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Abstract: The World Health Organization (WHO) suggests that mental disorders, neurological
disorders, and suicide are growing causes of morbidity. Depressive disorders, schizophrenia, bipolar
disorder, Alzheimer’s disease, and other dementias account for 1.84%, 0.60%, 0.33%, and 1.00% of
total Disability Adjusted Life Years (DALYs). Furthermore, suicide, the 15th leading cause of death
worldwide, could be linked to mental disorders. More than 68 computer-aided diagnosis (CAD)
methods published in peer-reviewed journals from 2016 to 2021 were analyzed, among which 75%
were published in the year 2018 or later. The Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) protocol was adopted to select the relevant studies. In addition to the
gold standard, the sample size, neuroimaging techniques or biomarkers, validation frameworks,
the classifiers, and the performance indices were analyzed. We further discussed how various
performance indices are essential based on the biostatistical and data mining perspective. Moreover,
critical information related to the Transparent reporting of a multivariable prediction model for
individual prognosis or diagnosis (TRIPOD) guidelines was analyzed. We discussed how balancing
the dataset and not using external validation could hinder the generalization of the CAD methods.
We provided the list of the critical issues to consider in such studies.

Keywords: Alzheimer’s disease; bipolar disorder; computer-aided diagnosis; data mining; dementias;
depressive disorders; mental disorders; neurological disorders; schizophrenia; validation methods

1. Introduction

Mental health is a state of successful cognitive function resulting in adapting to change
and coping with everyday stresses of life [1,2]. Mental disorders refer to a wide range of
conditions affecting mood, thinking, and behavior. They could be occasional or chronic [3].
Some major mental disorders include depression, bipolar disorder (BD), and schizophrenia
(SZ) [4]. Mental illnesses are globally among the leading causes of disability in Disability
Adjusted Life Years (DALYs) [5]. Figure 1 shows the composition of mental disorder DALYs
by type of disorder for both sexes combined worldwide from 1990 to 2019 [6]. Depressive
disorders (29.74%), followed by anxiety disorders (22.86%), and schizophrenia (11.66%) are
the top three contributors to mental disorder DALYs [6].

Among mental disorders, depressive disorders account for 1.84%, anxiety disorders
for 1.13%, schizophrenia for 0.60%, and BD for 0.33% of total DALYs [6]. As mentioned
in Figure 2 (Source: Institute for Health Metrics Evaluation. Used with permission. All
rights reserved.), countries with the highest age-standardized mental disorder DALYs
rates were Portugal 2603.92, Greece 2510.55, Greenland 2486.44, Iran 2436.44, and Spain
2396.768 DALYs per 100,000, in 2019 [6]. The World Health Organization (WHO) reported
that over 450 million people worldwide suffer from mental disorders [7].
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Figure 1. The contribution of mental disorders to Disability Adjusted Life Years (DALYs) worldwide,
for both sexes combined, 2019 [6].

Figure 2. Mental disorders, age-standardized DALY rates (per 100 000) by location, both sexes combined, 2019 (reproduced
with permission from [6]).

Every year, almost 25% of people experience a mental disorder [8]. However, due to
the lack of access to adequate mental illness services and stigmatization, most patients do
not receive help [9]. The increasing rate of mental disorders could be related to political
and social violence, economic change, and cultural disruptions [10].

In addition to mental disorders, neurological disorders are illnesses causing psycholog-
ical symptoms [11]. Such disorders have become important causes of death and disability
worldwide [12]. The primary neurological disorders include Alzheimer’s disease (AD) and
other dementias [12]. Figure 3 shows the composition of neurological disorders DALYs
by type of disorder for both sexes combined worldwide from 1990 to 2019 [6]. About 20%
of neurological disorders are AD and other dementias [13]. Today, almost 35.6 million
people suffer from AD worldwide. This number will approximately double to 65.7 million
cases by 2030 and may even triple to 115.4 million cases by 2050 [14]. The rapidly growing
potential of sufferers and the inevitable enormous economic effects of AD on health and
social services have led governments to take swift action to eradicate the disease [15].
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Therefore, although AD is not at the top in Figure 3, it could be one of the most critical
neurological disorders.

Figure 3. Contribution by neurological disorders to DALYs worldwide, both sexes combined, 2019 [6].

According to the Global Burden of Disease (GBD) 2019, AD and other dementias
account for 1% of total DALYs. As mentioned in Figure 4 (Source: Institute for Health
Metrics Evaluation. Used with permission. All rights reserved.), countries with the highest
age-standardized neurological disorders DALYs rates were: Japan 1612.77, Italy 1109.73,
Greece 923.58, France 880.49, and Estonia 854.71 DALYs per 100,000, in 2019 [6].

Figure 4. Alzheimer’s disease and other dementias, age-standardized DALY rates (per 100 000) by location, both sexes
combined, 2019 (reproduced with permission from [6]).

Suicide, a death caused by intentional termination of one’s own life, has been known
to be a critical public health issue by the WHO [16]. Each year, around one million people
die due to suicide [17]. It is also one of the leading causes of death among young people
worldwide, and, as such, it is responsible for a massive amount of pointless suffering
and a substantial number of premature deaths [18]. Suicide has disruptive psychosocial
effects [18] and is thus a global public health issue [19]. It shows considerable differences
between geographic regions, socio-political realities, age groups, and genders [19]. Suicide
was in the leading ten causes of death in five GBD regions [20].
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The WHO data suggests that mental disorders, neurological disorders, and suicide are
growing causes of morbidity [16,21]. The World Health Report 2001 and the Mental Health
Action Plan 2013–2020 focused on mental disorders such as depression and schizophrenia,
some neurological disorders like AD [22], and suicide [16]. In 2017, mental disorders were
the sixth leading cause of DALYs and the second leading cause of disease burden in terms
of years lived with disability (YLDs) in the world [23]. Furthermore, neurological disorders
ranked as the second-leading cause of death and DALYs’ major cause in 2015 [12]. Suicide
is the 15th leading cause of death worldwide [24]. Meanwhile, the total number of deaths
from suicide increased by 6.7% globally from 1990 to 2016 [20]. It is also considered the
second cause of unnatural death for those between 15 and 29 years old [25,26].

Significant proportions of mental and neurological disorders arise in low- and middle-
income countries [27,28]. Mental disorders lead to significant social, personal, and economic
loss, including functional impairment, psychosocial disability [29], low quality of life [30],
and loss of productivity [31]. Patients with mental disorders have a shorter life expectancy
than the general population; there is a strong dose–response effect between mortality and
psychological distress [32]. Furthermore, milder disorders could impair functional capacity,
which causes difficulties in social and marital relations [33].

Although in low-income and middle-income countries, 75·5% of deaths by suicide
occur, suicide’s prevalence is higher in high-income countries [24]. Suicide could be linked
to mental disorders [34]. Almost 90% of individuals who committed suicide have been sub-
jected, at least, to one mental disorder [35]. Mental disorders contribute between 47% and
74% of suicide risks [18]. In around 50–65% of suicide cases, depression was observed [18].
Schizophrenia also accounts for very few of all youth suicides [36]. Furthermore, associa-
tions between suicide and anxiety disorders have been observed [18]. Accordingly, suicide
prediction and diagnosis were also analyzed in our study.

Failure to detect mental disorders results in not receiving potentially effective treat-
ment for the patients [32]. Long-lasting psychological distress has profound effects on
the prospect of having a reasonable quality of life in patients and their work capacity
and family [32]. It has been shown that early detection of mental disorders could shorten
the duration of a disorder, reduce the number of further consultations, and result in less
social impairment [32]. Furthermore, early detection of neurological disorders is critical to
achieve optimal disease control [37].

There are various methods to detect and diagnose mental and neurological disorders
at early stages, from interpreting participants’ answers to questions about their lives to
using diagnostic equipment such as electroencephalogram (EEG), magnetoencephalogram
(MEG), positron emission tomography (PET), magnetic resonance imaging (MRI), etc. [38,39].
However, manual assessment of such techniques is time-consuming and sensitive to
error [39]. In fact, because of the differences in experts’ experience, manual methods of
diagnosis are subjective to the examiner and are thus prone to errors and biases. Computer-
aided diagnosis (CAD) was recently used as the second opinion to assist the diagnosis
procedure [39].

