
Articles
eClinicalMedicine
2025;80: 102992

Published Online xxx

https://doi.org/10.
1016/j.eclinm.2024.
102992
Performance of artificial intelligence for diagnosing cervical
intraepithelial neoplasia and cervical cancer: a systematic
review and meta-analysis
Lei Liu,a,g Jiangang Liu,b,g Qing Su,c Yuening Chu,d Hexia Xia,a,∗ and Ran Xue,f ,∗∗

aDepartment of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
bDepartment of Obstetrics and Gynecology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430080,
China
cDepartment of Obstetrics and Gynecology, The Fourth Hospital of Changsha, Changsha, 410006, China
dDepartment of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine,
Shanghai, 201204, China
eDepartment of Obstetrics and Gynecology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, 310013,
China
fHeidelberg University, Heidelberg, 69120, Germany

Summary
Background Cervical cytology screening and colposcopy play crucial roles in cervical intraepithelial neoplasia (CIN)
and cervical cancer prevention. Previous studies have provided evidence that artificial intelligence (AI) has remarkable
diagnostic accuracy in these procedures. With this systematic review and meta-analysis, we aimed to examine the
pooled accuracy, sensitivity, and specificity of AI-assisted cervical cytology screening and colposcopy for cervical
intraepithelial neoplasia and cervical cancer screening.

Methods In this systematic review and meta-analysis, we searched the PubMed, Embase, and Cochrane Library
databases for studies published between January 1, 1986 and August 31, 2024. Studies investigating the sensitivity
and specificity of AI-assisted cervical cytology screening and colposcopy for histologically verified cervical
intraepithelial neoplasia and cervical cancer and a minimum of five cases were included. The performance of AI
and experienced colposcopists was assessed via the area under the receiver operating characteristic curve
(AUROC), sensitivity, specificity, accuracy, positive predictive value (PPV), and negative predictive value (NPV)
through random effect models. Additionally, subgroup analyses of multiple diagnostic performance metrics in
developed and developing countries were conducted. This study was registered with PROSPERO (CRD42024534049).

Findings Seventy-seven studies met the eligibility criteria for inclusion in this study. The pooled diagnostic parameters
of AI-assisted cervical cytology via Papanicolaou (Pap) smears were as follows: accuracy, 94% (95% CI 92–96);
sensitivity, 95% (95% CI 91–98); specificity, 94% (95% CI 89–97); PPV, 88% (95% CI 78–96); and NPV, 95%
(95% CI 89–99). The pooled accuracy, sensitivity, specificity, PPV, and NPV of AI-assisted cervical cytology via
ThinPrep cytologic test (TCT) were 90% (95% CI 85–94), 97% (95% CI 95–99), 94% (95% CI 85–98), 84% (95%
CI 64–98), and 96% (95% CI 94–98), respectively. Subgroup analysis revealed that, for AI-assisted cervical cytology
diagnosis, certain performance indicators were superior in developed countries compared to developing countries.
Compared with experienced colposcopists, AI demonstrated superior accuracy in colposcopic examinations (odds
ratio (OR) 1.75; 95% CI 1.33–2.31; P < 0.0001; I2 = 93%).

Interpretation These results underscore the potential and practical value of AI in preventing and enabling early
diagnosis of cervical cancer. Further research should support the development of AI for cervical cancer screening,
including in low- and middle-income countries with limited resources.
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Research in context

Evidence before this study
We searched the PubMed, Embase, and Cochrane Library
databases to identify studies published in English between
January 1, 1986 and August 31, 2024, using the terms
“cervical cancer” OR “cervical intraepithelial neoplasia” AND
“artificial intelligence”. Only one review has evaluated the
performance of AI systems in the prediction, screening, or
detection of cervical cancer and precancerous lesions.
However, to our knowledge, no previous systematic review
and meta-analysis has estimated the pooled diagnostic
accuracy (sensitivity and specificity) of AI-assisted cervical
cytology screening; similarly, no systematic review and meta-
analysis have assessed the performance of AI compared with
colposcopists for the detection of CIN or cervical cancer via
colposcopy.

Added value of this study
This meta-analysis indicated that AI has acceptable
performance in distinguishing between normal and abnormal
cytological results in cervical cytology screening in both
developing and developed countries. Similarly, AI exhibited
higher accuracy in colposcopic examinations compared with
experienced colposcopists in both settings. Furthermore, AI
outperformed experienced colposcopists in diagnosing LSIL+
and HSIL+ patients.

Implications of all the available evidence
These results highlight the potential and application value of
AI in the prevention and early diagnosis of cervical cancer, also
in LMICs where there is a lack of experienced cytopathologists
and colposcopists.
Introduction
Cervical cancer is a prominent contributor to both the
morbidity and mortality rates associated with cancer in
women globally. Annually, approximately 600,000
women are diagnosed with cervical cancer worldwide,
with over 300,000 succumbing to the disease.1 Over 85%
of new cervical cancer cases and 87% of deaths due to
cervical cancer take place in low-income and middle-
income countries (LMICs). Women residing in
LMICs, which have the highest cervical cancer incidence
and mortality rates, bear a disproportionately high
burden of cervical cancer.1,2 On November 17, 2020, the
World Health Organization (WHO) initiated a global
endeavor aimed at eradicating cervical cancer as a sig-
nificant public health issue. The WHO has proposed a
worldwide threshold of elimination, which is set at four
cases per 100,000 person-years, and advocates for the
implementation of a comprehensive triple intervention
strategy. This strategy encompasses the vaccination of a
minimum of 90% of girls against human papilloma-
virus (HPV) before they reach 15 years of age, screening
70% of women utilizing a high-performance test by 35
years of age and subsequently at 45 years of age, and
ensuring treatment for at least 90% of detected pre-
cancerous lesions and invasive cancers.3–5 Cervical can-
cer is preventable through vaccination and can be
effectively treated when it is diagnosed at an early stage.
The recent surge in the adoption of HPV vaccination
has predominantly been observed in high-income na-
tions. In contrast to high-income countries, in which the
coverage rate exceeds 85%, fewer than 30% of LMICs
have implemented HPV vaccination initiatives.6
Efficient screening for precancerous cervical lesions is
the sole protective intervention available to women who
have not received vaccination.7 Currently, screening
methods primarily include HPV testing, cervical
cytology, and DNA ploidy analysis. Because of its
simplicity and cost-effectiveness, cervical cytology
screening is recommended for population-based
screening programs. For individuals with abnormal
findings on screening tests, the diagnostic procedure
typically entails the utilization of colposcopy in
conjunction with biopsy to identify precancerous le-
sions. Subsequent therapeutic interventions are
employed to prevent the development of cancer. The
accurate identification of aberrant cervical epithelium
and systematic performance of targeted biopsies on all
acetowhite regions during colposcopic examination are
critical to prevent overlooking of high-grade squamous
intraepithelial lesions or worse (HSIL+) that require
immediate treatment.8,9 Manual review of cervical
cytology slides, whether from traditional smears or
liquid-based preparations, is labor-intensive, prone to
human error, and highly dependent on the expertise of
the cytopathologist, potentially leading to reduced
sensitivity and an increased likelihood of false nega-
tives.10 In addition, the existing colposcopic evaluation
methods pose notable challenges, especially in LMICs.
These challenges encompass inadequate concordance
(less than 50%) between colposcopy result in-
terpretations and pathological outcomes, a pronounced
reliance on the subjective experience of operators,
considerable disparities among inter- and intra-
operators, high rates of unnecessary colposcopies, a
www.thelancet.com Vol 80 February, 2025
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high percentage of multiple and random punch bi-
opsies, a scarcity of proficient colposcopists, and de-
ficiencies in the implementation of quality control and
quality assurance measures.11–15

