoglobin beta chain (HBB, 3 of 10 patients) (Fig. 5C, D).
Importantly, no somatic mutations were detected in the

Fig. 3 Single cell RNA sequencing demonstrates inter-patient heterogeneity and identifies molecular subgroups of multiple myeloma. A To further
characterize inter-patient heterogeneity based on scRNA-seq of bone marrow plasma cells (PC) we identified marker genes for the patient-specific single
PC clusters. B Violin plots showing the identified marker genes for each individual patient. The width of the violin representing the number of cells
expressing the respective gene with the relative expression being plotted on the y-axis. XBP1 was included in the top row as positive control to show the
extend of the entire PC population. CCND1-3 were marker genes in patients with IgH-translocations (NDMM02/04/06) and homogeneously expressed in
all PC. Other marker genes associated with bone disease (DKK1, FRZB), cytokine signaling (IFI27, IL6R) and EDNRB have been described in bulk gene
expression profiling (GEP) studies. C Gene set enrichment analysis (GSEA) to classify patients according to the molecular subtypes published by the
Arkansas group18. Gene sets are available in the Molecular Signature Database (MSigDB). Examples are shown for the subgroups CD1 (RRMM01), CD2
(NDMM04), MF (NDMM02) and LB (RRMM02). GSEA for up- (green lines) and downregulated genes (red lines) were performed. The
AddModuleScore() command from Seurat was used to calculate the average expression for the top 50 upregulated genes in the molecular subcategory
and visualize findings in a FeaturePlot. Relative expression levels ranged from low (in gray) to high (in purple). ScRNA-seq characterized inter-patient
heterogeneity and classified individual patients based on their single PC transcriptomes into molecular subgroups of multiple myeloma. NES= normalized
enrichment score. Padj= adjusted p-value estimation based on an adaptive multi-level split Monte-Carlo scheme.
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respective genes in PC from the BM and OL. Downregulation of
JUN/FOS, DUSP1 and HBB has been connected to extramedullary
spread of MM in the past26. Furthermore, JUN/FOS are linked to
the malignant transformation of B-cells27 and dissemination of
clonal PC in a preclinical model28. GSEA confirmed that
downregulation of genes in pathways associated with normal
B-cell was common in PC from the OL (Supplemental Fig. 3).

Additionally, lower expression levels of genes encoding for the
non-restricted light (e.g., IGLC2/3 in NDMM01, Fig. 5C) and
heavy chain (e.g., IGHM in NDMM03, Fig. 5C) were observed in
PC from OL. Downregulation of the affected heavy chain was
observed in PC from the OL in RRMM01 and RRMM03
providing a link between evolving disease and the rare
phenomenon of light chain escape that can be observed in
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heavily pretreated RRMM and PMD. In agreement with this
finding, both patients showed low secretory activity in serum
(Table 1).

In patient RRMM01 with a PC tumor with para-medullary
spread, we found the most significant differences between PC
from BM and OL (Fig. 6). While same PC clusters were identified
in both locations (Fig. 6A) significant differences in gene
expression (Fig. 6B, C) and inferred CNVs (Fig. 6D) were
detected among different PC clusters. Remarkably, trajectory
inference revealed that the cluster showing over-expression of
OL-associated genes LAMP5 and HGF underwent the largest
transcriptional change compared to the remaining PC. Besides
the respective genes that were also up-regulated in PC from OL in
other patients, we identified the gene for zinc-alpha2-glycoprotein
(AZGP1) to be downregulated in the OL (Fig. 6B). AZGP1 is a
known tumor suppressor gene and its loss causes epithelial-to-
mesenchymal transition (EMT)29. While AZGP1 expression was
virtually absent in PC from the OL, it was homogeneously
expressed in the majority of PC from the BM. However, a small
cluster of PC with lower AZGP1 expression levels was identified
in the BM (Fig. 6C). GSEA analysis confirmed that genes
associated with EMT were enriched in the respective cluster
compared to the rest of malignant PC (Fig. 6C). Furthermore,
gene sets connected to proliferation and oxidative phosphoryla-
tion were downregulated in these PC. This confirms the
hypothesis from pre-clinical animal models that hypoxia-driven,
EMT-like processes connected to chemoresistance and decreased
proliferation drive extramedullary spread of MM cells30. It can be
hypothesized that the small PC cluster might have occurred latest
in the developmental process and could have given rise to the OL
in the right clavicle. These findings need to be interpreted with
caution since we were only able to study a single patient with
para-medullary disease, while other patients had strictly intra-
medullary disease.