Machine learning methods, with the inputs from different sources such as functional
MRI (fMRI) [40], clinical and sociodemographic variables [41], information posted on
social networks [26], or Patient Health and other related Questionnaire [42], were used in
the literature for suicide diagnosis and prediction. CAD systems have been used to help
clinicians, medical doctors, or neurologists diagnose certain diseases or disorders [43]. CAD
systems’ goal is to improve the accuracy of experts interpreting big medical data so that the
analysis time can be reduced and the diagnosis consistency is improved [44]. Numerous
CAD frameworks and methods have been developed in the literature to analyze medical
signals and images [43]. CAD systems are suitable to complete the neuropsychological
assessments conducted by expert clinicians and improve prediction accuracy. In this sense,
many studies used the CAD system to detect mental disorders, neurological disorders,
and suicide. Thus, this review aimed to analyze the current CAD method for diagnosing
depressive disorders, BD, schizophrenia, AD, dementia, and suicide.
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2. Materials and Methods
2.1. Gold Standard

Due to the multiplicity of mental disorders and the importance of proper diagnosis and
treatment, the need to classify these disorders has always existed and led to the publication
of the Diagnostic and Statistical Manual of Mental Disorders (DSM). Its latest version, DSM-
5, was released in 2013. Structured Clinical Interview for DSM-5 (SCID-5) is a structured
diagnostic interview to diagnose mental disorders according to the criteria characterized in
the DSM-5, which a trained clinician should prescribe. This structure specifies the order of
the questions, how the questions are worded, and how the subject’s responses are classified.
The primary diagnosis methods are summarized as the following [45].

2.1.1. Depression Disorder

SCID is considered to be the commonly used gold standard for a depression diagnosis.
Major depressive disorder (MDD) is a type of depression characterized by separate episodes
of at least 14 days. Critical symptoms of MDD are depressed mood, loss of interest,
weight loss or weight gain without any particular diet, insomnia or hypersomnia, frequent
thoughts of death or suicide, decreased ability to concentrate and think, feelings of being
worthless and guilty, psychomotor agitation or retardation, feelings of energy loss and
indecisiveness. Five or more of the above symptoms, when at least one of them is one of
the first two symptoms is required for a depression diagnosis [46]

2.1.2. Bipolar Disorder

SCID is used as the gold standard among diagnostic interviews, but its validity will
not be known until the discovery of related biomarkers. At least one period of mania
is necessary for a specific diagnosis of bipolar disorder I (BD-I), while one hypomania
and major depressive episode without a manic episode is essential for bipolar II (BD-II)
diagnosis [47,48]

2.1.3. Schizophrenia

Patients’ description of symptoms, mental state tests, and behavioral observations
help psychiatrists diagnose schizophrenia based on DSM-5 criteria, which is the gold
standard of diagnosis to date. The most important symptoms are delusions, hallucinations,
disorganized speech, extremely catatonic behavior, and negative symptoms such as de-
creased emotional expression. Two or more of these symptoms, when at least one of them
is one of the first three symptoms is required for a schizophrenia diagnosis, and each of
them should be present for a considerable period within a month [49,50].

2.1.4. Alzheimer’s

AD is a specific type of dementia. The gold standard hallmarks for definitive diagnosis
of AD are cortical atrophy, amyloid-predominant neuritic plaques, and tau-predominant
neurofibrillary tangles validated by postmortem histopathological examination. Amyloid
precursor protein (APP), presenilin 1 (PSENl), or presenilin 2 (PSEN2) are known causative
genes of the AD where genetic tests can show their mutation in early-onset cases. Further-
more, amyloid-based diagnostic tests such as positron emission tomography (PET) and
cerebrospinal fluid (CSF) scans can be useful diagnostic tools [51]

2.1.5. Dementia

In DSM-5, major neurocognitive disorder (MCD) is considered an alternative term
for dementia that was used in previous versions. A significant decrease in the level of the
subject’s cognitive performance; for example, in learning and memory functions, followed
by interference with independent daily activities, is a sign of dementia. Clinical Dementia
Rating (CDR) is a cognitive diagnostic assessment widely used as the gold standard for
diagnosing dementia. The CDR test is a semi-structured interview with the patient and a
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trustful informant, consisting of 46 questions, that takes 30–90 min to be completed and
must be done by a trained clinician [52–54].

2.1.6. Suicide

Validated questionnaires have been used in the literature to diagnose high-risk indi-
viduals for suicidal behaviors [55]. Suicide Behaviors Questionnaire-Revised (SBQ-R) is a
globalized test for identifying individuals at increased risk of suicidal behaviors, including
ideation and attempts [56]. The SBQ-R test was designed based on the SBQ test, a 34-item
questionnaire measuring the suicide tendency. It is a self-report test distinguishing between
suicidal and non-suicidal subjects. The SBQ-R test includes four Likert-type questions
that measure the risk of suicide according to the subject’s suicide ideation/attempt during
lifetime, suicidal ideation rate in the last year, expressing thoughts of committing suicide
with others, and suicidal behavior occurrence probability in the future. Each question has
different points from 0 to 6 based on the subject’s choice. Two scoring criteria have been
proposed so far to classify suicidal and non-suicidal individuals based on SBQ-R results:
SBQ-R Item 1 and SBQ-R total score varying between 3 and 18. Clinical and non-clinical
samples have an identical cutoff score of 2 in the SBQ-R Item 1. The SBQ-R total score’s
cutoff scores were 7 and 8 for clinical and non-clinical samples, respectively [42].

2.2. The Literature Review

There are currently not enough biomarkers in psychiatry to classify disease state
from the normal state, so diagnosis mostly depends on patient–physician interactions
and questionnaires. Clinical observations based on patient self-reports are subjective and
inaccurate even if they are based on DSM-5 criteria since they cannot identify false positives
and recognize disorders from risks. This is where artificial intelligence (AI) comes in handy.
AI is a general term in psychiatry that denotes the use of advanced computerized techniques
and algorithms to diagnose, prevent, and treat mental disorders, such as automatic speech
processing and machine learning algorithms applied on electronic medical databases and
health records to assess a patient’s mental state. AI-based interventions reduce false
negative and positive diagnoses and annihilate the stigma associated with mental illness
symptoms to the clinician. They are also affordable and have significant benefits for patients
suffering from restricted movement due to their symptoms. AI-based methods are not
replacing clinicians; they can complement human clinical decisions by providing more
comprehensive information to empower the health care system [57,58]. Here, we provided
the literature review of the CAD systems for suicide, neurological disorders, and mental
disorders focusing on the sample size, input features, classifiers, type of validations, and
their performance indices.

2.2.1. PRISMA Guideline

We reviewed the works focusing on the diagnosis and prediction of CAD methods
proposed in the literature for suicide, neurological disorders, and mental disorders. The
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) state-
ment [59,60] was proposed in the literature to enrich and standardize medical reviewer
papers [61]. We adopted the PRISMA guideline to select the relevant studies.

2.2.2. Search Strategy

A literature search of the online database of PubMed between 2016 and 2021 was
performed using the terms (“bipolar” OR “bipolar disorder” OR “schizophrenia” OR “sui-
cide” OR “Alzheimer” OR “dementia” OR “major depressive disorder” OR “depression”)
AND (“machine learning” OR “deep learning”) AND “accuracy”. The reference lists of the
identified publications were also reviewed. Peer-reviewed articles in English on Humans
were analyzed.
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2.2.3. Eligibility Criteria

Published studies were included in the review if they met the following criteria:
(1) at least a measure of the diagnostic accuracy was provided, (2) at least the classifier,
the validation framework, or the validation type were provided. Figure 5 shows a flow
diagram describing the study selection process. Among 563 records screened, 71 studies
were excluded as irrelevant to the original research question. Among the remaining
492 studies, 424 studies did not meet the eligibility criteria. Thus, 68 studies were included
in our analysis.

Figure 5. Flow diagram of the study selection process (reproduced with permission from [60]).

2.2.4. Data Abstraction

The following characteristics were recorded for each study included in our analysis:
publication reference (the first author’s surname and the year of publication), the sample
size, the case and control groups, input features, classifiers, internal or external validation,
type of validation (holdout or resampling), and the diagnostic accuracy.

