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Cancer genomics and cancer mutation databases have made an available wealth of information about missense mutations found in
cancer patient samples. Contextualizing by means of annotation and predicting the effect of amino acid change help identify which
ones are more likely to have a pathogenic impact. Those can be validated by means of experimental approaches that assess the
impact of protein mutations on the cellular functions or their tumorigenic potential. Here, we propose the integrative bioinformatic
approach Cancermuts, implemented as a Python package. Cancermuts is able to gather known missense cancer mutations from
databases such as cBioPortal and COSMIC, and annotate them with the pathogenicity score REVEL as well as information on their
source. It is also able to add annotations about the protein context these mutations are found in, such as post-translational
modification sites, structured/unstructured regions, presence of short linear motifs, and more. We applied Cancermuts to the
intrinsically disordered protein AMBRA1, a key regulator of many cellular processes frequently deregulated in cancer. By these
means, we classified mutations of AMBRA1 in melanoma, where AMBRAT1 is highly mutated and displays a tumor-suppressive role.
Next, based on REVEL score, position along the sequence, and their local context, we applied cellular and molecular approaches to
validate the predicted pathogenicity of a subset of mutations in an in vitro melanoma model. By doing so, we have identified two
AMBRA1 mutations which show enhanced tumorigenic potential and are worth further investigation, highlighting the usefulness of

the tool. Cancermuts can be used on any protein targets starting from minimal information, and it is available at https://

www.github.com/ELELAB/cancermuts as free software.
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INTRODUCTION

Recent advances in cancer genomics have been leading to
increased information on cancer mutations. Resources as Genomic
Data Commons (GDC) [1] store information from different studies
from cancer genomic initiatives, such as The Cancer Genome Atlas
[2] and the Therapeutically Applicable Research To Generate
Effective Treatments (TARGET) initiative (https://ocg.cancer.gov/
programs/target). Databases such as the Catalogue of Somatic
Mutations in Cancer (COSMIC) [3] or cBioPortal [4, 5] are also a
useful resources to mine cancer mutations. Providing annotations
and predictions, which may help discriminate between mutations
with or without a pathogenic impact, is still an open challenge
[6-9] and a field in need of urgent investigation. This could be
assessed by experimental approaches to determine the impact on
protein cellular functions or the tumorigenic potential deriving
from the alteration. It is also noteworthy that genomic-related
changes in coding regions leading to amino acidic substitution(s)

can possibly result in alterations of the protein product in terms of
stability, key post-translational modifications regulating protein
function, or even interactions with other proteins. Bioinformatic
tools have been provided to support annotating of some of these
properties, even though not in a systematic manner, and they are
often based on web servers and leave little space for customizing
the analyses [10-14]. Structure-based methods can be applied to
assess these different functional layers [15-21] even though they
have a limited scope, especially if the target protein includes large
intrinsically disordered regions or regions enriched in low-
complexity sequence patterns. Furthermore, the context in which
any mutation is found is also relevant, as it can be indicative of
putative effects of a mutation. For instance, it can be useful
knowing whether a certain substitution falls within a binding site
for another protein, or whether it is located within a structured
region, or whether the substitution can abolish or even introduce
a new post-translational modification.
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To give an easily accessible overview of (i) the distribution of
mutations in a gene, (ii) pathogenicity scores, and (iii) annotations
along the protein sequence, we have created Cancermuts, a
Python package that streamlines the collection and annotations of
cancer mutations located in the coding region of a gene of
interest, e.g. mutations that will impact its protein product. The
information is superimposed with different layers to help make
informed decisions on which mutations are more likely to be
functionally damaging and worth further investigation by either
computational or experimental approaches. Cancermuts is
approachable for users with minimal Python or programming
experience. Nonetheless, this makes it possible to easily integrate
it in more complex workflows and grants a high degree of
flexibility, customizability, and extendibility.

To validate Cancermuts in a cancer study, we focused on the
tumor suppressor gene AMBRAT (autophagy and beclin 1
regulator 1). Initially discovered to be involved in correct
embryogenesis, especially during brain development, in mouse
congenital malformations as well as in human neurological
disorders [22, 23], AMBRAT1 is mostly known for its role in
autophagy activation [22, 24]. New cancer-related roles for
AMBRA1 have emerged over the years, particularly with regard
to cell proliferation and tumorigenic potential [25]. More recently,
the role of AMBRA1 as tumor suppressor has been further
extended, as by its regulation of cell cycle by Cyclin
D1 stabilization (via interaction with the E3 Ubiquitin ligase
DDB1-Cullin4) [26-28] and of malignant invasiveness (through
focal adhesion kinase FAK1 hyperactivation) [29]. Such a vast
range of functions is intertwined with the ability of AMBRA1 to
interact with molecular partners [22, 24-28, 30-38] and undergo
post-translational modifications (PTMs) [24, 39, 40], and deeply
relies on its intrinsically disordered structure.

In this study, we used Cancermuts on AMBRAT1, allowing to
identify putative cancer mutations of interest to be further
validated experimentally. The prediction of pathogenic mutations
of AMBRA1 and their in vitro validation have been carried out in
melanoma, the most aggressive and lethal form of skin cancer, in
which AMBRA1 not only bears an anti-tumorigenic function [29],
but also displays high mutation rate [26].