Our results show that scRNA-seq adds another layer of
complexity compared to WES to spatial heterogeneity in MM.
The scRNA-seq data allow us to link site-specific gene expression
to the development of myeloma bone disease and identify
subclusters that might be the origin for OL.

Single cell RNA sequencing characterizes measurable residual
disease and transcriptional changes after therapy. In three
patients (NDMM01, NDMM03, and NDMM06) we collected
samples after 4 cycles of induction therapy. While in NDMM01
(Fig. 7A) and NDMM06 (Fig. 7C) we performed a regular bone

marrow biopsy to assess residual disease, an imaging-guided
biopsy of a residual focal MRI lesion in T8 was biopsied in
NDMM03 (Fig. 7B) after treatment. NDMM01 and NDMM03
were in MRD-positive complete remission (CR) after 4 cycles
lenalidomide, bortezomib and dexamethasone (RVD). NDMM06
had achieved a partial response (PR) after 4 cycles daratumumab-
RVD. Treatment regimen are summarized in supplemental
Table 1. Correspondingly, we captured less malignant PC in
NDMM01 (Fig. 7A) and NDMM03 (Fig. 7B), while almost the
same amount of malignant PC after therapy were isolated and
sequenced in NDMM06 compared to the BM and the two OL at
primary diagnosis (Fig. 7C).

To identify transcriptional programs that are shared and
unshared between samples from all three patients before and
after therapy, we used linked interference of genomic experi-
mental relationships (LIGER)31. LIGER allows for joint identi-
fication of cell types and shared as well as dataset-specific factors
between multiple datasets through integrative non-negative
matrix factorization.

After the integration process, cells were plotted by treatment
status (before/after treatement, Fig. 7D) and identified clusters
(Fig. 7E). To confirm that the majority of captured cells
represented PC, expression levels of known PC markers were
analyzed and no significant differences were found before and
after therapy for the respective genes (Fig. 7F). As expected, less
malignant PC were captured after treatment (Fig. 7G) with the
exception of cluster 0 that represented predominantly PC from
patient NDMM06 with a PR (Fig. 7G).

LIGER identified shared and unshared genes between patients
before and after therapy (Fig. 7H, I). DDIT4 (Fig. 7J) and TXNIP
(Fig. 7K) were downregulated after therapy. Both genes are
induced by dexamethasone and involved in glucocorticoid-
induced apoptosis providing a link to steroid-refractoriness in
the detected residual disease32,33. Higher expression levels of
HLA-DRA and HLA-DPA1 were observed in malignant PC
(Fig. 7I).

ISG15 was also upregulated in residual PC (Fig. 7L). ISG15
encodes an ubiquitin-like protein and its expression has been
linked to Carfilzomib-resistance in a recent preclinical study34.

This demonstrates that scRNA-seq characterizes MRD in
patients in remission and reveals transcriptional changes
consistent with immunomodulatory effects of lenalidomide and
drug resistance to proteasome inhibitors. However, our observa-
tions were based on only three patients showing feasibility of this
methodology to characterize residual cells. Future longitudinal