3. Results

The CAD methods for mental and neurological disorders are listed in Tables 1–7,
while the CAD methods for suicide prediction are provided in Tables 8–11.
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Table 1. CAD methods for mental and neurological disorders.

References Goal Sample Size Data Classifier Internal, External,
Validation Type of Validation Performance

Indices

Lee et al. (2020) [62] BD-II (BD-II: n = 20,
C: n = 20

Blood sample, Serum
miRNA

Support vector
machine (SVM) Internal Holdout AUC: 0.91

Alici et al. (2019) [63] BD BD = 80, C = 80 Optical coherence
tomography

logistic regression
analysis - - AUC: 0.69

Zhao et al. (2016) [64]
major depressive
disorder (MDD)

and BD

C = 44, MDD = 37
BD = 24 Blood sample logistic regression - - AUC: 0.86

Haenisch et al.
(2016) [65] BD

C = 44 l, BD = 66
(validation) Test:

(First-onset MDD = 90,
un-diagnosed BD = 12,

C = 184
Pre-diagnostic = 110)

Blood sample lasso regression Both 10-fold CV

AUC: 0.8
(BD vs. first onset
MDD), AUC: 0.79

(BD vs. C)

Fernandes et al.
(2020) [66] BD or SZ

blood-based
domain = 323

(BD = 121, SZ = 71,
C = 131), cognitive

domain = 372
(SZ = 84, C = 171),

multi-domain composed
by the immune

blood-based domain plus
the cognitive

domain = 279 (BD = 98,
SZ = 5, C = 123)

peripheral blood
sample cognitive

biomarkers

linear discriminative
analysis (LDA) Internal 10-fold CV

(BD vs. C)
Accuracy: 80,

AUC: 0.86
(SZ vs. C)

Accuracy: 86.18,
AUC: 0.89 (BD vs.

SZ) Accuracy:
76.43, AUC: 0.80

Tsujii et al. (2019) [67] Distinguishing BD
and MDD

58 healthy C: 58
BD: 79 MDD: 44 Blood sample, NIRS Logistic Regression

Analysis - - AUC: 0.92

Faurholt-Jepsen et al.
(2019) [68] BD

BD (Euthymia,
Depression, Mania): 29,

C: 37

objective smartphone
data reflecting

behavioral activities
Gradient boosting Internal

10-fold CV
(random

oversampling,
sampling the

minority class with
replacement)

AUC: 0.66

C: (healthy) control; BD: Bipolar Disorder; SZ: Schizophrenia; MDD: Major Depressive Disorder; CV: Cross-Validation; AUC: Area Under the ROC Curve.
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Table 2. CAD methods for mental and neurological disorders (cont’d).

References Goal Sample Size Data Classifier Internal, External,
Validation Type of Validation Index (the Best

Result)

Tasic et al. (2019) [69] diagnosis between
SZ and BD

SZ = 54
euthymic outpatients

with BD type 1
(BD) = 68, C = 60

blood serum samples;
NMR

PLS-DA (Partial
Least Squares
Discriminant

Analysis)

Internal CV

AUC: 1 (SZ and HC),
AUC: 0.87 (BD and
HC), AUC: 9.93 (SZ

and BD)

Munkholm et al.
(2019) [70] diagnostic test in BD BD = 33,

C = 35

blood and urine
sample

(211 sample, 140 BD,
71 C)

composite biomarker
score Internal Holdout (50%) AUC: 0. 95

Alimardani et al.
(2018) [71]

Classification of BD
and SZ

SZ = 23
BD = 23

SSVEP
(number of

channels = 21)
k-nearest neighbor Internal Leave one-out CV accuracy: 91.30%

Wang et al.
(2020) [72]

Classification of
Unmedicated BD

unmedicated
BD II = 90 C = 117 rs-fMRI Support vector

machine (SVM) Internal

Holdout
Train (BD

(n = 72), HC (n = 94))
Test (BD (n = 18),

C (n = 23))

accuracy: 80% AUC:
0.838

Ogruc Ildiz et al.
(2020) [73]

schizophrenia (SZ)
and phases of BD

40 to manic episode
(BD-M) and

depressive episode
(BD-D), 60 to the SZ,
euthymic (BD-E), C

blood serum Raman
spectra

Partial Least Squares
Discriminant

Analysis (PLS-DA)
Internal holdout Accuracy:

99%

Achalia et al.
(2020) [74] BD

Type I
BD = 30
HC = 30

T1 weighted
three-dimensional

MR images and
rs-fMRI

Support vector
machine (SVM) Internal CV accuracy: 88%

Wu et al. (2016) [75] BD-E
BD-E = 21,

demographically
matched C = 21

computerized
Cambridge

Neurocognitive Test
Automated Battery

least absolute
shrinkage selection
operator (LASSO)

Internal leave-one
-out CV

accuracy: 71%,
AUC: 0.71

C: (healthy) control; BD: Bipolar Disorder; SZ: Schizophrenia; CV: Cross-Validation; AUC: Area Under the ROC Curve.
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Table 3. CAD methods for mental and neurological disorders (cont’d).

References Goal Sample Size Data Classifier Internal, External,
Validation Type of Validation Index (the Best

Result)

Sutcubasi et al.
(2019) [76] BD and SZ BD = 41, SZ = 39,

C = 23 MRI artificial neural
network (ANN) Internal 4-fold CV accuracy:

81.25%

Zeng et al. (2018) [77] Multi-Site Diagnostic
Classification of SZ

7 sites: patients = 357,
C = 377 fMRI

Discriminant
Autoencoder
Network with

Sparsity
constraint

(DANS)-SVM

Internal 10-fold CV
leave-site-out

Accuracies of 85% and
81% in multi-site

pooling classification
and leave-site-out

transfer classification

Oh et al. (2020) [78] SZ

Internal: SZ = 443,
C = 423

External: SZ = 30,
C = 30

MRI
three-dimensional

convolutional neural
network (3DCNN)

Both 10-fold CV

External:
accuracy rate: 70%,

AUC: 0.72
internal: AUC: 0.959

overall accuracy
rate: 97%

Aslan et al.
(2020) [79] SZ

two separate sets of
data (children and
adult) Dataset A:
C = 39 SZ = 45,

Dataset
B: C = 14 SZ = 14

EEG
16/19 electrode

Convolutional
Neural Network

architecture
(VGG-16)

Internal Holdout (80% train,
20% test)

accuracy of 95% and
97% in two datasets
AUC: 0.95 and 0.974

Shalbaf et al.
(2020) [80] SZ C = 14 SZ = 14 EEG

19 channel ResNet-18-SVM Internal 10-fold CV accuracy: 99%

Naira et al.
(2019) [81] SZ and C C = 39

SZ = 45
EEG

16 channel CNN Internal Holdout (96% train,
4% test) Accuracy: 90%

Rozycki et al.
(2018) [82] SZ 5 sites: (941 adult

participants, SZ = 440 MRI SVM Internal 10-fold CV &
leave-site-out

cross-validated
prediction accuracy:

76% (AUC: 0.84)
leave-site-out

validation
accuracy/AUC range
of 72–77%/0.73–0.91

Shim et al. (2016) [83] SZ SZ = 34
HC = 34

EEG
62 electrode

support vector
machine (SVM) Internal leave-one-out CV accuracy: 88%

C: (healthy) control; BD: Bipolar Disorder; SZ: Schizophrenia; MDD: Major Depressive Disorder; CV: Cross-Validation; AUC: Area Under the ROC Curve.
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Table 4. CAD methods for mental and neurological disorders (cont’d).