Artificial intelligence (AI) constitutes a subfield of
computer science in which algorithms perform tasks
that are conventionally executed by humans. Machine
learning (ML) is a term that refers to a group of tech-
niques in the field of AI that allow algorithms to learn
from data, iteratively improving their own performance
without the need for explicit programming.16 The
number of AI algorithms within the medical literature
and healthcare industry is increasing rapidly. This in-
crease is attributed to recent advancements in
computational power, data accessibility, and model
complexity through research in mathematics and
computer science.17 In alignment with this trend, there
has been a notable increase in the approval of AI al-
gorithms and medical devices with AI capabilities by
the U.S. Food and Drug Administration.18 The process
of medical AI research is often the same: starting with
an image classification task, training an AI system via
supervised learning on labeled data, and then assessing
the system by comparing it to human specialists.19 AI
has been used to perform a variety of medical image
analysis tasks with performance on par with that of
clinical experts. These tasks include the identification
of pulmonary diseases, the identification and grading
of diabetic retinopathy, the classification of skin le-
sions, the differentiation of benign lesions from ma-
lignant lesions, such as lung cancer,20 breast cancer,21

pancreatic cancer,22 and renal cancer,23 and so
forth.24,25 Previous studies have shown exceptional ac-
curacy of AI in pathological differentiation and have
focused on AI-enabled diagnostic approaches for
discriminating between low-grade squamous intra-
epithelial lesions (LSIL) and HSIL.26–31 In addition,
considerable advancements have been achieved in the
development of AI-based digital colposcopy aimed at
enhancing the effectiveness and precision of clinical
diagnoses, and multiple preliminary studies of com-
puter algorithms applied to cervical images have been
carried out.31–35 However, some studies have shown
that AI can match or surpass colposcopists in terms of
the sensitivity and specificity of colposcopy in detecting
cervical intraepithelial neoplasia (CIN) and cervical
cancer during primary cervical cancer screening,
whereas others have reported opposite findings.9,29,36,37

Published reviews have assessed the performance of
AI compared with that of healthcare professionals in
detecting cervical precancer or cancer via medical
imaging.38–41 However, a meta-analysis of test accuracy
has not yet been performed.

The objective of this systematic review and meta-
analysis was to assess existing evidence of the diag-
nostic accuracy, sensitivity, and specificity of AI-assisted
cervical cytology screening and colposcopy for detecting
www.thelancet.com Vol 80 February, 2025
cervical intraepithelial neoplasia and cervical cancer.
The findings of this review are essential for policy-
makers and stakeholders involved in formulating
guidelines and recommendations for cervical cancer
screening in LMICs, thereby advancing global efforts
towards the eventual elimination of cervical cancer.
Methods
Search strategy and selection criteria
A systematic review of the literature on the concepts of
AI-assisted cervical cytology screening and colposcopy
for the detection of cervical intraepithelial neoplasia and
cervical cancer was conducted. The MEDLINE, Embase,
and Cochrane Library databases were searched for all
articles published from database inception to August 31,
2024. The Preferred Reporting Items for Systematic
Reviews and Meta-analyses (PRISMA) 2020 reporting
guidelines were used to design the review. The inclu-
sion criteria and analysis plan were decided a priori and
registered on PROSPERO (CRD42024534049). A
manual reference search of the included articles was
also performed to identify any additional relevant arti-
cles. We included studies that developed and applied
machine learning (ML) or deep learning models for
classifying cervical precancer lesions using medical
imaging.

Data extraction
We included all types of observational studies associated
with AI-assisted cervical cytology screening and colpos-
copy for the detection of CIN and cervical cancer that
were performed anywhere in the world and published
exclusively in English. Studies focused on animals, gene
expression profiling, genomic and molecular studies,
chromosomal alteration progression, nuclei segmenta-
tion, genomic profiles, spectroscopy, optoelectronic
sensors, biomarkers, cervical cancer prognosis, and
mathematical models were excluded. In addition, case
reports, literature reviews, abstracts, letters to editors,
non-full-text articles, and unpublished studies were
excluded. The screening of the studies on the basis of
titles and abstracts was performed by two independent
reviewers (LL and QS), with conflicts resolved by
consulting a third reviewer (RX). Three reviewers
independently assessed eligibility for inclusion
following abstract screening according to the inclusion
and exclusion criteria. In cases of conflict, decisions
were made through consensus agreement among the
three reviewers. Eligible full-text articles were evaluated,
and relevant data were extracted independently by two
reviewers (LL and QS) via a template data extraction
form, with conflicts resolved by the inclusion of a third
reviewer (RX).

For studies that generated multiple AI models to
classify the same outcome, we included the perfor-
mance data from the model that performed best on the
3
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test set. This ensured that only the most effective model
would be considered for clinical application. When data
were available, we compared the accuracy of colpo-
scopists in classifying CIN and cervical cancer to that of
the AI models, excluding the performance of junior
colposcopists. If multiple colposcopists were evaluated,
we calculated their mean accuracy score on the basis of
their performance in classifying CIN and cervical can-
cer. A mean score was calculated for colposcopist per-
formance because this score most closely resembled the
diagnostic accuracy of the current workflow.