RESULTS
Design and implementation
Cancermuts is designed as a Python package with an easy-to-use
programming interface (API) (Fig. 1). It is suited to researchers with
basic programming Python skills and can be used, for instance, in
popular interactive Python interfaces, such as Jupyter notebooks,
as well as in standalone Python scripts, or integrated in more
complex workflows. In fact, the information obtained from
Cancermuts can be represented as a Pandas data frame, a
commonly used data format that can be easily further processed
for data exploration or integration with other sources. The
Cancermuts API also allows a good degree of flexibility, allowing
the researcher to customize several aspects on which information
is collected and to build their own annotation strategy.
Cancermuts only requires basic information about the gene of
interest, namely either its IDs or its protein product IDs, such as
Uniprot accession ID [41]. Using the Cancermuts API, the user is
expected to download the protein sequence first by providing
relevant database IDs (Fig. 1). This can then be annotated with
protein missense mutations from cancer mutation or genomics
databases, as well as with further annotations regarding the
protein sequence itself and the identified mutations (see below for
details). Both mutations, e.g. from patient-cohort studies, and
annotations can also be provided from custom user-designed
input files, allowing integration in the annotation pipeline. The
tool has been designed to annotate somatic mutations and
especially focuses on single nucleotide variants. Once the data
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collection has been performed, Cancermuts provides the
researcher with a textual and graphical representation of the
mutations to explore the data and help with their interpretation.
All the obtained data can be converted to a simple Pandas data
frame, which can then be manipulated as desired, including
saving it as a table (CSV) file. Cancermuts also includes facilities to
represent the annotation as a publication-ready stem plot which
can be thoroughly customized.

Cancermuts interacts with different freely available resources for
sequence-based annotations as detailed below. The package is
designed to be modular and easily extendable, should other
annotations be of interest in the future.

The current release interacts with the cancer databases COSMIC
[3] and cBioPortal [4, 5] to retrieve cancer-associated mutations,
allowing local or on-the-fly access, respectively, along with data
filtering starting from minimal information about the gene of
interest. It is also possible to filter for cancer type or study. Some
of the metadata from these databases are kept as annotations.

In addition, Cancermuts retrieves a score (ranging between 0
and 1) for pathogenicity of the mutations based on 13 individual
predictors that have been combined using a random forest
approach within the REVEL framework [42]. The user can deduce
the threshold value to associate with pathogenic mutations based
on specific case studies and benchmarking. We recommend
applying a cut-off of 0.4 in case additional information are lacking,
i.e. the one that guarantees a good compromise between
specificity (0.85) and sensitivity (0.81) [42].

The tool is also able to query gnomAD [43], a collection of
harmonized whole-genome and -exome sequencing data. gno-
mAD works as a proxy of the healthy population for allele
frequency. This annotation can be used, for example, to discard
some of the mutations from further analyses. Indeed, if a mutation
occurs with high frequency in non-tumoral samples, it is unlikely
to have a strong pathogenic impact.

Cancermuts allows to store annotations for functional short-
linear motifs (SLiMs) that might be related to protein regulation or
interaction. This is done interacting with the ELM database [44] or
providing input annotations from other sources. Information on
putative PTMs are provided by querying PhosphoSitePlus [45] and
can additionally be provided by the user in case additional
annotations not covered in the database (but experimentally
proven) are available.

Cancermuts also allows to annotate the propensity to disorder
or structure using MobiDB. Additional custom annotations
regarding structure propensity can be provided by the user
through a specific formatted CSV file (see GitHub repository and
user guide).

Cancermuts has been designed to be applicable to any protein
product and does not require structural information. It is especially
interesting for intrinsically disordered proteins or domains, along
with low complexity repeats for which structure-based methods
currently available to predict the effect of mutations are not easily
transferable or challenging to apply. Structural annotations can be
facultatively added, whether available.

Cancermuts can be used on any protein target and it is available
at https://www.github.com/ELELAB/cancermuts as free software
accompanied by a tutorial on GitBook that details its usage on
another protein target (i.e,, LC3B).

Case study: AMBRA1 mutations in melanoma

AMBRAT1 is a large, mostly disordered protein, with a canonical
UniProt sequence of 1298 residues. The intrinsically disordered
nature of the protein, along with its high plasticity, probably due
to its several protein-protein interactions and post-translational
modifications (PTMs) [22-40], make of AMBRA1 a good candidate
to link together different intracellular processes. Notably, many
types of cancer, including malignant melanoma, where AMBRA1
has been shown to play an anti-tumorigenic role [29], show
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Fig. 1 Schematic representation of the Cancermuts workflow. The figure shows on the left the different layers of evidence that Cancermuts
supports. The Uniprot main isoform sequence is the basis on which either per-position or per-sequence annotations are performed (post-
translational modifications, structure definition, linear motifs) that can be provided by one of the sources and by manual user annotation. The
sequence can also be annotated by downloading cancer-related mutations and relative metadata, including REVEL scores and gnomAD allele
frequencies. Mutations can be supplied by manual annotation as well. Once the information has been collected, it can be summarized as a

table (right) and as a plot (bottom right).

genetic alterations in AMBRAT [26-28]. Indeed, AMBRAT1—when
compared to other cancer studies, shows the highest mutation
rate in skin cancers, such as melanoma [26].

Due to its structure, propensity to interact with other proteins,
and cancer-related functions [26-29], we sought to apply
Cancermuts to AMBRAT in order to predict the pathogenicity of
its mutations in melanoma.

Cancermuts for AMBRAT1: in silico analysis

We have collected all available melanoma-associated mutations
for AMBRA1 from COSMIC and mutations associated with
melanoma studies from cBioPortal on 8 April 2020. We have
annotated this information with all the available annotations in
Cancermuts as well as integrated them with manual annotations.
These include information about SLiM binding sites and PTMs
known in literature but unavailable on the databases on the date
the pipeline was run, as well as more about predicted structural
regions of AMBRA1 (see GitHub repository). By using a model
based on AlphaFold2, we have predicted residues ~7-203 and
857-1040 (381 residues: ~29% of total sequence length) of
AMBRA1 to be structured regions, including a region with a
B-propeller fold (Fig. 2A). We have saved all the collected
information in a CSV table (see Supplemental Table S1) and
provided a graphical support (Fig. 2B).