References Goal Sample Size Data Classifier Internal, External,
Validation

Type
of Validation

Index (the
Best Result)

Winterburn et al.
(2019) [84] SZ and C 435 subjects total MRI support vector

machines (SVM) Internal 10-fold CV, and a
held-out (2:1 ratio) accuracy: 74%

Lin et al. (2018) [85] SZ SZ = 89
HC = 60 Blood sample naive Bayes model Internal 10-fold CV AUC = 0.94

Cai et al. (2020) [86] SZ
Internal: SZ = 51
HC = 51 External:
SZ = 34 HC = 27

rs-fMRI linear discriminant
analysis (LDA) Both Leave one out CV Accuracy Internal:

0.725, External: 0.70

Qureshi et al.
(2017) [87] SZ Normal control = 72

SZ = 72 rs-fMRI & sMRI
Extreme Learning
Machine Classifier

(ELM)
Internal 10-by-10-fold CV Train accuracy = 0.99

Test accuracy: 0.99

Juneja et al.
(2018) [88] SZ D1: C = 34, SZ = 34

D2: C = 25, SZ = 25 fMRI SVM Internal Leave one out
CV

Accuracy:
D1: 97%
D2: 98%

de Boer (2020) [89] SZ SZ = 26, C = 22 Subject speech logistic regression
model - - AUC: 0.86

Oh et al. (2019) [90] Automated
Diagnosis of SZ

C = 14
SZ = 14

EEG
19 electrode

CNN (Convolutional
Neural Network) Internal

non-subject based
testing (10-fold CV)
and subject-based

testing (14-fold CV)

accuracy of 98% for
non-subject-based
testing, accuracy of

81%, for
subject-based testing

Santos-
Mayo et al. (2017) [91] SZ SZ = 16

C = 31
EEG

17 electrode
SVM & Multilayer
Perceptron (MLP) Internal Holdout

AUC: 0.96 (Total-
15HzJ5-MLP&SVM),

AUC: 0.98, Right
Hemisphere35Hz-J5-

SVM)

Chatterjee (2018)
et al. [92] SZ

D1: SZ = 30,
C = 30

D2: SZ = 25,
C = 25

fMRI SVM Internal Leave-One-Out CV

Mean classification
accuracy
D1 99.5%
D2 97.4%

C: (healthy) control; SZ: Schizophrenia; CV: Cross-Validation; AUC: Area Under the ROC Curve.
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Table 5. CAD methods for mental and neurological disorders (cont’d).

References Goal Sample Size Data Classifier Internal, External,
Validation

Type
of Validation

Index
(the Best Result)

Ding et al. (2020) [93]

depression
recognition

(Depression and
Normal)

Depression-
prone = 108

C = 585

Internet behavior
characteristics of
Internet users on

social media

DISVM (deep
integrated support

vector
Machine)

Internal Holdout accuracy P
(Precision) = 86%

Li et al. (2019) [94] Mild depression depressed = 24
C = 27

EEG signals
(Number of

channels = 128)

convolutional neural
network (CNN) Internal 24-fold CV accuracy = 86%

Byeon et al.
(2017) [95] Depression

of 9024,
subjects

(depression = 2627)

general
characteristics,
economic level,

employment, health,
and health care, and

marriage

Chi-Squared
Automatic

Interaction Detection
(CHAID)

Internal 10-fold CV
predictive accuracy

of the model
was 74%,

Kautzky et al.
(2017) [96] Depression

C = 62
acutely

depressed = 19

PET using the
radioligand

[carbonyl-11C]

randomForest (RF)
and (SVM) Internal 10-fold CV

RF reached an
accuracy around

0.725 for all samples
(vs 0.750 for SVM)

Lin et al. (2018) [97] Predict MCI-to-AD
conversion

188 AD, 229 NC, and
401 MCI subjects MRI data

convolutional neural
networks (CNN)
extreme learning

machine

Internal leave-one-out CV accuracy: 80%,
AUC: 0.86

Ding et al. (2018) [98]

AD classification
(Normal, Very mild

AD, Mild AD,
Moderate AD)

861 participants in
the non-

imaging dataset
613 participants in

brain imaging (MRI)
dataset,

207 participants in
PET data

Demographics,
medical history,
ApoE genotype,

psychologi-
cal/functional

assessments, blood
analyses, and clinical

diagnoses. brain
imaging dataset

(structural MRI and
PET data)

Bayesian network
(BN) Internal

Holdout (90% 10-fold
CV, 10% test),
Resampling:

Synthetic minority
oversampling

technique (SMOTE)

AUC: 0.91

C: (healthy) control; SZ: Schizophrenia; CV: Cross-Validation; AUC: Area Under the ROC Curve.
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Table 6. CAD methods for mental and neurological disorders (cont’d).

References Goal Sample Size Data Classifier Internal, External,
Validation

Type
of Validation

Index (the Best
Result)

Lu et al. (2018) [99]

Early Diagnosis of
AD ((Normal

controls (NC), stable
MCI (sMCI), the
progressive MCI

(pMCI), AD
clinically diagnosed

1051 subjects
NC = 304

sMCI = 409
pMCI = 112

probable AD = 226

FDG-PET images and
structural MRI

ensemble multiple
classifiers

(Multiscale Deep
Neural Networks)

Internal Holdout (10-fold CV
in training)

Accuracy: 94%, NC
vs. AD, Accuracy:

82%, sMCI vs. pMCI
and Accuracy:

83%, sMCI vs. pMCI
with sample from NC

& AD

Fiscon et al.
(2018) [100]

Classifying AD
(AD,MCI,C)

C = 23, MCI = 37,
AD = 49

multi-channel
EEG signals
19 electrode

Decision Trees
classifiers Internal leave-one-out CV

Accuracy: 92% for
HC vs. MCI,

Accuracy: 83% for
HC vs. AD,

Accuracy: 73% for
HC vs. CASE

(MCI + AD), and
accuracy: 79% for

MCI vs. AD

Aidos et al. (2017)
[101]

Predicting AD (Cl,
MCI, and AD)

58 subjects for AD
with four images

each, 88 subjects with
MCI with six images
each, and 60 subjects

for CN with five
images each

FDG-PET scans SVM with an RBF
kernel Internal

Repeated Holdout-20
times (70% training

10-fold CV, 30% test)

in a multiclass
classification task,
59% accuracy at

baseline and goes up
to 69% in the

follow-up

C: (healthy) control; AD: Alzheimer disease; MCI: mild cognitive impairment; CV: Cross-Validation; AUC: Area Under the ROC Curve.
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Table 7. CAD methods for mental and neurological disorders (cont’d).

References Goal Sample Size Data Classifier Internal, External,
Validation Type of Validation Index (the Best

Result)

Bin-Hezam et al.
(2019) [102]

Detecting
Dementia based on

risk factors
1812 subjects Demographics and

Medical History
logistic regression &

random forest Internal

Holdout
(StratifiedKFold 75%
train, 25% test) and

10-Fold CV

Accuracy: 91.53%,
(dementia vs.

non-dementia),
Accuracy: 77%,

(multi-class
prediction (CN vs.
MCI vs. dementia)

Zhou et al.
(2016) [103]

Predictors of hospital
admission of patients

with dementia
Health and dementia

59,298 dementia
patients (30,178 were
admitted to hospital
and 29,120 remained

with GP care)

initial GP read codes,
diagnostic events,
five medication

events, three
procedural events,

sex, age

neural network with
entropy

regularization
Internal 10-fold

cross-validation AUC: 0.76

Choi et al.
(2018) [104]

A diagnostic
framework for

dementia (normal vs.
dementia)

2666 cognitively
normal

elderly = 2666
dementia

patients = 435

Mini-Mental Status
Examination (MMSE)

as a screening test,
KLOSCAD-N

assessment

deep neural
networks (DNNs) Internal

Holdout (80%
training (5-fold CV),

20% test)
Accuracy of 93%,

Moreira et al.
(2016) [105]

Diagnosis of patients
with clinical
suspicion of

dementia

AD = 209
MCI = 97,

Others = 218)

Demographic,
clinical, and

screening tests

J48
(decision tree

algorithm C4.5)
Internal

Holdout (75% train,
25% test)

Resampling: SMOTE
just for MCI

AD
Accuracy:80%,

AUC: 0.849,
MCI

Accuracy:91%

Bang et al.
(2017) [106]

Dementia diagnosis
normal groups and
dementia groups

14,917 participants Clinical data called
CREDOS

Support Vector
Machine (SVM) Internal

Holdout (40% for
training, 30% for test

and 30%
for validation)

AUC: 0.96
Accuracy: 90%

C: (healthy) control; AD: Alzheimer disease; MCI: mild cognitive impairment; CV: Cross-Validation; AUC: Area Under the ROC Curve.
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Table 8. CAD methods for suicide prediction.