The following data were extracted from eligible
studies: first author, year of publication, country in
which data were collected, study type, number of images
used for training, validation and testing, AI algorithm
type, database used, data availability, and number of
patients who underwent both a trial of AI screening and
a clinician reference test. Diagnostic performance data
were extracted to estimate the accuracy, sensitivity,
specificity, positive predictive value (PPV), and negative
predictive value (NPV) if data on the number of patients
who had true positive (TP), false positive (FP), false
negative (FN), and true negative (TN) results were pro-
vided. For studies lacking complete information for the
meta-analysis, we contacted the authors to obtain the
necessary data. When data were unavailable, we incor-
porated as much information as possible from the study
into the narrative synthesis.

Assessment of study bias
We evaluated the risk of bias for each study via the
quality assessment of diagnostic accuracy studies
(QUADAS-2) tool (University of Bristol, Bristol, UK),
which is the recommended instrument for assessing
primary studies of diagnostic accuracy in systematic
reviews.42 The risk of bias and concerns about applica-
bility were assessed across four domains: patient selec-
tion, the index test, the reference standard, and patient
flow and timing. The degree of risk or concern was
categorized as high, low, or unclear.

Statistics
We extracted diagnostic performance metrics, including
the reported accuracy, sensitivity, specificity, PPV, and
NPV. When original data cannot be extracted from a
study, we will consider its stratified data as independent
research, given the study’s objective to provide an
overview of pooled rates from various studies rather
than precise point estimates. A formal quality assess-
ment of the studies was not conducted because of their
nonclinical nature. The meta-analysis was conducted via
RevMan (version 5.3) and Stata (version 18.0) to calcu-
late pooled estimates for each case via a random effects
model.43 Heterogeneity among study-specific estimates
was assessed via Cochran’s Q test for heterogeneity, the
95% prediction interval to address the dispersion of ef-
fects, and the I2 statistic.44,45 We plotted a summary
receiver operating characteristic curve to estimate the
diagnostic accuracy of AI trials by examining the area
under the curve and the summary operating point. To
detect publication bias in diagnostic performance studies,
we used Deeks’ funnel plot. Subgroup and sensitivity
analyses were subsequently performed. For the subgroup
analysis, stratified methods and univariate meta-
regression were employed, stratifying data by developed
versus developing countries and different diagnostic cut-
off points. Sensitivity analyses were conducted via the
leave-one-out method. For cytology, the subgroups
included Pap smears and TCT, as well as studies from
developed and developing countries. For colposcopy, the
subgroups consisted of AI-assisted colposcopy and
clinician-performed colposcopy, categorized by developed
and developing countries, and further differentiated by
LSIL+ and HSIL+. The regression analysis encompassed
the assessment of heterogeneity related to AI in studies
on TCT, Pap smears, and colposcopy.

Role of the funding source
The funder of the study had no role in study design, data
collection, data analysis, data interpretation, or writing
of the report.
Results
We identified 1488 articles from the electronic searches,
which included cytology and colposcopy studies. After
removing duplicates, title and abstract screening was
performed for 1350 studies, with 138 studies remaining
after screening. After a full-text review, 77 articles (51
cytology articles and 26 colposcopy articles) were
included in the systematic review. A PRISMA flowchart
of the included studies is displayed in Fig. 1. The 51
eligible cytology studies30,46–60,61–95 were published be-
tween 2012 and 2024 and included over 280,000 tests
from 17 countries in Europe, South America, North
America, and Asia (Tables 1 and 2). The 26 eligible
colposcopy studies9,28,29,32,33,36,37,96–114 were published be-
tween 2012 and 2024 and included over 45,000 tests
from nine countries in Europe, South America, North
America, and Asia (Supplementary Table S1).

In research on AI applications in cytology, both Pap
smears and ThinPrep cytologic test (TCT) were
included. Some studies focusing on Pap smears utilized
the traditional Pap classification system, whereas others
employed the Bethesda system (TBS). Despite these
variations, the results were categorized as abnormal or
normal on the basis of the three-step cervical lesion
screening method. For TCT studies, TBS was univer-
sally applied. Some AI studies on colposcopy adopted
the CIN classification system, whereas others used TBS
for diagnosing cervical lesions. Ultimately, cervical le-
sions were described via TBS, as LSIL corresponds to
CIN1, and HSIL corresponds to CIN2 and CIN3.
Although different classification systems were used,
www.thelancet.com Vol 80 February, 2025
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Fig. 1: The PRISMA flow diagram of literature screening. The period from January 1, 1986 to August 31, 2024, is covered. Given the pivotal
advancements in artificial intelligence in 2012, particularly with the breakthroughs in deep learning technology, we have chosen to exclude
studies conducted prior to this year. This decision is based on the substantial progress AI has made since 2012, especially in processing large-
scale data and complex pattern recognition, where the introduction and refinement of deep learning have been transformative. Thus, to ensure
that our review and analysis accurately reflect the current capabilities and performance of AI, we have included only studies published from 2012
onward.

Articles
the primary goal of this study was to evaluate AI per-
formance, making the presence of heterogeneity
acceptable. In terms of the diagnostic performance of
AI-assisted cytology, data for Pap smear accuracy were
extracted from 20 studies, and data for the sensitivity,
specificity, PPV, and NPV were extracted from 11
studies. For TCTs, data for diagnostic accuracy were
extracted from 28 studies, and data for the sensitivity,
www.thelancet.com Vol 80 February, 2025
specificity, PPV, and NPV were extracted from 25
studies. For colposcopy, data for AI accuracy were
collected from 26 studies, and data for the sensitivity,
specificity, PPV, and NPV were extracted from 16
studies. For human experts in colposcopy, data for ac-
curacy were extracted from 14 studies, and data for the
sensitivity, specificity, PPV, and NPV were extracted
from 8 studies.
5

http://www.thelancet.com


Study Country Algorithm Dataset Study
design

No. of
images

Training
size

Validation
size

Testing
size

Se (%) Sp (%) PPV (%) NPV (%) AUC

Al-Batah et al.
(2014)46

Jordan ANFIS (ML) Royal Rehabilitation
Center in King Hussein
Medical Center

Retrospective 500 NR NR NR NR NR NR NR NR

Hyeon et al.
(2017)90

Korea SVM (ML) Seegene Medical
Foundation

Retrospective 16,746 80% – 20% 78.0 78.0 78.2 78.2 NR

Arya et al.
(2018)82

India ANN (ML) DTU/Herlev Pap smear
benchmark data
set + Rajasthan
University, Jaipur
(MNITJ)

Retrospective 330 NR NR NR 99.0 99.0 98.8 98.8 NR

Sompawong
et al. (2019)47

Thailand Mask R-CNN
(CNN)

Thammasat University
(TU) Hospital.