Fig. 4 Intra-patient heterogeneity based on single plasma cell transcriptomes and inferred copy number variations. After the identification of inter-
patient heterogeneity, we performed clustering A, differential expression B as well as gene set enrichment analysis C and inferred copy number variations
(CNV, D) for every individual patient to characterize intra-patient heterogeneity. A–D provides an example of this process for patient RRMM03 with
relapsed disease. We looked specifically for recurrent marker genes that characterized distinct subsets of malignant plasma cells (PC) across multiple
patients and locations. We detected subclusters characterized by the overexpression of genes encoding the microtubule-associated proteins STMN1 and
TUBA1B A, B. Gene set enrichment analysis (GSEA) revealed an upregulation of pathways associated with proliferation and oxidative phosphorylation in the
respective clusters compared to the remaining malignant PC C. No significant differences in CNVs (gains in red, losses in blue) were observed in the
STMN1 -positive clusters D. Next, we investigated whether the respective STMN1 -positive clusters can be detected in all patients and locations E. STMN1
-positive cells were found in every individual patient F with no significant differences between osteolytic lesion (OL) and bone marrow (BM) in the number
of cells expressing STMN1 G. Only patient RRMM01 with para-medullary spread of the disease harbored more STMN1 -pos cells in OL. Since GSEA provided
evidence that the respective cells were proliferatively active, we assigned cell cycle scores using the markers preloaded in Seurat. G1 phase in red, G2M
phase in green, S phase in blue H. It was confirmed that the majority of the cells in STMN-1 positive clusters were in synthesis (S-)phase I and no
differences in cell cycle scores were found between OL and BM J. Proliferation and the number of S-Phase PC are well-established risk factors for adverse
outcome and higher expression of STMN1 and TUBA1B were associated with adverse outcome in the CoMMpass dataset (Supplemental Fig. 2). The
potential prognostic implications were supported by higher expression of genes in the UAMS-17 high-risk score. Relative expression of UAMS-17 genes
ranging from low in gray to high in green and STMN1 from low in gray to high in red. High expression of both UAMS-17 score and STMN1 in the respective
cells depicted by yellow color J. These results demonstrate that scRNA-seq identifies intra-patient heterogeneity and characterizes single PC with different
risk profiles.
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Fig. 5 Limited evidence for spatial heterogeneity from whole-exome sequencing and significant correlation of gene expression from plasma cells from
bone marrow and osteolytic lesion. A Bar plots showing the number of shared and unshared mutations from whole-exome sequencing (WES) for each
individual patient (bone marrow/BM= light colors, osteolytic lesion/OL=medium colors, shared= dark colors). Patients with relapsed/refractory
multiple myeloma (RRMM) harbored more mutations compared to newly diagnosed disease (NDMM). B First and third rows: Scatter plots for average
gene expression from single cell RNA sequencing. Second and fourth rows: Variant allele frequency (VAF) from WES. Results from plasma cells (PC) from
the bone marrow (BM) are plotted to x-axis and from the osteolytic lesion (OL) to the y-axis for each individual patient. Jaccard indices were calculated to
quantify the overlap between both samples based on WES. In WES scatter plots, effects of the mutations are delineated by different symbols
(altering= circle, non-amino acid change= triangle, truncating= square). Only in patient RRMM01 with para-medullary disease (PMD), we found
substantial differences as indicated by a Jaccard score of 0.2. Also average gene expression of PC from both location was highly correlated to each other as
indicated by two-sided Spearman’s correlation coefficients. Nevertheless, outliers in both directions could be detected with scRNA-seq. C Differential
expression analysis comparing OL and BM identified 1140 significantly up- and downregulated genes in PC from OL. While genes that have been associated
with myeloma bone disease were upregulated (e.g., DKK1, HGF, and TIMP1) in OL, JUN/FOS, DUSP1 and HBB were recurrently downregulated. Log2 fold
change between OL and BM plotted on x-axis, p-values (Bonferroni corrected) derived from two-sided Wilcoxon Rank Sum test on y-axis D Top 15 up- and
downregulated genes in PC from OL with regards to average log-fold change (avg_logFC). Gene set enrichment analysis demonstrated that genes
connected to regular B-cell function were significantly downregulated in OL (Supplemental Fig. 3). E Comparison of HGF (red) and DKK1 (green) expression
in malignant PC from BM (left side of the panel) and OL (right side of the panel) in patient NDMM01. The number of cells expressing both genes (yellow)
as well as expression levels were lower in BM compared to OL.
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Fig. 6 Single cell RNA sequencing links site-specific gene expression to the development of para-medullary myeloma bone disease. A CT image of an
osteolytic lesion (OL) in the right clavicle with an adjacent para-medullary tumor (left) and the respective ultrasound-guided biopsy (right) in patient
RRMM01 and the corresponding uniform manifold approximation and projection (UMAP) plots split by the origin of plasma cells ((PC) lower panel).
B Differential expression analysis showed over-expression of bone disease-associated genes (e.g., HGF and LAMP5, see heatmap) in cluster 2 that
underwent the largest transcriptional change compared to the remaining malignant PC as shown by trajectory analysis. UMAPs amd heatmap show results
for PC after filtering out non-PC. Relative downregulation is represented by magenta bars, upregulation by yellow bars, absent expression by black bars.
C The majority of malignant PC in the BM showed higher expression values auf AZGP1 compared to the OL (relative expression ranging from low in gray to
high in purple). However, absent expression was detected in cluster 2 (red circle). Gene sets associated with epithelial-to-mesenchymal (EMT) transition
were enriched (green bars) in the respective cluster while pathways associated with proliferation and oxidative phosphorylation were downregulated (red
bars). Padj= adjusted p-value estimation based on an adaptive multi-level split Monte-Carlo scheme D inferCNV demonstrated heterogeneity on a
chromosomal level with distinct CNV profiles in the detected clusters (gains in red, losses in blue). This was in contrast to findings from patients with intra-
medullary disease. Upper part of the panel represents exome-wide inferred CNVs for every sequenced malignant PC (rows) and chromosome (columns).
Lower part of the panel visualizes CNVs for the identified clusters and demonstrates that cluster 2 with EMT-like signatures had also a distinct CNV
pattern. These findings support the preclinical hypothesis that hypoxia-driven EMT-like processes cause extra-/para-medullary spread of myeloma and
that spatial heterogeneity is more significant in patients with para-/extra-medullary disease.
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studies in larger cohorts of homogeneously treated patients are
needed to confirm these initial findings.