References Goal Sample Size Data Classifier Internal, External,
Validation

Type
of Validation Index (the Best Result)

Walsh et al.
(2017) [107] suicide

5167 adult patients
3250 patients made a

suicide attempt (cases),
and 1917 controls

(a) demographic data
(b) diagnoses based on
claims data
(c) past health
care utilization
(d) evidence of prior
suicide attempts
(e) body mass index
(f) socioeconomic status
(g) medication data

Random forests Internal boot strapping
(rep = 100) AUC: 0.84

Walsh et al.
(2018) [108] Suicide

496 adolescents with
other self-injury (OSI),
7059 adolescents with
depressive symptoms,

and 25,081 controls

longitudinal clinical data
in adults: diagnostic,
demographic,
medication, and
socioeconomic factors

random forests Internal boot strapping

OSI C (AUC = 0.83) at
720 days; AUC = 0.85 at
7 days) and depressed C

(AUC = 0.87), depressed C
(AUC = 0.87) and 0.90 at

720 days at 7 days) General
hospital C (AUC 0.94 at

1720 days, 0.97 at 7 days).

Just et al.
(2017) [40] suicidal ideation

Internal: (17 suicidal
ideation versus

17 Controls
External: 21 suicidal

ideation

fMRI Gaussian Naive
Bayes (GNB) both

leave out half of
the participants
from each group

suicidal vs. C accuracy of
0.91, those had previously
attempted those who had

not (accuracy of 0.94)
External: suicidal ideation

from C accuracy of 0.87
Cheng et al.
(2017) [109]

Suicide Risk
assessment 974 Weibo users Weibo posts Support Vector

Machine (SVM) internal leave-one-out AUC: 0.6

Oh et al.
(2017) [110] Suicide

Patients with depression
and anxiety disorders

(n = 573)

31 psychiatric scales and
10 sociodemographic
elements

artificial neural
network Internal Hold out

(1-month) accuracy: 93.7%.,
AUC: 0.93, (1-year): 90.8%,

AUC: 0.87, (lifetime)
Accuracy: 87.4%, AUC: 0.89

Hettige et al.
(2017) [111]

Suicide
attempters in
schizophrenia

345 participants clinical, demographic,
and sociocultural

Regularized logistic
regression internal Stratified 10-fold

CV
accuracy: 67%

AUC: 0.71

C: Control; CV: Cross-Validation; AUC: Area Under the ROC Curve.
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Table 9. CAD methods for suicide prediction (cont’d).

References Goal Sample Size Data Classifier Internal, External,
Validation

Type
of Validation

Index (the Best
Result)

Ryu et al.
(2018) [112] Suicide 11,628 individuals

(5814 suicide)

Korea National Health
and Nutrition

Examination Survey
(KNHANES)

random
forest internal

Hold out
(training:

10-fold CV)

AUC = 0.85
accuracy of 0.821

Jung et al.
(2019) [113]

adolescents of
high-risk suicide

n = 59,984
(7443 adolescents

with a history
of suicide)

Korean Young Risk
Behavior Web-based

Survey
(KYRBWS)

extreme gradient
boosting (XGB) internal 5-fold CV Accuracy:79%

AUC = 0.86

Lin et al.
(2020) [114] Suicide 3546 military men

and women

The questionnaire for the
military personnel
composed of five

psychopathological
domains, anxiety,

depression, hostility,
interpersonal sensitivity

and insomnia)

SVM
And multilayer

perceptron
internal 10-fold CV Accuracy:100%

AUC:100%

Su et al.
(2020) [115]

Suicide in
children and
adolescents

Suicide-positive
subjects (n = 180)
Suicide-negative

subjects (n = 41,541)

Longitudinal clinical
records

demographics, diagnosis,
laboratory tests, and

medications

logistic regression internal
Repeated Hold out:

10 times
(90% training)

AUC: 0.86

Choi et al.
(2018) [116] Suicide

819,951 subjects
Suicidal death No
(n = 817,405) Yes

(n = 2546)

qualification and medical
services claim data

Cox regression, SVM
and deep neural

networks (DNNs)
internal

Hold out
(70% training,

30% validation)

AUC of Cox
regression: 0.688,

of SVM: 0.687,
of DNN 0.683

Chen et al.
(2020) [117] Suicide 541,300 inpatient

demographic
characteristics,
socioeconomic

ensemble learning of
elastic net

penalized logistic
regression, random

forest, gradient
boosting, and a
neural network

internal

Hold out
(80% training, 20%

test)
(training: 10-fold CV)

AUC = 0.88

C: Control; CV: Cross-Validation; AUC: Area Under the ROC Curve.
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Table 10. CAD methods for suicide prediction (cont’d).

References Goal Sample Size Data Classifier Internal, External,
Validation

Type
of Validation

Index (the Best
Result)

Edgcomb et al.
(2021) [118]

Differentiate Risk
of Suicide

Attempt and
Self-harm

1628 women
(University of
California Los

Angeles)
140,848 women (New

York City Clinical
Data Research

Network)

Sociodemographic data,
medications, health care

utilization,
and diagnostic codes

decision tree internal 10-fold CV

University of
California Los Angeles

(Accuracy: 84%,
AUC: 0.73) New York

City Clinical Data
Research Network

(Accuracy: 84%,
AUC: 0.71)

Agne et al.
(2020) [41]

suicide attempt in
patients with

obsessive-
compulsive

disorder

959 outpatients with
OCD

clinical and
sociodemographic variables elastic net internal

Hold out (75%
training, 25% test)

(10-fold CV in
training)

AUC: 0.95
accuracy: 85.97%

Haroz et al.
(2020) [119]

Identify patients with
the highest risk for

suicide
n = 2390 individuals

demographics, educational
history, past mental health,

and substance use

regularized
regression using
ridge regression

internal
Hold out (train, test:

two-thirds/one-third
split)

AUC = 0.87

Ryu et al.
(2019) [120] Suicide 5773 subjects

Korea National Health and
Nutrition Examination
Survey (KNHANES)

random forest internal
Hold out

(Train 70%, test 30%)
(training 10-fold CV)

AUC = 0.947 accuracy:
0.889

Miché et al.
(2020) [121] Suicide

n = 2797 adolescents
and young adults
aged 14–24 years

demographics, cognitive
abilities, family history of
psychopathology, general

psychopathology, psychosis,
prior self-injurious thoughts
or behaviors, social factors,

and treatment history

logistic regression,
lasso, ridge, and
random forest

internal repeated nested
10-fold CV

mean AUCs of logistic
regression, lasso, ridge,

and
random forest, were

0.828, 0.826, 0.829, and
0.824, respectively

Shen et al.
(2020) [122] Suicide 4882 medical

students

Self-report data on
sociodemographic and

clinical characteristics were
collected online via the
website or through the

widely used social
media app, WeChat

random forest internal 5-fold CV (AUC) = 0.9255
Accuracy: 90.1%

C: Control; CV: Cross-Validation; AUC: Area Under the ROC Curve.
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Table 11. CAD methods for suicide prediction (cont’d).

References Goal Sample Size Data Classifier Internal, External,
validation

Type
of Validation

Index (the Best
Result)

Parghi et al.
(2020) [123]

near-term suicidal
behavior

n = 591, attempted:
n = 20, those who did not

(n = 571)

Suicide Crisis Inventory
(SCI) data, which measures

the Suicide Crisis
Syndrome, a presuicidal

mental state

gradient boosting internal enhanced bootstrap Accuracy 0.981

Naghavi et al.
(2020) [42] Suicide 573 university students Different types of

Questionnaire decision trees internal 3-fold CV AUC = 0.90

Cohen et al.
(2020) [124] Suicide

Internal (ACT Study, STM
Study) External
(267 interviews,

60 students,
29 students indicating

suicide or self-harm risk)

language samples,
depression, and

standardized suicidality
scale scores, and therapist
impression of the client’s

mental state

extreme gradient
boosting both Leave-one-site-out AUC: 0.78

Zheng et al.
(2020) [125] Suicide

The retrospective cohort
(118,252 individuals,

cases: 255)
The validation cohort
(118,095 individuals,

cases: 203)

Electronic health records
(EHRs) Deep neural network both CV AUC: 0.77

Tadesse et al.
(2020) [126]

Suicide Ideation in
Social Media Forums

3549 suicide-indicative
posts,

3652 non-suicidal posts

Reddit social media
dataset

LSTM-CNN
Long Short-Term

Memory
Convolutional

Neural Network

Internal CV Accuracy: 93.8

C: Control; CV: Cross-Validation; AUC: Area Under the ROC Curve.
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3.1. Validation Frameworks and Performance Indices
3.1.1. Validation Frameworks

The validation framework is one of the critical issues in data mining approaches. In
“holdout,” the most straightforward cross-validation, the data set is randomly assigned
to two sets: the training set and the test set. In addition to the data’s inefficient use, the
method’s limitations are pessimistically biased error estimations [127,128]. Moreover, test-
ing hypotheses proposed by the data are not guarded by this method (type III errors [129])
as the data may be permuted until there would be an acceptable accuracy on the train-
ing and test sets in a “holdout” setting. Therefore, other validation frameworks such as
repeated holdout, leave-one-out validation, 0.632+ bootstrap, and cross-validation [130]
are preferred. These issues are also addressed in the TRIPOD guideline from a clinical
perspective [131].