Retrospective 1024 NR NR NR 72.5 94.3 NR NR NR

Hussain et al.
(2020)48

India DL Babina Diagnostic Pvt.
Ltd, Imphal; Gauhati
Medical College and
Hospital

Retrospective 1670 NR NR NR 97.8 97.9 NR NR NR

Sanyal et al.
(2020)49

India CNN East India hospital Retrospective 1838 1397 441 441 94.3 96.0 91.7 68.3 NR

Win et al.
(2020)83

Greece RF, LD, SVM,
KNN, boosted
trees, and bagged
trees (ML)

SIPaKMeD Retrospective 966 NR NR NR NR NR NR NR NR

Holmstrom
et al. (2021)50

Kenya DLS (CNN) Smears of HIV-positive
women

Retrospective 740 350 390 361 95.7 84.7 48.4 99.3 NR

Ali et al.
(2021)51

Multi-
country

RT (ML) Kaggle and UCI ML
Repository

Retrospective NR NR NR NR 99.1 90.4 NR NR NR

Diniz et al.
(2021)86

China DT + NV +
KNN (ML)

ISBI’14 Overlapping
Cervical Cytology Image
Segmentation Challenge
dataset

Retrospective – 45 – 900 99.9 NR NR NR NR

Lin et al.
(2021)52

China RRS-0.85 (CNN) Four medical centers Retrospective 19,303 13,486 2486 3331 90.7 80.0 42.2 98.2 0.925

Sheela et al.
(2021)85

Denmark Deep auto
encoder-based
ELM (CNN)

Herlev Retrospective 917 NR NR 699 99.8 98.0 98.9 99.6 NR

Bhatt et al.
(2021)53

Greece EfficientNet-B3
(CNN)

SIPaKMeD Retrospective 4049 NR NR NR 98.9 NR NR NR NR

Gao et al.
(2022)54

Greece 3cDe-Net (CNN) SIPaKMeD cervical cell
dataset

Retrospective 966 3 1 1 98.5 98.7 NR NR NR

Kupas et al.
(2022)55

Hungary DenseNet (CNN) A private dataset Retrospective 3005 2404 NR 601 95.5 91.0 90.8 95.6 NR

Wang et al.
(2022)56

Denmark 3cDe-Net (CNN) Herlev Retrospective 917 8 1 1 NR NR NR NR NR

Alsubai et al.
(2023)57

Greece SIPaKMeD (CNN) SIPaKMeD Retrospective 4049 2832 608 609 91.5 90.9 87.2 94.0 NR

Chowdary et al.
(2023)58

Greece SE-UNet (CNN) SIPAKMED Retrospective 4049 6 2 2 99.2 99.8 99.4 99.4 NR

Kalbhor et al.
(2023)59

India Resnet-50 (CNN) Sipakmed dataset Retrospective 4049 NR NR NR 95 96 94.2 96.6 NR

Tan et al.
(2024)60

Denmark DenseNet-201
(CNN)

Herlev Retrospective 917 8 2 1 85.4 91.5 96.7 69.3 NR

Yang et al.
(2024)61

China FPNC (CNN) CCID (private) Retrospective 148,762 7 1 2 99.5 NR 99.5 NR NR

NR, not report; Se, sensitivity; Sp, specificity.

Table 1: Characteristics of included studies about Pap smears.
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The pooled diagnostic parameters of AI-assisted Pap
smears were as follows: accuracy, 94% (95% CI 92–96;
I2 = 99.7%); sensitivity, 95% (95% CI 91–98; I2 = 99.8%);
specificity, 94% (95% CI 89–97; I2 = 99.8%); PPV, 88%
(95% CI 78–96; I2 = 99.4%); and NPV, 95% (95% CI
89–99; I2 = 99.4%) (Figs. 2 and 3; Supplementary
Table S2). The pooled accuracy of AI-assisted cervical
cytology via TCT was 90% (95% CI 85–94; I2 = 100%),
www.thelancet.com Vol 80 February, 2025
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Study Country Algorithm Dataset Study design No. of
images

Training
size

Validation
size

Testing
size

Se (%) Sp (%) PPV (%) NPV (%) AUC

Kim et al. (2015)89 Korea HTEA Hough transform
extraction algorithm (ML)

NR Retrospective NR NR NR NR NR NR NR NR NR

Kyrgiou et al.
(2016)62

UK MLP (DL) Three University Hospitals Prospective + Retrospective 3651 NR NR NR 99.47 99.51 98.95 99.75 NR

Lasyk et al.
(2019)63

Porland U-NET and CNN Pomeranian Medical University in
Szczecin

Retrospective 2058 NR NR NR 100 100 100 100 NR

Sanyal et al.
(2019)64

India CNN A tertiary care hospital Retrospective 2816 820 400 1596 95.63 79.85 41.3 99.2 NR

Xiang et al.
(2020)88

China YOLOv3 (CNN) Central South University (own
dataset)

Retrospective 1014 NR NR NR 97.5 67.8 88.53 91.51 89.3

Tan et al. (2021)30 China Robust DCNN model (CNN) Multiple collaborating hospitals Retrospective 16,366 13,775 2301 290 99.4 34.8 70.8 97.5 NR

Tang et al.
(2021)65

China RetinaNet (CNN) Shenzhen Maternity and Child
Healthcare Hospital

Retrospective 2167 NR NR 1944 94.56 89.55 92.77 92.07 NR

Cao et al. (2021)66 China AttFPN (CNN) HMUCH dataset + HMCHH dataset Retrospective NR NR NR 3970 95.83 94.81 98.2 88.51 99.1

Jia et al. (2021)86 NR SSD (CNN) NR Retrospective 1462 1167 NR 295 95.7 89.9 NR NR NR

Li et al. (2021)67 China RCNN-FPN (CNN) Alibaba Cloud TianChi Company Retrospective 800 640 NR 160 NR NR NR NR 67

Liang et al.
(2021)68

China YOLOv3 SSAM (CNN) Central South University (own
dataset)

Retrospective 12,909 NR NR 6537 96.6 85.7 89.12 95.45 NR

Ke et al. (2021)69 China CNN Shanxi Tumor Hospital Retrospective 130 NR NR NR NR NR NR NR 85

Zhu et al. (2021)70 China AIATBS (CNN) Multicenter prospective samples Prospective + Retrospective 9215 NR NR NR 83.78 94.54 87.86 92.51 NR