Discussion
In this prospective study, we established a reproducible workflow
to obtain and isolate viable PC of comparable quality from BM

and paired OL. Our study links the accumulation of malignant
PC with distinct transcriptomes to the development of myeloma
bone disease and identifies transcriptional changes in residual
disease.

scRNA-seq has been successfully utilized to study PC hetero-
geneity by Ledergor et al. who sequenced 24,126 single cells from
random bone marrow samples of 40 individuals (11 normal

Fig. 7 Characteriztion of measurable residual disease on a single cell level in longitudinal samples. Uniform manifold approximation and projection
(UMAP) plots and number of sequenced malignant plasma cells (PC) split by the origin of PC for patients NDMM01 A and NDMM03 B after 4 cycles
lenalidomide, bortezomib and dexamethasone (RVD) as well as NDMM06 C after 4 cycles daratumumab-RVD. While NDMM01 and NDMM03 were in
complete remission (CR) with measurable residual disease (MRD), NDMM06 was in partial remission (PR). Linked inference of Genomic Experimental
Relationships (LIGER) was used for integrative non-negative matrix factorization to identify shared and unshared genes in longitudinal samples before and
after treatment. Cells were visualized based on treatment situation (D, diagnosis (red) versus treatment (green)) and the identified clusters E. The majority
of sequenced cells after therapy represented PC as shown by expression of common PC markers with median expression represented by horizontal lines,
interquartile range by boxes and 95% confidence interval by whiskers in the respective box plots F. Proportions of the identified clusters before and after
therapy are visualized by dotplots in G. Using LIGER, shared and unshared genes between diagnosis and after treatment were visualized based on the
identified factors H, I. DDIT4 J and TXNIP K were downregulated in the majority of PC after therapy compared to primary diagnosis. Both genes are involved
in mediating cellular response to steroid exposure34. Besides genes encoding HLA Class II molecules, ISG15 was significantly upregulated in PC after
treatment and has been linked to carfilzomib-resistance in the past L34. Relative expression ranging from low in yellow, to high in purple.
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controls and 29 patients with PC disorders of which 12 were MM
patients)10. After removal of non-PC (n= 3,179, 15.4%),
20,568 single PC were analyzed with the focus on inter-patient
and inter-diagnostic differences. In the current study, we analyzed
148,630 PC from 24 different locations (BM and paired distant
OL) in 10 individuals with MM.

We confirm that subsets of single malignant PC in individual
patients can be delineated based on single cell transcriptomics
and inferred CNVs. We have identified subclusters of malignant
PC that are characterized by the overexpression of genes asso-
ciated with proliferation and oxidative phosphorylation. Further
analysis revealed that the respective clusters also show over-
expression of genes that contribute to a validated GEP high-risk
score (UAMS-17)6. Higher expression levels of two marker genes
of the respective clusters were associated with adverse outcome in
the CoMMpass dataset underlining the prognostic potential.
Given the small number of cells compared to the entire popula-
tion of malignant PC in each patient, their presence would have
been missed by bulk sequencing.