Choi et al. [104] proposed a framework for early detection of dementia using holdout
validation. Moreira et al. [105] presented a hybrid data mining model for the diagnosis of
dementia using holdout setting. Lin et al. [97] designed a convolutional neural network
(CNN)-based approach to predict mild cognitive impairment to Alzheimer’s disease (MCI-
to-AD) conversion using MRI data with leave-one-out cross-validation (CV). Ding et al. [98]
proposed a hybrid computational approach to classify AD with holdout and resampling;
synthetic minority oversampling technique (SMOTE). Aidos et al. [101] presented a new
methodology to obtain an efficient CAD system for predicting AD using longitudinal
information with holdout validation. Li et al. [132] developed a spectral CNN for a reliable
AD prediction with 10-fold CV. Sayed et al. [133] designed an automatic system for AD
diagnosis with 7-fold CV.

3.1.2. Subject-Wise Cross-Validation

The other critical issue is using leave-one-subject-out cross-validation when there
are repeated measurements for each subject [134]. Thus, we must take out the entire
measurements of a subject from the training set and report the trained system’s performance
for the test subject. Otherwise, if we use other internal validation methods and perform
training and test set random permutations on the entire measurements, rather than subjects,
the probability of some measurements of one subject being in the training set and others
in the test set is high. If there is a high correlation in such repeated measurements, the
accuracy of the diagnosis system is overestimated. To reduce estimation variance, it is
preferred to use subject-wise cross-validation with a more extensive test sample size, rather
than leave-one-subject-out cross-validation [135].

3.1.3. Critical Performance Indices

It is also essential to report various performance indices since they convey critical
information that is very important in clinical systems. One of the most important formulas
related to the posterior probability is the following [136]:

PPV = P(D\E) = Se× Prev
Se× Prev + (1− Sp)× (1− Prev)

(1)

where, Se is the sensitivity, Sp is the specificity, Prev is the prevalence of the disease, D is
the positive condition event determined by the gold standard, and E is the test outcome
positive event determined by the diagnosis system. The parameter PPV is the disease
probability given that the patient test result is positive, which is essential when the system
is used in practice. The PPV significantly drops in imbalanced datasets, in which the
prevalence of the disease is low. For example, when a CAD with the Se and Sp of 80% and
95% is tested in practice where Prev is 10%, the expected PPV is 64%.

The minimum sensitivity of 80% and specificity of 95% [137], maximum False Discov-
ery Rate (FDR = 1-PPV, Positive Predictive Value) of 5% [138], and the minimum Diagnostic
Odds Ratio (DOR) of 100 [139] could be considered a reasonable requirement of a reli-
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able clinical diagnosis system. As a complementary condition, the minimum Negative
Predictive Value (NPV) of 95% could be listed [136].

Some of the published works on mental health provided a variety of performance
indices. For example, Lee et al. [62] designed a diagnostic model using biomarkers in
peripheral blood to diagnose BD-II with a 90% specificity and sensitivity of 85%. Ildiz
et al. [73] obtained 94% sensitivity, specificity, and precision of their analytical model to
diagnose SZ and BD. Alici et al. [63] proposed the utility of optical coherence tomography
(OCT) data to distinguish BD-I patients from controls with a sensitivity of 87.5%, a speci-
ficity of 47.5%, positive predictive value (PPV) of 52.5%, and negative predictive value
(NPV) of 79.2%. Fernandes et al. [66] reached a sensitivity of 88.29% and specificity of
71.11% for BD vs. control, a sensitivity of 84% and specificity of 81% for SZ vs. control, and
sensitivity of 71% and specificity of 73% for BD and SZ. Achalia et al. [74] used multimodal
neuroimaging and neurocognitive measures to differentiate BD patients from healthy con-
trols and obtained a sensitivity of 82.3% and specificity of 92.7%. Li et al. [140] obtained
a sensitivity of 80.6% and specificity of 86.3% in predicting AD with Actigraphy Data.
Li et al. [132] showed that their spectral CNN could achieve a sensitivity of 88.24% and
specificity of 95.45% in AD and normal control classification, a sensitivity of 92.86% and
specificity of 77.78% in AD and MCI classification, and sensitivity of 84.38% and specificity
of 92% in MCI and normal control classification.

A machine learning approach was used by Bin-Hezam and Ward [102] to detect
dementia and yielded a precision of 91.34%, a sensitivity of 91.53%, and F1 score of 91.41%
for dementia vs. non-dementia, a precision of 76.76%, sensitivity of 77.00%, and F1 score
of 76.35% for control normal (CN) vs. MCI vs. dementia. Choi et al. [104] proposed a
novel framework for dementia identification with an F1 score of 78%, sensitivity of 93.43%,
specificity of 89.66%, positive likelihood ratio of 9.0319, a negative likelihood ratio of 0.0732,
PPV of 0.5064, and NPV of 0.9917. Chen et al. [117] used ensemble learning to predict
suicide attempts/death following a visit to psychiatric specialty care. The sensitivity,
specificity, PPV, and NPV of the 90-day prediction model were 47.2%, 96.6%, 34.9%, and
97.9%. Ensemble learning was also used by Naghavi et al. [42] for the prediction of suicide
ideation/behavior. The proposed system had the sensitivity, specificity, PPV, and DOR of
81%, 98%, 94%, and 227, respectively. In such examples, various performance indices could
provide valuable information about the designed systems’ clinical reliability. Otherwise, it
is not possible to judge the clinical applications of CAD systems.

3.1.4. The 95% Confidence Interval

Following the STARD and TRIPOD guidelines, it is necessary to provide the confidence
interval (CI) 95% of the performance indices [141,142]. Such CI 95% values could identify
the reliability of the performance indices estimation [143]. For example, in the study by
Shang-Ming Zhou et al. [103], effective predictors related to hospital admission of dementia
patients such as blood glucose were found with a sensitivity of 0.758 (95% CI 0.731–0.785),
specificity of 0.759 (95% CI 0.710–0.808), precision of 0.766 (95% CI 0.735–0.797), and
negative predictive value of 0.751 (95% CI 0.741–0.761). Xuemei Ding et al. [98] achieved a
multiclass accuracy of 0.8 (95% CI 0.67–0.89) to classify Alzheimer’s disease severity. Kelvin
KF Tsoi et al. [144] showed that the combination of drawing behavioral data and digital
platform could be useful in early detection of dementia with a sensitivity of 0.742 (95% CI
0.702–0.779), specificity of 0.724 (95% CI 0.668–0.776), positive predictive value of 0.833
(95% CI 0.804–0.859), and negative predictive value of 0.601 (95% CI 0.562–0.640).