Ma et al. (2021)87 China FPN (CNN) Alibaba Tianchi competition Retrospective 4107 2792 493 822 95 NR NR NR NR

Cheng et al.
(2021)71

China RNN Maternal and Child Hospital of
Hubei Province (Multi-center)

Retrospective 3545 8 1 1 92.8 95.3 86.86 97.55 NR

Kanavati et al.
(2022)72

Japan CNN + RNN (CNN) A private clinical laboratory Retrospective 1953 1503 150 300 85 91.1 40.48 98.84 NR

Shinde et al.
(2022)73

India DeepCyto (CNN) Guwahati and Guwahati Medical
College and Hospital

Retrospective 963 NR NR 193 100 100 100 100 NR

Xu et al. (2022)74 China Faster R-CNN NR Retrospective NR 6666 NR 744 87.7 NR NR NR NR

Wang et al.
(2022)56

China 3cDe-Net (CNN) Alibaba Cloud TianChi Company Retrospective 13,254 8 1 1 99.4 94.86 95.09 99.37 NR

Alsalatie et al.
(2022)75

India EfficientNet-B3 (CNN) Babina Diagnostic Pvt.
Ltd + Clinical + hospital

Retrospective 963 NR NR NR 100 100 100 100 NR

Chowdary et al.
(2023)58

China SE-UNet (CNN) Sapporo Medical University Retrospective 1780 1650 330 130 97.18 NR NR NR NR

Nambu et al.
(2022)76

Japan YOLOv4 + ResNeSt (CNN) ISBI 2014 dataset Retrospective 919 575 122 222 100 49 70.52 100 NR

Du et al. (2023)77 China ResNet (CNN) Two HOSPITAL Retrospective 109,309 NR NR 10,929 94.19 81.49 93.73 82.68 NR

Hamdi et al.
(2023)78

America RF-ResNet50-VGC19 (CNN) (CESC) dataset Retrospective 962 8 2 2 97.4 99.2 98.57 98.38 98.75

Kurita et al. (2023)
79

Japan EfficientNet-B3 (CNN) JA Shizuoka Kohseiren Enshu
Hospital

Retrospective 39,990 25,559 5481 8950 72.5 92.6 78.06 90.26 90.8

Xue et al. (2023)80 China CITL-AI (CNN) Nine hospitals Retrospective 3514 NR NR NR 87.2 91.5 35.54 99.25 89.3

Chantziantoniou
et al. (2023)81

America BestCyte Cell Sorter Imaging
System (CNN)

Courtesy of Marlboro-Chesterfield
Pathology

Retrospective NR NR NR NR 95.75 97.51 97.64 95.53 NR

Bai et al. (2024)91 China ResNet50 (DNN) The Third Affiliated Hospital of
Zhengzhou University

Retrospective NR 89,435 NR 1156 94.88 31.34 77.21 71.43 NR

(Table 2 continues on next page)
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the pooled sensitivity was 97% (95% CI 95–99;
I2 = 99.9%), the pooled specificity was 94% (95% CI
85–98; I2 = 100%), the pooled PPV was 84% (95% CI
64–98; I2 = 100%), and the pooled NPV was 96% (95%
CI 94–98; I2 = 99.3%) (Figs. 4 and 5; Supplementary
Table S2). Additionally, the areas under the summary
receiver operating characteristic curve (AUC) of AI-
assisted Pap smears and TCT for cervical cytology
screening were 0.99 (95% CI 0.97–0.99) and 0.99 (95%
CI 0.98–1.00), respectively (Supplementary Figs. S1
and S2).

We also conducted a subgroup analysis to evaluate
the performance of AI-assisted cervical cytology in both
developed and developing countries. With respect to
AI-assisted Pap smears, there were no significant dif-
ferences in the sensitivity and specificity between
developed and developing countries, with values of
96% (95% CI 86–99; I2 = 99.9%) vs. 94% (95% CI
92–96; I2 = 83.8%; P = 0.53), 95% (95% CI 86–98;
I2 = 99.9%) vs. 94% (95% CI 85–98; I2 = 99.6%;
P = 0.51). The accuracy, PPV, and NPV significantly
differed between the two groups, with values of 94%
(95% CI 89–99; I2 = 99.8%) vs. 93% (95% CI 91–96;
I2 = 99.3%; P < 0⋅001), 94% (95% CI 83–99; I2 = 99.1%)
vs. 80% (95% CI 48–99; I2 = 99.6%; P < 0.001), and
92% (95% CI 80–99; I2 = 99.1%) vs. 98% (95% CI
97–99; I2 = 76.8%; P = 0.014), respectively
(Supplementary Table S2). In AI-assisted TCT, there
were significant differences in the accuracy, sensitivity,
specificity, PPV, or NPV between developed and
developing countries. The values were as follows: ac-
curacy, 94% (95% CI 92–96; I2 = 99.5%) vs. 87% (95%
CI 78–96; I2 = 100%; P < 0.001); sensitivity, 98% (95%
CI 90–100; I2 = 99.8%) vs. 96% (95% CI 93–98;
I2 = 99.7%; P = 0.045); specificity, 98% (95% CI 87–100;
I2 = 99.9%) vs. 87% (95% CI 71–94; I2 = 100%;
P < 0.001); PPV, 89% (95% CI 75–98; I2 = 99.0%) vs.
81% (95% CI 53–98; I2 = 100%; P < 0.001); and NPV,
98% (95% CI 93–100; I2 = 99.3%) vs. 94% (95% CI
91–97; I2 = 99.4%; P < 0.001) (Supplementary
Table S2).

For the performance of AI and experienced colpo-
scopists in diagnosing cervical lesions via colposcopy,
the pooled accuracy of AI was 81% (95% CI 77–84;
I2 = 98.9), whereas the pooled accuracy of experienced
colposcopists was 74% (95% CI 69–79; I2 = 97.3)
(Figs. 6 and 8; Table 3). The pooled sensitivity of AI was
86% (95% CI 76–92; I2 = 97.3) and its pooled specificity
was 83% (95% CI 73–90; I2 = 97.8) (Fig. 7; Table 3). In
comparison, the pooled sensitivity of experienced col-
poscopists was 85% (95% CI 71–93; I2 = 96.4) and their
pooled specificity was 67% (95% CI 46–83; I2 = 97.1)
(Fig. 9; Table 3). The pooled PPV and NPV of AI were
82% (95% CI 74–89; I2 = 98.6) and 80% (95% CI 69–89;
I2 = 98.9), respectively, whereas those of experienced
colposcopists were 76% (95% CI 60–89; I2 = 99.2) and
75% (95% CI 58–89; I2 = 99.0) (Table 3). Based on
www.thelancet.com Vol 80 February, 2025
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Fig. 2: Diagnostic accuracy of AI in Papanicolaou (Pap) smears. Meta-analysis of the diagnostic accuracy of Pap smears in the 20 studies included.
Solid vertical lines show the pooled estimates. AI, artificial intelligence; CI, confidence interval.
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pooled data analysis, AI demonstrated superior accuracy
in colposcopic examinations compared with clinicians.
A similar result was achieved through the application of
the random-effects model (OR 1.75; 95% CI 1.33–2.31;
P < 0.0001; I2 = 93%) (Fig. 10). Furthermore, the AUCs of
AI-assisted and clinician-performed (experienced colpo-
scopists) colposcopic examinations were 0.91 (95% CI
0.88–0.93) and 0.85 (95% CI 0.81–0.88), respectively
(Supplementary Figs. S3 and S4).