Beyond the identification of inter- and intra-patient hetero-
geneity, we aimed at deciphering spatial heterogeneity and the
underlying biology of OL. Currently, one retrospective study,
examining frozen samples, used WES and GEP and demonstrated
spatial genomic heterogeneity by multi-regional sequencing in
more than 75% of their analyzed patients (n= 51)7. In contrast,
our study demonstrated a high concordance between PC from
BM and OL based on WES. This is similar to a recent WES study
finding concordance in clonal somatic mutations between PC
from circulating tumor cells and matched tumor biopsies from
bone marrow PC35. Possible explanations for these differences
might be the retrospective nature (analyzing previously collected
and stored samples) of the Rasche et al. study and the inclusion of
more patients with advanced disease (larger lesions and extra-
medullary disease). This may have introduced sampling bias as
there was a strong connection between spatial heterogeneity and
lesion size. In the current study using prospective acquisition of
fresh PC from intra-medullary locations, we demonstrated that
there were greater than 80% shared mutations between both
locations with the exception of patient RRMM01 with para-
medullary disease and significant spatial heterogeneity. This is in
agreement with the study by Rasche et al. that found limited
spatial heterogeneity from WES in patients with smaller lesions7.

Analyzing scRNA-seq data from paired OL and BM, revealed
another layer of complexity and additional detail to the under-
standing of PC heterogeneity. Although single PC transcriptomes
from both locations were highly correlated to each other, we
identified differentially expressed genes in each patient through
integrated analysis of anchored datasets. Beyond genes that have
been associated with myeloma bone disease (TIMP1, HGF25) and
impaired Wnt-signaling (DKK124), we identified LAMP5 to be
overexpressed in OL. Our findings connecting LAMP5 to the
development of OL is supported by a recent retrospective trial in
which bulk GEP was performed on PC from patients with
smoldering myeloma with and without progression during
follow-up. LAMP5 was significantly overexpressed in patients
with disease progression and 8 of 10 patients progressed with new
OL36.

Additionally, JUN/FOS, DUSP1, and HBB were consistently
downregulated in PC from OL. These genes have been correlated
with extramedullary spread of MM26. JUN/FOS downregulation
have been associated with malignant PC transformation27 and
progression of MM in a recent preclinical study28. GSEA con-
firmed that downregulation of genes connected to regular B-cell
function were a common feature of PC from OL.

The most significant differences between OL and BM were
observed in the patient with RRMM and para-medullary spread.

We provide clinical evidence for the pre-clinical hypothesis that
hypoxia-driven EMT-like processes drive extramedullary spread
of MM30. Our findings and recent preclinical studies28 support
the hypothesis that OL are derived from a common PC ancestor
developing molecular features to cause myeloma bone disease.
Thus, MM would behave like a solid tumor with PC metastasizing
to distant locations, inducing OL.

Beyond transcriptional changes in PC from OL, we were able
to detect changes upon therapy in patients with residual disease.
In two MRD-positive patients after 4 cycles of RVD and one
patient in PR after Daratumumab-RVD, we found an upregula-
tion of HLA class II genes consistent with immunomodulatory
effects on PC described for lenalidomide in preclinical studies37.
Furthermore, genes associated with carfilzomib-resistance and
steroid-induced apoptosis were dysregulated in residual PC.
These results indicate that scRNA-seq is able to indentify and
characterize residual disease. The respective changes in single PC
transcriptomes may help identify new strategies to eradicate
MRD in the future.

Limitations of this study include the small number of analyzed
patients and the lack of preclinical validation. Therefore, our
findings regarding para-medullary spread of disease and residual
MM after therapy are to be interpreted with caution. Based on
our current results, future analyses will follow to investigate the
biological differences between para- and extramedullary disease.
Establishing a translational workflow for scRNA-seq from clinical
samples from different locations was one of the major goals of our
study. Based on our results, future analyses will include larger
numbers of patients and also patients with extramedullary disease
in addition to para-medullary MM, to decipher the biological
differences between both conditions.

We have shown that scRNA-seq is feasible to analyze pro-
spectively transcriptional heterogeneity in fresh clinical PC
samples. Site-specific accumulation of malignant PC with a
distinct transcriptomic profile can be linked to the development
of myeloma bone disease. We anticipate this study will con-
tribute to the current understanding of MM heterogeneity and
have implications for therapeutic decision-making and long term
monitoring.