Klaus Munkholm et al. [70] demonstrated that a composite marker containing differ-
ent molecular levels and tissue data is an operational biomarker to discriminate bipolar
disorder from healthy subjects with an Area Under the ROC Curve (AUC) of 0.826 (95% CI
0.749–0.904). Utilizing optical coherence tomography, Soner Alici et al. [64] indicated an
AUC of 0.688 (95% CI 0.604–0.771) in comparing bipolar disorder and healthy individuals.
In 2016, Guoqing Zhao et al. [64] performed a study and mentioned that plasma mBDNF
and proBDNF levels were the best biomarkers in identifying bipolar disorder among pa-
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tients in depressive episodes with an AUC of 0.858 (95% CI 0.753–0.963). In the study
by Noa Tsujii et al. [67], a high AUC of 0.917 (95% CI 0.849–0.985) was provided based
on hemodynamic response and mitochondrial dysfunction to diagnose bipolar disorder
and major depressive disorder. Naghavi et al. [42] assessed the suicide ideation/behavior
performance using different indices and CI 95%. Based on the cross-validated confu-
sion matrix, the AUC, Matthews Correlation Coefficient (MCC), Discriminative Factor
(DP), and Cohen’s Kappa were 0.90 (CI 95%: 0.86–0.93), 0.83 (0.81–0.86), 227 (100–512),
2.30 (1.96–2.65), and 0.83 (0.78–0.88). Chen et al. [117] predicted the suicide attempt/death
with an AUC of 0.88 (0.87–0.89) for the outcome within 90 days.

3.2. Input Features

Various inputs were used in the literature for mental and neurological disorder di-
agnosis. They include, for example, Child Behavior Checklist [145], serum miRNA [62],
blood serum Raman spectra [73], optical coherence tomography [63], blood samples [64,65],
immune and inflammatory biomarkers in peripheral blood and cognitive biomarkers [66],
blood sample Nuclear Magnetic Resonance (NMR) [69], optical coherence tomography [64],
MRI [76,82], fMRI [103,114,118], rs-fMRI [72,86], PET [96], EEG [79,81], steady-state visual
evoked potentials (SSVEP) [71], speech signal [86], demographics and medical history [102],
or drawing behavior [144].

Moreover, demographic, socioeconomic and medical records [109], fMRI [40], Weibo
posts [109], questionnaire and web-based survey [40], and Reddit social media dataset [126]
were used to predict or diagnose suicide ideation, behavior, or death.

Functional neuroimaging techniques—such as PET and fMRI—enable mapping the
brain’s physiology by measuring blood flow, receptor–ligand binding, and metabolism.
Such techniques have been recently used in mental health, which improved understanding
of the underlying mechanisms [146]. Functional imaging is divided into resting state
(e.g., rs-fMRI) and studies in active conditions. On the other hand, structural neuroimaging,
such as NMR and MRI, has been widely used to exclude organic brain disease in mental
disorders. It was shown in the literature that structural brain imaging is clinically useful to
discriminate mental disorders, including SZ, BD, depression (MDD), and AD [147].

Both of the functional and structural—except CT-scan—neuroimaging techniques
were shown to be useful for suicided diagnosis [148]. Both techniques have advantages
and disadvantages (e.g., spatial versus temporal resolution) [149], and their combination,
a.k.a., multimodal neuroimaging, can yield important insights due to its complementary
spatiotemporal resolution [150]. Lei et al. used the combination of MRI and rs-fMRI
for diagnosing SZ patients. In this study, the multimodal neuroimaging showed better
performance than structural or functional neuroimaging separately [151].

A promising feature for the BD-II diagnosis was introduced by Lee et al. [62], which
was the serum miRNA. In this study, serum expression levels of miR-7-5p, miR-23b-
3p, miR-142-3p, miR-221-5p, and miR-370-3p significantly reduced in healthy control
compared with BD-II (Figure 6). The diagnostic model with support vector machine
(SVM) reached good diagnostic accuracy (AUC: 0.907) when using expression of miRNA
miR-7-5p + miR-142-3p + miR-221-5p + miR-370-3p.

Perhaps the mostly used features for suicide ideation/attempts prediction are demo-
graphics, socioeconomic status (SES), and life-style variables. For example, Jung et al. [113]
designed a suicide prediction model for middle and high school students based on the
multivariate logistic regression and reached the prediction accuracy of 77.9%. The selected
significant features included gender, school grade, city type, academic achievement, living
with parents, family SES, father’s and mother’s education, physical activity, and self-rated
weight and health.
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Figure 6. Expression levels of circulating miRNAs in serum in healthy controls and BD-II using t-test (training set).
(A) miR-7-5p (B) miR-23b-3p (C) miR-142-3p (D) miR-221-5p (E) miR-370-3p (F) miR-145-5p. (Reproduced with permission
from [62]).

3.3. Classification Methods

A variety of classification methods were used in the literature to classify mental and
neurological disorders. The support vector machine (SVM) was used to diagnose BD [62].
Partial least squares discriminant analysis (PLS-DA) [66], k-nearest neighbor [71], deep
convolutional neural network (CNN) [78], and Fisher linear discriminant (FLD) [86] were
used for SZ classification. The multivariate logistic regression (MLR) [67], deep integrated
support vector machine (DISVM) [93], CNN [94], and SVM [96] were used to classify
depression. The SVM, artificial neural network (ANN), decision tree [106], and CNN [99]
were used for AD/MCI diagnosis.

Many classifiers were used for suicide ideation, behavior, or death prediction in the
literature, including logistic regression with/without regularization [99], deep neural net-
works (DNNs) [104,125], decision tree algorithm [99], SVM [40], random forests [104,125],
Gaussian Naive Bayes (GNB) [40], extreme gradient boosting (XGB) [40], Cox regres-
sion [116], ensemble learning [117], elastic net [41], and long short-term memory convolu-
tional neural network (LSTM-CNN) [126].

Decision tree, or its ensemble extensions such as random forests were frequently
used for mental health in the literature [42,105–108,112,118,120,122]. A decision tree is
a rule-based system, wherein its simplest form is a clinically interpretable structure for
clinicians used in clinical decision analysis [152]. Naghavi et al. [42] used the combi-
nation of stability feature selection and stacked ensembled decision trees (Figure 7) for
suicide ideation/behavior diagnosis and reached an AUC of 0.9. In this study, a variety of
questionnaires and demographic information was used.

The classifiers used for mental health could be categorized into two main categories:
traditional machine learning (e.g., DA and its variants, SVM, decision tree), and deep learn-
ing (LSTM, CNN). A deep neural network (DNN) is an artificial neural network with more
than one hidden layer. Unlike many traditional classifiers such as linear discriminative
analysis (LDA), SVM, or Decision Tree (DT), where few parameters must be estimated
or tuned, DNNs have many tunable variables. Thus, they require massive amounts of
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data to estimate their parameters accurately. When the available data is limited, various
issues must be considered to avoid overfitting [153]. Strategies such as early stopping
criteria, data augmentation, dropouts, and regularization are used [154]. Moreover, when
the dataset is imbalanced (e.g., the mental disorder classification) specific deep learning
techniques must be taken into account [155]. Geometrical augmentation is usually used to
increase the image sample size by random rotation, translation, and horizontal flipping.
However, it was shown that such augmentations do not necessarily improve the predictive
accuracy of the deep learning methods [156].

Figure 7. The block diagram of the suicide diagnosis algorithm. The features are first selected using stability feature
selection. Using the stratified sampling, the features are then classified using a stacked ensemble decision tree (reproduced
with permission from [42]).

DNNs were used in the literature for multimodal neuroimaging classification in
mental health [157]. Although DNNs are promising, they usually appear to be black
boxes. The input is the raw data, and the output is the predicted class, and no internal
interpretation is provided. It is problematic since clinicians require proper interpretation of
abnormal brain regions, for example, in neuroimaging data [158]. There have been some
attempts to visualize the black box of the DNNs in the literature [159].

Statistical models such as MLR and Cox regressions were used in mental health
literature [67,116]. MLR is an extension of the linear regression when the outcome is
binary. It not only provides the probability that a sample belongs to an output class, but
it also identifies the significant features in the model. Thus, it is also a feature selection
method [160]. On the other hand, Cox regressions are time-to-event models where the
event of interest (e.g., committing suicide) and the event’s time (e.g., the time from the
suicide attempt to the previous hospitalization) are essential. Such models are usually used
in survival analysis. When a proper threshold is estimated, it is possible to dichotomize the
model’s continuous output risk for discrimination between output classes [161]. Unlike
other classification methods, both MLR and Cox models support mixed-type input data,
and no transformation is required to perform on nominal or ordinal data.