A subgroup analysis was subsequently conducted to
compare the performance of AI and experienced col-
poscopists in the colposcopic diagnosis of cervical le-
sions between developed and developing countries. For
AI, only specificity was not statistically significant, with
values for developed and developing countries of 83%
(95% CI 68–92; I2 = 97.5) and 82% (95% CI 69–90;
I2 = 98.1; P = 0.321), respectively. Other diagnostic in-
dicators, including the accuracy, sensitivity, PPV, and
NPV, were significantly different between developed
and developing countries (80% (95% CI 74–86;
I2 = 97.6) vs. 82% (95% CI 77–86; I2 = 98.3; P < 0.05),
89% (95% CI 75–96; I2 = 96.8) vs. 82% (95% CI 72–88;
www.thelancet.com Vol 80 February, 2025
I2 = 97.3; P < 0.05), 87% (95% CI 79–93; I2 = 94.1) vs.
77% (95% CI 64–88; I2 = 99.2; P < 0.05), and 78% (95%
CI 58–92; I2 = 97.9) vs. 82% (95% CI 72–90; I2 = 98.7;
P < 0.05), respectively) (Supplementary Table S3). For
experienced colposcopists, the accuracy was not statis-
tically significant, with values for developed and devel-
oping countries of 74% (95% CI 68–80; I2 = 85.7) and
74% (95% CI 67–81; I2 = 98.6; P = 0.51), respectively.
The sensitivity, specificity, PPV, and NPV for developed
and developing countries were 89% (95% CI 73–96;
I2 = 85.1) vs. 74% (95% CI 63–83; I2 = 97.3; P < 0.05),
68% (95% CI 35–89; I2 = 96.2) vs. 75% (95% CI 48–94;
I2 = 99.7; P < 0.05), 83% (95% CI 66–95; I2 = 96.2) vs.
65% (95% CI 39–87; I2 = 99.5; P < 0.05), and 71% (95%
CI 56–85; I2 = 87.8) vs. 83% (95% CI 79–86; I2 = 90.3;
P < 0.05), respectively, with statistically significant dif-
ferences (Supplementary Table S4). Moreover, AI ach-
ieved greater accuracy in colposcopic examinations than
did clinicians in the subgroup analysis of developed
countries (OR 0.08; 95% CI 0.03–0.13; P < 0.001;
I2 = 53%) and developing countries (OR 0.08; 95% CI
0.02–0.14; P < 0.05; I2 = 97%) (Supplementary Fig. S5).
9
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Fig. 3: Forest plot demonstrating diagnostic sensitivity and specificity of AI in Pap smears. Meta-analysis was performed in the 11 studies
included. Dashed vertical lines show the pooled estimates. TP, true positive; FN, false negative; FP, false positive; TN, true negative.
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Given that colposcopic diagnosis of HSIL or worse
(HSIL+) requiring immediate treatment is crucial for
the prevention of cervical cancer, subgroup analysis was
conducted to compare the ability of AI and experienced
colposcopists to detect LSIL or worse (LSIL+) and
HSIL+. For AI-assisted colposcopy, none of the diag-
nostic indicators were significantly different in detecting
LSIL+ and HSIL+. The accuracy, sensitivity, specificity,
PPV, and NPV for detecting LSIL+ and HSIL+ were as
follows: 84% (95% CI 76–92; I2 = 99.5; P = 0.87) vs. 81%
(95% CI 76–87; I2 = 99.0), 86% (95% CI 75–92; I2 = 98.9;
P = 0.65) vs. 89% (95% CI 77–95; I2 = 98.2), 85% (95%
CI 75–92; I2 = 99.6; P = 0.37) vs. 86% (95% CI 74–93;
I2 = 98.3), 82% (95% CI 65–94; I2 = 99.3; P = 0.341) vs.
85% (95% CI 73–93; I2 = 98.6), and 86% (95% CI 79–92;
I2 = 96.8; P = 0.19) vs. 82% (95% CI 64–94; I2 = 99.3)
(Supplementary Table S3). For experienced colposcop-
ists, both the sensitivity, PPV, and NPV were statistically
significant, with the following values for detecting LSIL+
and HSIL+: 70% (95% CI 68–72; P < 0.05) vs. 87% (95%
CI 74–94; I2 = 96.7), 61% (95% CI 59–63; P < 0.05) vs.
80% (95% CI 62–94; I2 = 98.8), and 80% (95% CI 79–82;
P < 0.05) vs. 73% (95% CI 59–86; I2 = 96.4). However,
the accuracy and specificity for detecting LSIL+ and
HSIL+ were 75% (95% CI 68–83; I2 = 97.7; P = 0.87) vs.
74% (95% CI 69–80; I2 = 95.7) and 73% (95% CI 71–74;
P = 0.581) vs. 71% (95% CI 44–88; I2 = 99.0), respectively,
with no significant differences (Supplementary Table S4).
Additionally, AI outperformed clinicians in diagnosing
LSIL+ patients (OR 1.84; 95% CI 1.28–2.65; P < 0.01;
I2 = 89%) and HSIL+ patients (OR 1.43; 95% CI
1.07–1.91; P < 0.05; I2 = 86%) (Supplementary Fig. S6).
Fagan’s nomogram indicates that if the prevalence of
cervical lesions is 20%, the true positive rate for AI-
assisted Pap smears, TCT, and colposcopy is 81%,
80%, and 56%, respectively, with corresponding proba-
bilities of having cervical lesions if the diagnosis is
negative being 1%, 1%, and 4%. For expert colpo-
scopists, the true positive rate is 39% and the false
negative rate is 5% (Supplementary Figs. S7–S10).
The Deeks’ funnel plot for the 60 studies included in
our meta-analysis indicated that there was no evi-
dence of publication bias for AI-assisted colposcopy or
clinician-performed colposcopy. However, there was
publication bias in the results of AI-assisted Pap
smears and AI-assisted TCT (Supplementary
Figs. S11–S14). We used the leave-one-out method
for sensitivity analysis of the results. Studies were
removed one at a time, and subsequent meta-analyses
were conducted to observe any changes in the effect
size. The results of the subsequent meta-analyses
were similar to the previous combined effect size re-
sults after each study was removed. Furthermore, we
applied the trim-and-fill method to assess and adjust
for publication bias in the random-effects model. The
results indicate that potential publication bias had a
minimal impact on the model (Supplementary
Figs. S15 and S16). In AI-based diagnosis, regres-
sion analysis of the results revealed that the hetero-
geneity mainly originated from the sample size and
ground truth. For AI-assisted TCT, the results indi-
cated that the heterogeneity was primarily due to the
sample size, subject, and predesign. For AI-assisted
pap smear, the heterogeneity was due mainly to the
www.thelancet.com Vol 80 February, 2025
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Fig. 4: Forest plot demonstrating diagnostic accuracy of AI in TCT. Meta-analysis of AI diagnostic accuracy in TCT based on 28 included studies,
with solid vertical lines representing the pooled estimates. TCT, ThinPrep cytologic test.
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intervention type and sample size (Supplementary
Figs. S21–S23). Although we conducted subgroup
analyses for various diagnostic tests, the heterogene-
ity remained substantial. The bagplot diagrams for
the cytology and colposcopy diagnostic tests revealed
that several data points in each study fell outside the
95% CI. After these studies were excluded and a
sensitivity analysis was performed, the heterogeneity
did not change significantly (Supplementary
Figs. S24–S27). Each study was assessed for quality
via the QUADAS-2 tool. The primary risk of bias was
identified in the selection of cases. None of the
studies presented a high risk of bias in more than
three domains (Supplementary Figs. S28–S33).
www.thelancet.com Vol 80 February, 2025
Additionally, the evidence was evaluated using the
GRADE system (Supplementary Tables S5–S7), and
the overall quality was rated as moderate.
Discussion
To our knowledge, this is the first systematic review to
assess the diagnostic accuracy, sensitivity, and speci-
ficity of AI-assisted cervical cytology screening and
colposcopy for detecting CIN and cervical cancer. Our
main findings indicate that AI-assisted cervical
cytology screening can distinguish between normal
and abnormal cytological results with high accuracy,
sensitivity, and specificity (Pap smear: 94%, 95%, and
11
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Fig. 5: The diagnostic sensitivity and specificity of AI in TCT. A meta-analysis was conducted on the 25 included studies, with dashed vertical
lines representing the pooled estimates. TP, true positive; FN, false negative; FP, false positive; TN, true negative.
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94%; TCT: 90%, 97%, 94%, respectively). Additionally,
AI demonstrated a substantial agreement rate with
pathological results of 81%, which is considered the
gold standard for grading all colposcopic impressions,
surpassing that of experienced colposcopists (74%; OR
1.75; 95% CI 1.33–2.31). Furthermore, AI exhibited
superior performance over experienced colposcopists in
diagnosing LSIL+ and HSIL+ patients. Subgroup analysis
revealed that the diagnostic accuracy of AI exceeded that
of experienced colposcopists in both developing and
developed countries. These findings underscore the sig-
nificant advantages of AI in cervical cancer screening and
diagnosis, particularly in colposcopy and cervical cytology
screening. Compared to clinical doctors, AI not only had
greater overall accuracy but also exhibited higher sensi-
tivity and specificity in diagnosing various lesions. These
results highlight the substantial potential and application
value of AI in the prevention and early diagnosis of cer-
vical cancer.