Methods
Prospective trial of imaging-guided biopsies. This study was approved by the
Roswell Park Comprehensive Cancer Center (Roswell Park) Institutional Review
Board and was conducted in accordance with the Declaration of Helsinki. In April
2019 we initiated sample collection to analyze spatial and temporal evolution in
newly diagnosed and relapsed MM. After written informed consenst, patients
underwent an imaging-guided biopsy of OL identified by PET/CT in addition to
standard, diagnostic bone marrow aspirate from the iliac crest (BM). Biopsies were
performed before the initiation of local or systemic therapy for newly diagnosed or
relapsed patients. Eligible patients with a confirmed diagnosis of MM according to
International Myeloma Working Group (IMWG) criteria were at least 18 years of
age with an Eastern Cooperative Oncology Group (ECOG) performance status of
0-2 and no contraindications against general anesthesia. Key exclusion criterion
was a history of other malignancy except if the patient had been symptom-free and
without active therapy for at least 5 years. Patients were treated as standard of care
and the procedure to obtain biopsies for this study did not affect their care plan.
Patients did not receive financial compensation for participating in the study.

Medical imaging. All newly diagnosed MM patients underwent a PET/CT
according to the current IMWG guidelines38. Imaging was performed on a GE
Discovery ST PET/CT (GE Healthcare, Chicago, IL). Approximately 60 min after
the intravenous administration of 10 mCi of 18F-fluorodeoxyglucose (FDG) a low-
dose, non-contrast, diagnostic quality whole-body CT was performed for assess-
ment of bone disease, attenuation correction and anatomic orientation. Axial
images were reconstructed at 3.75 mm. Afterwards a PET covering the same
anatomical regions was obtained and reconstructed with and without attenuation
correction. Interpretation was performed according to the Interpretation criteria
for FDG PET/CT in multiple myeloma (IMPeTUs)39. OL were characterized by the
presence of circumscribed areas with bone loss. Increased tracer uptake was graded
according to the 5-point Deauville scoring system39.
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Imaging guided biopsies of osteolytic lesions. Every patient with new OL on
PET/CT was discussed in the Roswell Park Multiple Myeloma multi-disciplinary
tumor board. If a patient had multiple new OL, the interventional radiologists (AB
and RA) determined if a lesion was accessible for an imaging-guided biopsy with
the least risk for peri-interventional complications. Lesions had to be identified on
CT, showing bone destruction. OL PET-positivity was not required since some OL
may not be PET-avid at primary diagnosis and false-negative PET scans can occur
based on low hexokinase-2 expression40. Those patients with at least one poten-
tially accessible lesion were offered to study participation. After written, informed
consent for the entire study, patients were scheduled for a biopsy either under CT
or fluoroscopic guidance. Patients were placed in a prone position, local anesthesia
of the skin and soft tissue surrounding the OL was performed using a combination
of 1% lidocaine and 0.25% preservative free bupivacaine. Under intermittent
CT/fluoroscopy guidance, a 13-gauge trocar needle was advanced to the bone
surface. A powered bone access system (Arrow® OnControl®, Teleflex, NC) was
used to advance the needle through the outer cortex to reduce pain, procedure time
and improve specimen quality41. After CT/fluoroscopy-guided confirmation of the
correct needle placement in the OL, 10 ml bone marrow aspirate and a core biopsy
were obtained of the OL. The similar process was performed on the iliac crest for
the diagnostic aspirates (BM).

Obtaining viable plasma cells from diagnostic bone marrow aspirates and
osteolytic lesions. Figure 1 summarizes the translational workflow in our pro-
spective trial. Bone marrow aspirates from the BM and OL were collected in tubes
containing Ethylenediaminetetraacetic acid (EDTA, BD Vacutainer®, BD, NJ).
Plasma cells (PC) were immediately isolated using a CD138 positive selection kit
according to manufacturer’s instructions (EasySepTM, STEMCELL Technologies,
Vancouver, Canada). Cell numbers and viability of the positive and negative
fraction after PC separation were checked with Trypan Blue using an automated
counter (CountessTM II, Thermo Fischer, MA). PC purity was assessed by
fluorescence-activated cell sorting (FACS). In one patient, RRMM01 who had an
OL of the right clavicle with adjacent para-medullary disease (PMD), we sampled a
soft tissue tumor that was mechanically disintegrated to bring cells into suspension.

On the same day, PCs were resuspended in RPMI 1640 containing 10% fetal
bovine serum (FBS) and subjected to scRNA-seq. PCs that were not transferred for
scRNA-seq were resuspended in FBS containing 10% Dimethysulfoxide (DMSO)
and frozen at −80 °C.