Overall, our analysis identified a total of 73 melanoma-
associated non-neutral mutations (Supplemental Table S2, Fig.
2B), 70 of which derived from single-nucleotide substitutions and
3 from multiple nucleotide substitutions (P589F, S605F, P1253S).
As the REVEL score is only available for single substitution, these
could not be assigned any score. Of such mutations, 40% (28)
displayed a REVEL score below significant threshold (Supple-
mental Table S2, Fig. 2B). Out of the identified protein mutations,
the genomic alterations associated to 54 (~74%) were found
compatible with UV-induced DNA damage (Supplemental Table
S3). Overall, about 39% of the identified mutations were found to
be in putative structured regions, displaying no general
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preference for such regions to accumulate mutations. None-
theless, out of the 28 mutations predicted as damaging for REVEL,
the majority (15) was found within the predicted structure regions,
whereas only 13 were found within the disordered parts of the
protein, which covers nearly 60% of the sequence. Therefore, at
least for this specific case, a damaging mutation is more likely to
be found in a predicted structured region. Pro and Ser were by far
the most mutated residue types (17 for each, respectively),
followed by Arg (8), Gly (8), and Leu (7). Not surprisingly, the most
frequent mutation in the dataset was Ser to Phe (10 occurrences)
and Pro to Ser (9), followed by Pro to Leu (5) and Leu to Phe (5),
with all the other substitutions being far less frequent (two
occurrences or less). The mutation frequencies downloaded by
gnomAD did not allow us to discard any of the identified
mutations in this case.

We have annotated a total of 26 phosphorylation sites, 6
ubiquitylation sites, and 7 methylation sites. Most of the PTMs sites
are localized in unstructured regions of the protein, where they
could be more accessible to kinases or other proteins responsible
for their modification. Phosphorylations tend to be clustered in
small groups, for instance in stretches 387-394, 628-639, 797-814,
1027-1043, 1192-1205, which may be important regulatory
regions of the protein [24, 25, 31, 33, 34, 40]. Ubiquitylation sites
are clustered in the first 50 residues of AMBRA1, while methylation
sites are found mostly in the 730-824 region.

ELM identified several potential SLiMs to which interactors could
bind close to mutation sites. It should be noted that SLiMs are
defined in the context of disordered regions, while the SLiMs
identified in Cancermuts are not filtered according to Cancermuts’
own definition of structured or unstructured regions, as such
information could still be useful, depending on how trustable the
disorder prediction or definition is, as well as considering order-
disorder transitions in the protein structure. Interestingly, ELM
identified different TRAF6 ubiquitin ligase binding sites, the role of
which in AMBRA1-mediated control of autophagy has already been
described [24]. Other relevant binding sites include those for cyclins.

SPRINGER NATURE
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Fig. 2 Predicted structured regions of AMBRA1 and identified cancer mutations. A predicted structured regions of AMBRA1 including the
B-propeller domain. The N-terminal and C-terminal regions of the model are shown in blue (7-203) and orange (857-1040), respectively. In the
N-terminal region, we included in the model the helical structures (residues 7-41) that are upstream of the propeller domain since they were
predicted with high confidence by AlphaFold2. The part of this structured region against which the AMBRA1 antibody for the C-terminal
region we have used has been raised is also highlighted by showing its molecular surface (top right). B Melanoma-related mutations and
corresponding annotations as collected by Cancermuts. Plots follow the main Uniprot sequence numbering; each mutation is annotated as a
stem the height of which is proportional to the identified REVEL score (with 0 for those that could not be annotated). Blue shades and
corresponding bottom labels refer to linear motifs as annotated by ELM. Post-translational modifications are shown as colored vertical lines. A
gray dotted pattern was used to represent the predicted structured p-propeller domain of AMBRA1. Predicted SLIMs that do not overlap with

mutations have been hidden from this plot for ease of visualization.

Cancermuts for AMBRAT1: in vitro validation

Among the identified mutations, several of those predicted as
pathogenic are included both in the N- and C-terminal predicted
B-propeller regions (Fig. 2B). Based on the recent findings
indicating that the N-terminus of AMBRA1 is involved in
stabilization of AMBRA1 itself [30] and of Cyclin D1 [26-28], a
result that we confirmed in BRAF'*®E-mutated A375 melanoma
cells silenced for AMBRAT by small interference RNA (siRNA;
siAMBRA1 #1 and #2) (Supplemental Fig. 1), we characterized the
in vitro effects of AMBRA1 mutations (REVEL score >0.4) within
those mapping at the N-terminus of the protein (Fig. 3A). The list

SPRINGER NATURE

of these mutations, as well as interaction sites [24-28, 30-34] and
PTMs [22, 30, 32, 35-40] of AMBRA1 are shown in Fig. 3A. Our
analyses also include the A157V mutation which, bearing a REVEL
score < 0.4, and an amino acid substitution with a residue of
similar type and steric incumbrance (A to V), is not predicted to be
pathogenic. Re-expression of WT AMBRA1 has been used as a
reference. Our experimental settings consist of transfecting
melanoma cells with a siRNA targeting the 5-UTR region of
AMBRAT (siAMBRA1#2) prior to mutant re-expression (Fig. 3B).
Western blot (WB) analyses ruled out any possible effects of the
mutated constructs on either the autophagy or apoptotic