The accuracy of cervical cytology screening is often
suboptimal, as traditional screening methods exhibit
considerable variability in sensitivity and specificity,
resulting in false-negative or false-positive outcomes.80

This inaccuracy increases the risk of missed or incor-
rect diagnoses, thereby affecting the timing of patient
treatment and prognosis of disease. Furthermore, tradi-
tional screening relies on experienced cytopathologists
for result interpretation; each smear contains
20,000–50,000 cells, making the process time-consuming
and heavily dependent on individual expertise and skill.
Cytopathologists with less experience may overlook high-
risk lesions, impacting the effectiveness of screening. In
resource-limited regions, particularly in developing
countries, there is a lack of trained personnel and
equipment to conduct effective cervical cytology
screening. This disparity in resources leads to low
screening coverage, preventing timely detection and
treatment in many high-risk patients. Our meta-analysis
revealed that AI achieved high accuracy in cancer
screening by detecting and classifying abnormal cells
through the analysis of many cell images. The accuracy
for Pap smears was 94%, and that for TCT was 90%. AI,
being 380 times faster than typical pathologists, acceler-
ates the screening process, which is particularly vital in
resource-limited areas. AI assists cytopathologists in
smear analysis, thereby alleviating their workload by
efficiently processing large volumes of data and allowing
them to focus on more complex cases. Furthermore, AI
helps minimize regional disparities by providing high-
quality screening services through remote diagnosis
and intelligent analysis, thus narrowing the healthcare
gap between urban and rural regions.

Currently, the primary techniques for diagnosing
CIN and cervical cancer are colposcopy and guided bi-
opsy.39 The effectiveness of colposcopy is limited by a
strong reliance on the subjective experience of the
operator, significant inter- and intraoperator variability,
and a shortage of skilled colposcopists.41 Additionally,
the complexity of comprehensive colposcopy training
programs and the need for standardized diagnostic
www.thelancet.com Vol 80 February, 2025
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Fig. 6: Forest plot illustrating the diagnostic accuracy of AI in colposcopy. A meta-analysis was conducted on the diagnostic accuracy across the
25 included studies, with solid vertical lines indicating the pooled estimates.
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criteria and rigorous quality control are difficult to
achieve consistently, especially for colposcopists with
limited diagnostic skills. This variability can lead to
inconsistent reporting and documentation of colposcopy
findings. Structured colposcopy training programs are
essential for improving the diagnostic capabilities of
colposcopists. However, the practical implementation of
these programs to enhance diagnostic performance in a
short timeframe is challenging, especially in LMICs.41

Fortunately, numerous investigations have shown that
AI has the potential to mitigate these challenges.9,29,36,39,41