In total, 167,453 of the initially sequenced 220,654 single cells from BM, OL and
after therapy (median 7712 cells/sample) were captured after filtering out cells
characterized by multiplets and high mitochondrial RNA expression that would be
reflective of a high fraction of apoptotic or necrotic cells. Quality assessment
revealed that 77.2% (n= 74,922) of cells from OL and 71.9% (n= 73,814) of cells
from BM passed the filtering process (Table 1).

Fluorescence-activated cell sorting (FACS). Immunophenotyping for PCs was
performed on purified bone marrow samples from BM and OL aspirates. The
following cell surface markers were used on fresh samples to identify plasma cells:
CD38, CD138 and CD4542.

Fluorescence in situ hybridization (FISH). FISH analyses were performed on
CD138-purified plasma cells counting at least 100 nuclei per sample and using
probes for: 1q, 1p, 5q, 9 satellite III, del13q, 15 alpha satellite, del17p, t(4;14),
t(11;14), t(14;16) and breakapart probes for IgH as well as MYC.

Single cell RNA sequencing (scRNA-seq). Single cell gene expression libraries
were generated using the 10X Genomics platform, as described previously9. In
brief, cells were loaded into the Chromium Controller (10X Genomics, CA). Cells
were partitioned into nanoliter-scale Gel Beads-in-emulsion with a single barcode
per cell. After reverse transcription, the cDNA was amplified and used to generate
libraries by enzymatic fragmentation, end-repair, a-tailing, adapter ligation, and
PCR to add Illumina compatible sequencing adapters. The libraries were evaluated
on D1000 screentape using a TapeStation 4200 (Agilent Technologies, CA), and
quantitated using Kapa Biosystems qPCR quantitation kit for Illumina (Illumina
Inc., Ca). They were then pooled, denatured, and diluted to 350pM with 1% PhiX
control library added. The resulting pool was loaded into the appropriate NovaSeq
Reagent cartridge and sequenced on a NovaSeq6000 following the manufacturer’s
recommended protocol (Illumina Inc., CA).

Cell Ranger (v3.1.0) was used to read alignment, filter, barcode and for UMI
counting. Analyses of scRNA-seq data were performed using the Seurat R toolkit
(v3.2.2) for single cell genomics23. The matched BM and OL samples from the
same patient were merged together in the analysis. We filtered out the low quality
or dying cells with more than 10% counts originating from the mitochondrial
genes. The cells detected with less than 500 or more than 7,500 unique genes were
also discarded to avoid empty droplet or multiplets. Data were normalized using
the LogNormalization method from Seurat using a scale factor of 10,000. After
feature selection and scaling of the normalized data, we performed PCA linear
dimensional reduction. The first 30 PCs were used to construct the KNN graph and
the Louvain algorithm was performed for clustering the cells with a resolution
parameter set to 0.2. We ran the UMAP method for the non-linear dimensional

reduction to visualize the dataset. Gene expression profiles were annotated with
publicly available datasets (Blueprint and ENCODE) using the R package SingleR
(v1.8.0)43. Cell cycle phases were scored using the list of cell cycle markers from
Tirosh et al. that are preloaded in Seurat44. Trajectory inference and pseudotime
calculations with Monocle 3 (v1.0.0)45 on Seurat objects were performed using
Seurat Wrappers. To characterize co-regulated gene modules across samples and
patients, we used similarity weighted nonnegative embedding (SWNE) on the
entire dataset46. Longitudinal samples from primary diagnosis and in remission
were integrated and analyzed by Linked Inference of Genomic Experimental
Relationship (LIGER) (v0.5.0)31 to identify shared and unshared marker genes of
malignant PC before and after therapy.

Copy number variations from scRNA-seq. CNVs were calculated using the
inferCNV R package (v1.3.3). Count matrices and cell annotations were extracted
from the Seurat S4 object for very individual patient. Reference cell clusters were
determined by the annotations from SingleR. Since SingleR cannot differentiate
between malignant and non-malignant PC, the latter were determined by restricted
expression of heavy and light chains. CNV prediction via hidden markov model
(HMM) was performed at the level of subclusters instead of the entire sample by
using the random trees method and setting the p-value to 0.05. CNV predictions
from HMM were visualized on UMAPs in Seurat by using the add_to_seurat
command from inferCNV.