Cell Death and Disease (2022)13:872
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functions of AMBRA1, as respectively stated by lipidation of LC3
(LC3-Il) (Fig. 3C; Supplemental Fig. 2A), a bona fide marker for
autophagy, and cleavage of the apoptotic marker CASP-3 (Fig. 3Q).
Instead, increased protein levels of Cyclin D1 were observed solely
upon re-expression of the L110F mutant (Fig. 3C; Supplemental
Fig. 2B). In addition, re-expression of L110F, and of P170S as well,
resulted in hyperphosphorylation of FAK1 at Y397 (pFAK-Y397)
and of SRC (another component of the FAK1 signaling) at Y416
(pSRC-Y416), suggesting an active FAK1 signaling in both
conditions (Fig. 3C; Supplemental Fig. 2C and D). Interestingly,
re-expression of both L110F (close to the DDB1-Cullin4 domain)
and P170S (close to a predicted ubiquitination site) mutants
resulted in poor detection of AMBRAT1 constructs at protein level
(Fig. 3C; Supplemental Fig. 2E). On the other hand, no differences
were depicted at mRNA level by RT-gPCR with respect to WT-
expressing cells (Fig. 4A), hence suggesting possible effects on
protein stability. Previously, AMBRA1/DDB1-Cullin4 interaction was
shown to promote AMBRA1 stability by proteasome degradation
[30]. To assess whether reduced AMBRA1 protein levels could
result from protein degradation by either the proteasome or
lysosome pathway, L110F- and P170S-expressing A375 cells were
treated with proteasome (MG-132) (Fig. 4B) and lysosome
(chloroquine, CQ) (Fig. 4C) inhibitors, respectively. However, in

B o

>

neither condition a rescue of protein levels was observed. The
presence of protein aggregates was also assessed in insoluble
fractions of mutant-expressing cells, however unsuccessfully (Fig.
4D). Interestingly, when other antibodies raised against AMBRA1
were employed, protein levels of L110F and P170S could be
successfully detected with an antibody raised against the
N-terminus of AMBRA1 (Fig. 4E). Moreover, when myc-tagged
AMBRAT constructs were re-expressed instead (Fig. 4F), and
protein levels detected using either an anti-myc or the panel of
anti-AMBRA1 antibodies, the expression of the L110F and P170S
mutants could be detected in all instances and was comparable to
WT-expressing cells. Hence this suggests a failure of the two
antibodies raised against the C-terminus of AMBRA1 shown in Fig.
4E, rather than effects of the mutants on protein stability.
Functionally, the levels of Cyclin D1, pFAK-Y397, and pSRC-Y416
upon re-expression of myc-tagged mutants were also consistent
with those observed in non-myc-tagged expressing cells (Fig. 4G;
Supplemental Fig. 2F-H).

The increased levels of Cyclin D1 and the hyperactivation of
FAK1 signaling upon Ambral depletion have been previously
correlated to boosted proliferative rate and invasiveness of
melanoma, respectively [29]. Although the increased Cyclin D1
levels observed upon L110F expression (Fig. 3C; Supplemental Fig.
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Fig. 4 Analysis of the role of L110F and P170S mutants on AMBRA1 stability. A RT-qPCR analyses of AMBRAT upon WT, L110F, P170S, and
A157V re-expression. Data were normalized on L34 and expressed as fold change vs non-transfected cells (Ctrl, indicated by a dashed
line) £ SEM (n = 3; ***p = 0.0002; ****p < 0.0001; one-way ANOVA). B 24 h after transfection of the constructs, A375 cells were treated with MG-
132 (10 uM) or C CQ (40 uM) for 4 h and WB analyses for AMBRA1 and Actin performed. Ubiquitylated proteins (Ub) and LC3-Il accumulation
were detected as positive controls for the treatments. Images are representative of n = 4 independent experiments. D WB analyses of soluble
and insoluble fractions upon mutant re-expression. AMBRA1 and Actin were detected (n = 3). A representative gel activation is also shown.
E WB analyses of AMBRA1 upon WT, L110F, P170S, and A157V re-expression in A375 and F upon re-expression of AMBRA1-myc-tagged
constructs using a panel of anti-AMBRA1 antibodies. In F, AMBRA1 has been revealed also using an anti-myc antibody. G A375 cells were re-
expressed with AMBRA1-myc-tagged WT, L110F, P170S and A157V constructs and pFAK-Y397, FAK1, pSRC-Y416, SRC, Cyclin D1, and LC3
(-1 and -ll) detected by WB. AMBRA1 was detected using an anti-myc antibody. In E-G Actin was revealed as loading control and images are

representative of n =3 independent experiments.
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Fig. 5 Analysis of the effect of L110F and P170S mutants on melanoma invasiveness. A Representative Crystal Violet staining of WT-,
L110F-, P170S- and A157V-expressing A375 cells after 24 and 48 h (n = 3). B Quantification of the staining shown in (A). Data are shown as fold
change + SD with respect to control sample (WT at 24 h) (n = 3; ns=not significant; two-way ANOVA). C Representative images (n = 3) of
wound healing assay in mutant-expressing A375 cells at 24 h. White and yellow lines outline wound edge at Ty and at the time indicated.
D Quantification of wound closure is shown as percentage+SD vs T, at the times indicated (n=3; ns=not significant; **p =0.0018;
***p = 0.0004; two-way ANOVA). E Cell viability of WT-, L110F-, P170S- and A157V-expressing A375 cells after 24 and 48 h is expressed as fold
change + SD with respect to control sample (WT at 24 h) (n = 3; ns=not significant; two-way ANOVA). F RT-qPCR analyses of EMT markers FN1
(n=3; ns=not significant; **p =0.0016 L110F vs WT; **p =0.006 P170S vs WT; one-way ANOVA) and G VIM (n=3; ns not significant;
**¥p = 0.0003 L110F vs WT; ***p = 0.0002 P170S vs WT; one-way ANOVA) upon WT, L110F, P170S and A157V re-expression. Data are expressed
as fold change vs WT + SEM. H A375 cells were re-expressed with AMBRA1-myc-tagged WT, L110F, P170S and A157V constructs and CDH1,
CDH2, VIM and SNAI1 detected by WB. AMBRA1 was detected using an anti-myc antibody as transfection control whereas Actin as loading
control. Images are representative of n = 3 independent experiments.