3.4. Balancing the Dataset and Generalization of the Results

Bayes’ theorem (Equation (1)) was addressed in the literature as a confounding effect of
the low prevalence of a disorder on the performance of the CAD systems [162], even when
the AUC is very high [163]. Events such as suicide attempt/death have a low prevalence
in the population (e.g., 10.7 per 100,000 individuals [164]). Other mental and neurological
disorders have a relatively low prevalence (e.g., the global prevalence of 1% for SZ [165]).
Thus, they can only be reliably predicted using an extraordinary discrimination capability
between higher and lower risk groups. Suppose that a CAD system has a Sensitivity of 90%
and a Specificity of 95% based on the cross-validated confusion matrix, which is very good
for an imbalanced dataset. The probability that the new subject has the disorder, subject
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to the positive CAD result, could be estimated using Equation (1) for different disease
prevalence (Figure 8).

Figure 8. The Positive Predictive Value (PPV) of a diagnosis system with the sensitivity of 90% and
specificity of 95% at different disease prevalence.

For example, with the prevalence of 1% in such disorders, the PPV is only 15%. If the
dataset is balanced for the analysis (e.g., 3549 suicide-indicative posts, versus 3652 non-
suicidal posts in [126]), the PPV is 95% on the analyzed dataset. However, when the system
is used in practice (the prevalence of 1%), the PPV drops down to 15%. Thus, the analyzed
dataset must resemble the population. It is only preserved when proper sampling and
sample size calculation is performed.

3.5. EEG-Based Diagnosis

Among the studies analyzed in Tables 1–11, some use the EEG signal for diagnosis. In
such studies, the number of EEG channels was shown in the tables. It is also necessary to
report discriminative features based on the traditional frequency bands as important clinical
biomarkers in such studies. It is not enough to show whether the classification system has
an acceptable accuracy, as these discriminative features are very important for clinicians.
The spatial distribution of such features must also be provided over the skull [166]. In EEG
studies, either the resting state [166] or evoked or cognitive functions [167] were used for
mental disorders.

An example was provided from the comparison between schizophrenia and healthy
subjects during cognitive functions in Figure 9. It showed significantly lower power in
gamma, beta, theta, and alpha bands in healthy subjects than schizophrenia patients. It
also showed that more or less, it includes the entire brain. In agreement with the theory
that schizophrenia is not a lesion of a part of the brain, it is a disconnection syndrome. This
disconnection would be expressed in a failure to modulate synchronous activity caused by
disturbances in the dopaminergic mechanism [168].
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Figure 9. The topographies for grand average spectral power in schizophrenia patients and healthy
comparison subjects (reproduced with permission from [167]).

It is hypothesized that information flow across larger cortical networks is projected by
low-frequency brain oscillations, while local cortical information processing is represented
by high-frequency oscillations [169]. Thus, the interaction between different high- and
low-frequency bands, also known as cross-frequency coupling (CFC) (Figure 10), could
provide valuable insights into brain functions [170] and mental disorder diagnosis [171].
Such a representation is currently used instead of simple energy representation of different
frequency bands. However, as the dimension increases, it is essential to select connected or
disconnected regions of interest and representative interactions.

The EEG amplitude modulation analysis (Figure 11) has been used to diagnose
AD [172]. First, the full-band EEG signal was decomposed into five sub-bands (delta,
theta, alpha, beta, and gamma). The Hilbert transform was used to extract the envelope
of each sub-band signal. A second frequency decomposition was then used based on
modulation filters to represent cross-frequency modulation interaction [173].
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Figure 10. Cross-frequency modulation analysis. (A) Steps to compute the cfM index (m). (B) Steps in (A) are repeated for
all fP and fA combinations to produce the comodulogram. (C) For each subject, comodulograms are averaged over trials.
A single row for each condition is generated by merging data from all channels (reproduced with permission from [171]).

Figure 11. Signal processing steps used to compute resting EEG spectro-temporal modulation energy (reproduced with
permission from [172]).

The modulation frequency bands were shown as m-delta (0.5–4 Hz) or m-theta
(4–8 Hz). The m-delta modulation frequency content in the theta frequency band could
discriminate between the healthy normal, mild, and moderate AD (Figure 12).
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Figure 12. Topographical maps of average NS (top), AD1 (middle; mild AD), and AD2 (bottom;
moderate AD) modulation frequency responses (reproduced with permission from [172]).

4. Discussion

This review focused on the data mining methods proposed in the literature to classify
major mental and neurological disorders, namely SZ, BD, MDD, AD, suicide ideation,
attempt, or death. More than 68 recently peer-reviewed published journal papers since
2016 were considered, among which 75% were published in the year 2018 or later. Alonso
et al. [174] provided a systematic review of the major mental and neurological disorders.
However, they analyzed papers published by 2017, and the data mining validation frame-
works and methods focused on in our study were not covered in their study.

Moreover, other (systematic) reviews were published in the literature on this topic [175].
Jo et al. [153] analyzed deep learning papers on AD diagnosis and prognosis published be-
tween January 2013 and July 2018 in which neuroimaging data were used. Librenza-Garcia
et al. [176] analyzed machine learning papers on BD diagnosis, personalized treatment,
and prognosis published up to January 2017. de Filippis et al. [177] analyzed machine
learning methods for structural and functional MRI SZ diagnosis published between 2012
and 2019. Castillo-Sánchez et al. [26] reviewed machine learning methods for suicide risk
assessment on social networks from 2010 until December 2019. Although the classifiers,
sample size, input features, and their performance were taken into account in such studies,
the validation type and framework were not directly analyzed. In addition to not following
the related clinical standards such as STARD and TRIPOD, these issues would avoid the
widespread application of machine learning methods in practice.

Our study has some limitations. First, we only considered PubMed for the search
strategy. Other online databases such as ISI, Embase, Google Scholar, and Cochrane
Collaboration could improve our initial screening records. We only focused on SZ, BD,
depression (MDD), AD, dementia, and suicide. Other significant disorders, including
anxiety and headache were not considered. Moreover, we mainly focused on the validation
type and framework with the biostatistical perspective. However, feature extraction,
selection, and classifiers are essential issues in machine learning.
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In our study, the epidemiological information from the GBD was provided to identify
the importance of such disorders, and the gold standard methods for their diagnosis were
briefly reviewed. The CAD systems were classified based on the classification goal, sample
size, neuroimaging techniques, the number of channels (in EEG signals), type of validation
in terms of internal and external (subject-based) methods, type of validation based on
holdout, cross-validation, and resampling methods, the performance index, and its value.
We also discussed the importance of reporting a variety of performance indices and their
CI 95%. Some frequency–domain features used in the literature were reviewed for major
mental and neurological disorders.

Some issues must be taken into account for better clinical applications of the CAD
systems in this field [136]. A simple and intuitive method must present the classification
features’ discrimination over the recording electrodes and (or) their interactions. The
system must be validated using proper performance indices and statistical tests. The
proposed system’s clinical reliability must also be identified based on Type I, II, and III
errors. The clinical interpretation, using the activity maps (for example), must be provided.
The rule-based systems or interaction networks are preferred over black box methods to
facilitate clinical interpretation and validation [178]. Standardization (e.g., in terms of the
brain frequency bands) and benchmark datasets could facilitate the comparison of the
state-of-the-art and thus improve the CAD systems’ effectiveness to diagnose major mental
disorders, neurological disorders, and suicide.

5. Conclusions

The following issues must be taken into account to improve the clinical application of
the CAD systems for mental health:

• The related standards, including STARD and TRIPOD, must be used. TRIPOD-
Artificial intelligence (AI) is now underway due to AI applications in CAD [179,180].

• Proper performance indices must be provided in addition to their interpretation. This
issue is especially critical when the database is imbalanced, and some indices could be
biased [136].

• The CI 95% of the performance indices must be provided. It is especially critical
for the AUC. If its CI 95% includes 0.5, the diagnostic method’s performance is not
significantly better than a random generator.

• The prevalence of the disorder in the analyzed dataset must resemble its actual
prevalence in the population. Otherwise, the performance of the method in practice,
a.k.a. PPV, is highly deteriorated.

• A proper validation framework must be used to avoid Type III error. External valida-
tion is the best method to improve the generalization of the designed CAD.

• The clinical interpretation of the input features, their ranking, and the classifier struc-
ture must be provided for clinicians.
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