Integrated analysis of paired samples. To identify clusters that are present in the
OL and BM and to investigate differentially expressed genes between both con-
ditions, we performed an integrated analysis as described previously23. After
identifying anchors between paired samples and integrating datasets for every
individual patient, the standard Seurat workflow for clustering and visualization
was performed. To get a broad overview on differences in gene expression between
malignant OC from OL and BM, scatterplots for average gene expression were
generated. Next, we identified differentially expressed genes between the two
groups by using the two-sided Wilcoxon Rank Sum test. Results were visualized
with the EnhancedVolcano R package (v1.12.0)47.

Gene set enrichment analysis. Gene set enrichment analysis (GSEA) was per-
formed using the FGSEA R package (v1.20.0)48 to investigate whether scRNA-seq
data can be used to classify individual patients according to the molecular classi-
fication of MM from bulk GEP18. The AddModuleScore() command from Seurat
was used to calculate the average expression for each molecular subgroup and
visualize results in a FeaturePlot.

Whole exome sequencing (WES). DNA was extracted from frozen plasma cells
using kits according to manufacturer’s instructions (DNeasy kit, Qiagen, Hilden,
Germany) for bulk WES. Oral swabs (oragene·DNA, DNA genotek, Ontario,
Canada) were collected for germline controls. After quality check (Quibit
Fluorometric Quantification DNA and RNA Assay kits, Thermo Fisher, MA),
samples were subjected to WES. SureSelect XT Low Input Target Enrichment
System (Agilent Inc, CA) was used for individual exome capturing of each DNA
sample. DNA was sheared using a Covaris S220 (Covaris Inc., MA) followed by end
repair, P5 adaptor ligation, and 10 cycles of PCR to complete the P7 adapter.
Unique dual-indexed libraries were purified with AMPureXP beads (Beckman
Coulter, CA) and validated for appropriate size on a Tapestation 4200
DNA1000 screentape (Agilent Inc., CA). The purified library was then hybridized
to the SureSelectXT Human All Exon V7 Capture library (Agilent Inc., CA).
Afterwards, the hybridized regions were bound to streptavidin magnetic beads and
washed to remove any non-specific bound products. Eluted library underwent a
second 10 cycle PCR amplification to generate enough material for sequencing.
Final libraries were purified, measured by Tapestation 4200 DNA1000 screentape,
and quantitated using KAPA qPCR (KAPA Biosystems, Basel, Switzerland).
Individual libraries were pooled in equimolar fashion at 2 nM final concentration.
Each pool was denatured and diluted to 350pM with 1% PhiX control library
added. The resulting pool was then loaded into the appropriate NovaSeq Reagent
cartridge and sequenced on a NovaSeq6000 following the manufacturer’s recom-
mended protocol (Illumina Inc., CA).

High quality paired-end reads passing Illumina RTA filter were initially
processed against the NCBI human reference genome (GRCh37) using publicly
available bioinformatic tools49,50 and Picard (http://picard.sourceforge.net/).
Putative single nucleotide variants (SNVs) and insertions and deletions (indels)
were identified by running variation detection module of Bambino51. All putative
SNVs were further filtered based on a standard set of criteria to remove the
following common types of false calls: (1) the alternative allele was present in the
matching normal sample and the contingency between the tumor and normal
samples was not statistically significant; (2) the mutant alleles were only present in
one strand and the strand bias was statistically significant; (3) the putative mutation
occurred at a site with systematically dropped base quality scores; (4) the reads
harboring the mutant allele were associated with poor mapping quality. Ambiguous
cases were manually inspected to ensure accuracy. Putative indels were evaluated
by a re-alignment process to filter out potential false calls introduced by
unapparent germline events, mapping artifacts and homopolymer. The identified
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somatic mutations were compared to the public human germline databases
including dbSNP52, 1000 Genomes Project53 and the National Heart, Lung, and
Blood Institute’s Exome Sequencing Project to further exclude remaining germline
polymorphisms. All mutations were annotated using ANNOVAR54 with NCBI
RefSeq database.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw scRNA-seq and WES data generated in this study have been deposited in the
Sequence Read Archive (SRA) database under accession code PRJNA723584.

Code availability
Custom code that was created for WES and scRNA-seq analyses can be requested by
contacting the corresponding authors.
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