2B) did not correlate with changes in proliferation rate of A375 scan shows that any mutation at residue 90 was predicted not to
cells (Fig. 5A, B), the hyperphosphorylation of FAK1 and SRC (Fig. affect stability, while residues 97 and 157 had a less extreme
3C; Supplemental Fig. 2C and D) associated with a higher invasive behavior, with only some substitutions having a negative effect
capacity of A375 upon both L110F and P170S re-expression (Fig. (Fig. 6). Unsurprisingly, the experimentally tested mutations at the
5C, D). No effects were observed upon re-expression of the hotspot sites (P63S, L110F, S142F, P170S) were found to be
negative mutant A157V. Such an effect was also unrelated to destabilizing as well (Fig. 6). Mutations S90F and A157V had a
possible changes in cell viability (Fig. 5E). Consistently with neutral effect on stability, while T971 was classified as stabilizing
previous data showing that loss of Ambral promotes an epithelial- (AAG = —2.34 kcal/mol) (Fig. 6).

to-mesenchymal (EMT)-like phenotype in melanoma [29], re-

expression of the L110F and P170S also improved expression of

the mesenchymal markers Fibronectin (FN1) (Fig. 5F) and Vimentin DISCUSSION

(VIM) (Fig. 5G) at mRNA and of CDH2, VIM and SNAI1 at protein In this work we have presented Cancermuts, a Python package for
(Fig. 5H; Supplemental Fig. 2I-K) level, whereas a reduced protein the discovery, annotation and prioritization of cancer-related

expression was observed for the epithelial marker CDH1 (Fig. 5H; mutations. Our software can interrogate cancer genomics and
Supplemental Fig. 2L). mutation databases such as COSMIC and cBioPortal to retrieve

Comprehensively, our results indicate that, although differently, cancer-associated mutations, both in pan-cancer or specific cancer
the expression of the AMBRA1 L110F and P170S mutants, types and studies. It also annotates both protein sequences and
predicted to be pathogenic, accelerates the wound closure identified mutations to (i) give a context in terms of functional or
capacity of melanoma cells and activates the EMT process and structural features surrounding mutation sites and (ii) assess their
the FAK1 oncogenic signaling pathway. potential to interfere with such features. Annotating mutations

with pathogenicity scores such as REVEL and gnomAD allele
Prediction of changes in folding free energy upon mutations frequencies also helps inform on their potential for pathogenicity
We have used an in silico mutational scan based on MutateX [46] more in general.
and the FoldX energy function [47] to investigate whether Cancermuts has been designed as a Python package to ensure
AMBRA1 mutations validated for this study were likely to affect maximum flexibility, expandability and modularity. It is straightfor-
the stability of the B-propeller domain (Fig. 6). Our results show ward to use for researchers with basic Python skills and can be either
that out of the 7 experimentally validated mutations, 4 were used independently or incorporated in more complex workflows,
mutational hotspots. These are residues 63, 110, 142 and 170 for e.g., after reducing the information it collects to a data frame.
which the substitution to most residue types was found In this contribution we have tested our approach on the protein
destabilizing (AAG > 1.2 kcal/mol) (Fig. 6). On the contrary, the AMBRAT1, focusing on cancer mutations from melanoma. Indeed,
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Fig. 6 Predicted changes of folding free energy upon mutation for the mutations experimentally tested. In these plots, positive values
represent mutations predicted to be destabilizing the protein structure, while negative values represent mutations predicted to be stabilizing.
A Heatmap with predicted changes of free energy for the whole mutational scans at the sites we tested experimentally. Values in the plot
have been limited within the —3 to 5 kcal/mol range to avoid using a less effective color scale due to outliers. B Box plots representing the
distribution of the same values plotted in (A). C Residues at mutation sites corresponding to mutations that have been experimentally tested
are shown on the predicted protein structure as sticks, colored proportionally to the predicted free energy change of the respective
mutations, as per the colorbar. Values here have been limited in the —5 to 5 kcal/mol for the same reasons as in (B) to obtain a symmetrical

colormap around 0.

melanoma is one of the cancer types in which AMBRAT displays a
crucial anti-tumorigenic role [29] and a mutational rate among the
highest [26]. AMBRAT1 is largely an intrinsically disordered protein
(IDP), and its “unstructure” suggests that it can adapt to diverse
situations and possibly coordinate different intracellular processes
mainly by regulating protein-protein interactions [23]. The
flexibility of its long-disordered regions could play an important
role in modulating the conformational changes needed to provide
interaction surfaces that are complementary to different biological
partners. Our tool identified several AMBRA1 mutations of
potential interest in melanoma and allowed us to contextualize
them in terms of localization in a predicted structured region,
surrounding post-translational modifications, embedding in short
linear motifs, and to annotate them for pathogenicity scores.
Based on its importance in AMBRAT1 itself [30] and Cyclin D1
[26-28] stability, we then focused our attention on the N-terminal
region of the protein and assessed the effect of the most
interesting mutations, given their context and annotations.
Mutations have been selected by means of the pathogenicity
score REVEL using a threshold of 0.4, which corresponds to a good
balance between specificity and sensitivity (sensitivity 0.81 and
specificity 0.85) [42] and represents a good compromise. None-
theless, further fine-tuning of the cut-off might be necessary to
suit different cases, also depending on the amount of available
resources for further validation. Of the tested mutations, none had
a clear effect on the AMBRA1-related autophagic or apoptotic
pathways. However, we cannot rule out that such mutations might
have effects we did not test for, or that such mutations might be
detrimental in other conditions or cell types, or in conjunction
with others. In this sense, having a wider range of readouts could
help understand whether these false positive mutations can be
important. This also highlights a potential downside of using

SPRINGER NATURE

pathogenicity predictors that are not tailored towards a specific
disease or tissue. It has been shown that the performance of
variant prioritization predictions varies with diseases phenotype
[48], and machine learning models trained on more specific
datasets could incorporate more of the cellular context of the
identified variants or diseases, improving performance [48]. It
should also be noted that all the N-terminal tested mutations fall
in a generally very well conserved region of AMBRAI, as
demonstrated by our protein sequence alignment among
sequences of AMBRAT orthologs from human, chimpanzee,
mouse, rat, bovine, Xenopus and zebrafish (see Methods and
Supplemental Table S4). As 8 out of 18 of the pathogenicity scores
integrated in REVEL are based on conservation, this is probably a
contributing factor to the score that REVEL assigns to the
mutations in this region. Interestingly, although differently,
mutations of the conserved L110 (L—F) and P170 (P—S) residues
were found implicated in functions of AMBRA1 recently reported
to be relevant in terms of tumor growth and progression [26-29].
Among these, the expression of the L110F mutant (which maps
next to the DDBI1-Cullin4 interaction domain of AMBRAT),
correlated with increased protein levels of Cyclin D1. Despite no
difference in terms of proliferation was assessed (a counter-
intuitive outcome that may be explained by the high proliferative
rate of A375 cells), the high Cyclin D1 levels detected in these
circumstances may implicate an impaired ability of AMBRA1 to
control Cyclin D1 stability. Moreover, both mutations increased
the phosphorylation status of components of FAK1 signaling,
namely of FAK1 itself (pFAK1-Y397) and SRC (pSRC-Y416). Under
the same conditions, cells expressing our mutants displayed
higher cell invasiveness, hence suggesting a potential pathogenic
effect for either mutation. RTqPCR analyses of cyclin D1 (CCNDT)
upon mutant re-expression, as well as protein expression analyses
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of Cyclin D1 in AmbraT-null tumors upon FAK1 inhibitor ruled out
any correlation between FAK1 signaling activation and Cyclin D1
expression [49] (Supplemental Fig. 3). Structure-based mutational
scans suggest that both mutations are likely to destabilize the
protein structure. Indeed, both positions were found to be
extremely sensitive to mutation in a way that any amino acid
change is likely to destabilize the protein at these positions.
Despite the protein levels of the L110F and P170S mutants were
not affected when screened using myc-tagged AMBRA1 mutants
or an anti-N-terminus-AMBRA1 antibody, this does not rule out
that the protein may undergo PTMs or that the structure itself
might be affected —as suggested by the anti-C-terminus-AMBRA1
antibody failure, which was raised against residues 999-1298 of
the AMBRA1 sequence. This includes part of the predicted
B-propeller domain that bridges to the N-terminal region by
means of a B-sheet. Residues 110 and 170 are not directly in
contact with this region (Fig. 6), meaning it is unlikely their
mutation would have a direct effect; nonetheless, they could still
elicit a long-range effect by disrupting the local propeller structure
and interfering with propeller assembly.

Even though these mutations feature the lowest REVEL score
among those classified as pathogenic, they were found to bear the
largest effects among those we tested. We speculated this might
be due to their potential of inducing conformational changes or
destabilization of the AMBRA1 protein structure. In this case,
therefore, as REVEL does not include predictions of changes in
protein structural stability explicitly, additional annotations that
rely directly on structural information could complement and add
another compelling layer of evidence. In this sense, tools able to
perform high-throughput mutational scans (e.g. MutateX, which
uses FoldX) aiming at predicting the impact of mutations on
protein structure could be integrated in the Cancermuts package,
for instance by including ready-made mutational scans in the
annotation pipeline, which can be provided through the structure-
based framework introduced in the work by Fas et al. [15].

Cancermuts was created with a modular design philosophy. This
makes it possible to add additional layers of evidence by including
support for them in the code, taking advantage of the pre-existing
package structure. This will be useful to add new predictors or
other data as they become available or to tailor its use to specific
cases or datasets. For example, predicted structures from the
AlphaFold protein structure models collection [50] could be used
to integrate an additional layer of information about the structure
and differentiate between predicted disordered and ordered
regions. Other attractive layers of evidence also include predictors
for the effect of mutation based on sequence evolution, such as
the recently released EVE model [51] which relies on generative
models of evolutionary data, GEMME [52], DeepSequence [53] or
EVmutation [54]. The fact that Cancermuts also allows user-curated
input yet adds another layer of flexibility, allowing to add
information without need to write any code.

MATERIALS AND METHODS

Cell lines and treatments

The human melanoma cell line A375 (RRID: CVCL_0132) was cultivated in
GlutaMAX™-additioned Dulbecco’s Modified Eagle Medium (DMEM)
(ThermoFisher Scientific; cat# 31966-021) supplemented with 10% FBS
(ThermoFisher Scientific; cat# 10270-106) and 100 U/ml P/S (Thermo-
Fisher Scientific; cat# 15140122). Cells were cultured in an atmosphere of
5% CO; in air at 37 °C and passaged no more than 15 times. Cells were
used within a few months of resuscitation and routinely tested for
Mycoplasma during sub-cultivation by PCR-based methods (eurofins
Genomics, DE) and only used if negative. During the experiments, cells
were plated at a density of 1x 10° cells/ml, unless otherwise indicated.
Chloroquine (CQ, Sigma-Aldrich; cat# C6628) and MG-132 (Sigma-
Aldrich; cat# M7449) were dissolved in DMSO and used at final
concentrations of 40 and 10 uM, respectively, for 4 h while DMSO was
used in control cells.
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In vivo analyses

Samples for in vivo analyses have been collected as part of a previous
study. Details about the in vivo experiment, sample collection and
processing are available at [29].

siRNAs and Transfection Methods

Reverse siRNA transfection was performed at the time of seeding at a final
20 nM concentration for a total of 48 h, unless otherwise indicated. siRNA
sequences for AMBRAT1 are custom designed, as reported in [29]. Negative
control cells (siScr) were transfected with the MISSION” siRNA Universal
Negative Control #1 (Sigma-Aldrich; cat# SIC001). Overexpression of
plasmid constructs was carried for the times indicated in the specific
experiments after cells had been reversely transfected for 24h with
siAMBRA#2, which was specifically designed to target the 5'-UTR region of
AMBRAT in order to exclude effect(s) (i) of the siRNA on expression of
AMBRA1 plasmid constructs and (i) of endogenous AMBRA1 in the
downstream applications (Fig. 3B). The sequence coding for wild-type
AMBRA1 (WT) (UniProt ID: Q9C0C7-1) was cloned in either pcDNA™3.1
Mammalian Expression (ThermoFisher Scientific; cat# V79020) or
pcDNA™3.1/myc-His A, B, & C Mammalian Expression (ThermoFisher
Scientific; cat# V80020) vectors. The coding sequences were amplified by
PCR and cloned in the acceptor vector by means of EcoRl and Notl
restriction sites. AMBRA1 mutants (P63S, S90F, T97I, L110F, S142F, A157V,
P170S) were generated by site-directed mutagenesis using AMBRA1 as
template and custom designed primers. The list of mutants of the
N-terminal region of AMBRA1 on which the in vitro validation has been
performed does not include all the point mutations with
REVEL = 0.4 shown in Supplemental table S2, as DNA constructs were
generated on a previous version of the mutation plot dated 22 May 2018.
All transfections were performed using Lipofectamine™ 2000 Transfection
Reagent (ThermoFisher Scientific; cat# 11668-019), and manufacturer’s
instructions were followed.

Protein expression analysis

At the time of collection, cells were washed in Phosphate Buffer Solution
(PBS, ThermoFisher Scientific; cat# 14190144), mechanically detached and
centrifuged at 1200 x g for 5min at 4°C and cell pellets processed and
previously described [29]. Protein concentration of supernatants was
determined by the Lowry’s method. For soluble/insoluble analysis, cell
debris (insoluble fraction) was washed three times in RIPA buffer followed
by centrifugation at 10,000 X g for 5 min at 4 °C. Both soluble and insoluble
fractions were denatured in NUPAGE™ LDS Sample Buffer (4X) (Thermo-
Fisher Scientific; cat# NP0007) supplemented with NuPAGE™ Sample
Reducing Agent (10X) (ThermoFisher Scientific; cat# NP0004) followed by
incubation at 100°C for 5 min. Protein extracts were separated by SDS-
PAGE using Criterion™ TGX™ Precast Gels (Bio-Rad Laboratories; cat# 567-
8084) and blotted onto PVDF membranes (Bio-Rad Laboratories; cat#
10026933) using a Trans-Blot® Turbo™ Transfer System (Bio-Rad Labora-
tories). Primary antibodies used are as follows:

Target Dilution Distributor Cat# RRID:
Actin 1:40,000 Novus Biologicals NB600- AB_10077656
501

AMBRA1 1:1000 Santa Cruz sc- AB_2861324
Biotechnology 398204

AMBRAT1 1:1000 Merck-Millipore ABC131 AB_2636939

AMBRA1 1:1000 Sigma-Aldrich PRS4557 AB_1848744

c-myc 1:1000 Santa Cruz sc-40 AB_627268
Biotechnology

CASP-3 1:1000 Cell Signaling 96625 AB_331439
Technology

CDH1 1:1000 Cell Signaling 31955 AB_2291471
Technology

CDH2 1:1000 Cell Signaling 13116S AB_2687616
Technology

Cyclin D1 1:2000 Abcam ab16663 AB_443423

FAK1 1:1000 Cell Signaling 13009 AB_2798086
Technology
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Table continued

Target Dilution Distributor Cat# RRID:

LC3 1:2500 Cell Signaling 3868S AB_2137707
Technology

pFAK-Y397 1:1000 Cell Signaling 8556 AB_10891442
Technology

pSRC-Y416 1:1000 Cell Signaling 6943S AB_10013641
Technology

SNAIT 1:1000 Cell Signaling 3879 AB_2255011
Technology

SRC 1:1000 Cell Signaling 2123S AB_2106047
Technology

Ubiquitin (Ub) 1:1000 Merck-Millipore 05-1308 AB_1587580

VIM 1:1000 Cell Signaling 5741 AB_10695459

Technology

Images were captured with a ChemiDoc™ MP System (Bio-Rad
Laboratories; cat# 1708-280) provided with the Image Lab 6.0.1 Software
(Bio-Rad Laboratories). Densitometry analyses were carried out using the
ImageJ software (1.52.g) (University of Wisconsin; RRID:SCR_003070). Full
length uncropped original western blots are provided and available in the
Supplemental Material file.

RNA isolation, reverse transcription, and quantitative RT-PCR
Total RNA was isolated and reverse transcription were performed as
previously described [29]. ¢cDNA was diluted three times and mRNA
expression levels detected by PowerUp™ SYBR™ Green Master Mix
(ThermoFisher Scientific; cat# A25742), according to the instructions, on
a ViiA 7 Real-Time PCR System v1.3 (Applied Biosystems). All reactions were
run in triplicate and mRNA levels expressed as fold change (relative to
control) after normalization to the internal housekeeping L34. The specific
primer pairs were custom designed and tested with Primer-BLAST (NCBI;
RRID:SCR_003095). Primers used were obtained from TAG Copenhagen A/S
(Copenhagen, DK) and are as follows: L34: FW: 5/- GGC CCT GCT GAC ATG
TTT CTT -3/, RV: 5/- GTC CCG AAC CCC TGG TAA TAG A -3'; AMBRAT: FW: 5/-
AAC CCT CCA CTG CGA GTT GA -3/, RV: 5’- TCT ACC TGT TCC GTG GTT CTC
-3/; FNT: FW: 5/- CGA CAC ATT CCA CAA GCG TC -3/, RV: 5/- CAT TGG TCG
ACG GGA TCA CA -3/; VIM: FW: 5/- GAC GCC ATC AAC ACC GAG TT -3/, RV:
5/- CTT TGT CGT TGG TTA GCT GGT -3/; CCND1: FW: 5'- GAT CAA GTG TGA
CCC GGA CT-3’, RV: 5/- CTT GGG GTC CAT GTT CTG CT-3".

Wound healing assay

Twenty-four hours after re-expression of the plasmid constructs, 25,000
cells were seeded in each of the two wells of silicone inserts with a defined
gap of 500 um (ibidi®; cat# 80209) in six-well plates. After 16 h, the inserts
were removed and wound closure followed at the times indicated.
Migrating cells were imaged with an IX71 inverted microscope (Olympus)
provided with a CellSens Imaging Software 2 (Olympus; RRID:SCR_016238).
The area of wound closure was calculated using ImageJ with respect to the
initial area (To) and expressed as percentage of wound healing at the time
points indicated. In the representative pictures, the white and yellow lines
outline the edge of the wound at Ty and at 24 h, respectively.

Cell proliferation

Twenty-four hours after re-expression of the plasmid constructs, 10,000
cells were seeded in 12-well plates. After 24 h and 48 h, cells were washed
with PBS, fixed-and-stained with a 0.025% (w/v) Crystal violet (Sigma-
Aldrich; cat# C6158) solution in 20% (v/v) MeOH on ice for 15 min. After
washing with ddH,0, plates were air-dried and pictures taken with an 1X71
inverted microscope (Olympus) provided with a CellSens Imaging Software
2 (Olympus). For quantitation, Crystal violet was eluted with 100% MeOH
and absorbance measured at 595 nm by a VICTOR Multilabel Plate Reader
(PerkinElmer). Data are expressed as fold change with respect to
absorbance of control sample (WT at 24 h).

Cell viability
Twenty-four hours after re-expression of the plasmid constructs, 7500 cells
were seeded in 96-well plates and cell viability measured at the times
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indicated using the Cell Counting Kit-8 (Dojindo; cat# CK04-11) at 450 nm
using a VICTOR Multilabel Plate Reader (PerkinElmer) after 2h of
incubation, according to the manufacturer’s instructions. Data are shown
as fold change of viable cells with respect to control cells (WT at 24 h).

Statistical analysis

Ordinary one-way ANOVA was used for densitometry and RT-qPCR
analyses. Two-way ANOVA was used for wound healing, cell proliferation
and viability assays. All ANOVA tests were corrected using the Bonferroni
multiple comparison test and statistical values calculated in function of a
control case. GraphPad/Prism9 (version 9.2.0) (RRID:SCR_002798) was used
for plotting graphs and to perform statistical analysis. Data are presented
as means + SEM or SD, as indicated in the figure legends, and significance
was designated as follows: *p<0.05; **p<0.01; ***p<0.001;
***¥p <0.0001; ns, not significant. Source data are provided within
this paper.

Structured regions of AMBRA1 according to AlphaFold

We have downloaded the Alphafold [55] model for human AMBRA1 from
the EMBL-EBI Alphafold Protein Structure Database [50], entry Q9COC7.
Visual inspection of the model showed a major structural feature for this
model—a B-propeller folded domain spanning regions ~41-203 and
~857-1040 of AMBRA1. The AlphaFold prediction was deemed to be
confident (pLDDT > 70) for the first stretch of residues and for most part of
the second, with short stretches of residues at lower confidence which
correspond to short solvent-exposed loops and are thus likely to be
disordered. AlphaFold also predicts the N-terminus of AMBRA1 to be
structured as two consecutive alpha helices, one with low confidence
(residues 7-19, most of them with pLDDT scores between 50 and 70) and
one at high confidence (residues 25-40, pLDDT > 70).

Free energy calculations

We trimmed the structure keeping only residue stretches corresponding to
the predicted structured regions of AMBRA1 (residues 1-200 and
850-1040). We then used the MutateX pipeline [46] saturation scan
protocol with FoldX 5.0 [47] to run a complete mutational scan of the
resulting structure, predicting the changes of folding free energy upon
mutation for the substitution of each amino acid to each natural variant for
a total of 7820 data points. For each data point we considered the average
difference in free energy between wild-type and mutant variant over five
independent FoldX runs. The MutateX protocol includes both a repair step,
in which the structure is optimized using FoldX, and generation of mutant
variant structures together with folding free energy estimation.

Sequence alignment

We have obtained a protein multiple sequence alignment between
different AMBRAT1 orthologs using Clustal Omega [56], using the protein
sequences corresponding to the main protein isoform of AMBRA1 of
human, chimpanzee, mouse, rat, bovine, Xenopus and zebrafish (ambrala
for the latter).

DATA AVAILABILITY
Results from AMBRA1 Cancermuts runs are available on our GitHub repository
(https://github.com/ELELAB/cancermuts/tree/master/data_case_study).
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