In the present meta-analysis, AI demonstrated superior
accuracy in colposcopic examinations compared with
clinicians (OR 1.75; 95% CI 1.33–2.31). Furthermore,
www.thelancet.com Vol 80 February, 2025
the AUCs of AI-assisted and colposcopist-performed
colposcopic examination were 0.91 and 0.85, respec-
tively. Moreover, AI achieved greater accuracy in col-
poscopic examinations than did clinicians in the
subgroup analysis of developed countries (OR 0.08; 95%
CI 0.03–0.13) and developing countries (OR 0.08; 95%
CI 0.02–0.14). AI can assist colposcopists by providing
more accurate colposcopy image interpretations,
detecting underlying CIN, and guiding biopsy site se-
lection. The automation of the colposcopy examination
process could establish a novel cervical cancer screening
model, reduce the incidence of false negatives and false
positives, and improve the accuracy of colposcopy-based
diagnoses and cervical biopsies.
13
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Parameters AI Clinician

Accuracy 81% (77–84; 98.9%)
26 datasets

74% (69–79; 97.3%)
14 datasets (P < 0.05)

Sensitivity 86% (76–92; 97.3%)
16 datasets

85% (71–93; 96.4%)
8 datasets (P < 0.05)

Specificity 83% (73–90; 97.8%)
16 datasets

67% (46–83; 97.1%)
8 datasets (P < 0.05)

Positive predictive value 82% (74–89;
98.6%)
16 datasets

76% (60–89; 99.2%)
8 datasets (P < 0.05)

Negative predictive
value

80% (69–89;
98.9%)
16 datasets

75% (58–89; 99.0%)
8 datasets (P < 0.05)

Clinician, experienced colposcopist. Values in parentheses are 95% confidence
interval; I2.

Table 3: Summary of pooled rates for colposcopy.
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To date, there are no established guidelines for the
application of AI-assisted cervical cytology screening
and colposcopy. Numerous previous studies have
demonstrated that AI has acceptable performance in
both cervical cytology screening and colposcopy. How-
ever, no relevant meta-analysis has been conducted until
now. In our meta-analysis, we found that AI achieved a
high accuracy rate in cervical cytology screening. Addi-
tionally, AI outperformed experienced colposcopists in
terms of diagnostic accuracy. Given that colposcopy re-
lies heavily on subjective experience, and considering
the shortage of experienced cytopathologists and colpo-
scopists in developing countries, as well as the lack of
relevant training and quality control, the diagnostic
Fig. 7: The diagnostic sensitivity and specificity of AI in colposcopy were as
lines indicate the pooled estimates. TP, true positive; FN, false negative;
accuracy of cervical biopsy in detecting CIN is reported
to be relatively low, ranging from 30% to 70%, especially
in LMICs. This challenge could hinder the achievement
of the global goal of eliminating cervical cancer by 2030.
Policymakers should recognize the importance of AI in
bridging the healthcare gap between developed and
developing countries and its significant role in
improving cervical cancer screening processes in
developing nations.

In our meta-analysis, we identified varying levels of
heterogeneity and potential bias among the included
studies, necessitating careful interpretation of the re-
sults. The Deeks’ funnel plot indicated no evidence of
publication bias for AI-assisted colposcopy or clinician-
performed colposcopy; however, publication bias was
observed in AI-assisted Pap smears and AI-assisted
TCT. To evaluate the robustness of our findings, we
employed the leave-one-out method for sensitivity
analysis, confirming that no single study significantly
influenced the overall results. The application of the
trim-and-fill method within the random-effects model
indicated a minimal impact from publication bias,
further reinforcing our conclusions. Heterogeneity pri-
marily arose from factors such as sample size and the
definition of ground truth in AI-assisted TCT, while
intervention type contributed to heterogeneity in AI-
assisted colposcopy. Quality assessment using the
QUADAS-2 tool revealed risks associated with case se-
lection; however, no studies exhibited a high risk of bias
across multiple domains. Additionally, the evidence was
evaluated using the GRADE system, resulting in an
sessed through a meta-analysis of 15 included studies. Dashed vertical
FP, false positive; TN, true negative.

www.thelancet.com Vol 80 February, 2025
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Fig. 8: Diagnostic accuracy of clinicians in colposcopy. A meta-analysis of 13 included studies assessed clinicians’ diagnostic accuracy in col-
poscopy, with solid vertical lines indicating the pooled estimates. Clinicians, experienced colposcopists.

Fig. 9: The diagnostic sensitivity and specificity of clinicians in colposcopy were analyzed in a meta-analysis of eight included studies, with
dashed vertical lines marking the pooled estimates. TP, true positive; FN, false negative; FP, false positive; TN, true negative; Clinicians,
experienced colposcopists.
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Fig. 10: A random-effects forest plot illustrating the comparative diagnostic accuracy of AI models vs. clinicians in colposcopy. This plot
highlights the differences in performance between AI-based models and human clinicians in accurately diagnosing conditions through col-
poscopy. OR, odds ratio; Clinicians, experienced colposcopists; AI, artificial intelligence.
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overall quality rating of moderate. Overall, addressing
heterogeneity and bias is crucial for ensuring the reli-
ability and applicability of our findings in real-world
clinical settings.

This is the first systematic review and meta-analysis
to comprehensively evaluate the performance of AI-
assisted cervical cytology screening and colposcopy.
This study incorporated a large integrated sample size,
covered various AI algorithms, and compared the per-
formance of AI-assisted colposcopy with that of
clinician-performed colposcopy. It also analyzed the
ability of AI to grade LSIL+ and HSIL+ and compared
the diagnostic efficiency of AI across countries with
different development levels. However, several limita-
tions exist. First, the majority of studies utilized small
sample sizes, retrospective data, and single-center
datasets to validate AI systems, and prospective studies
and external validation are lacking. Second, owing to the
small sample sizes, most studies were underpowered in
terms of the primary outcomes. Some algorithms used
in these studies are highly unstable, meaning that slight
changes in the data can significantly alter the decision-
making process. Moreover, there is a concern
regarding overfitting, where models perform excep-
tionally well on training data but fail to generalize
effectively to new, unseen data, undermining their real-
world applicability. Third, the datasets used may pri-
marily originate from specific regions or certain types of
healthcare institutions, lacking broad representation
across different races, ages, and geographic areas.
Fourth, the standards and annotation methods used in
different studies are not uniform, potentially leading to
poor comparability of results. Fifth, some studies may
not have provided detailed descriptions of the technical
specifics and parameter settings used, making the
results difficult to replicate and verify. Finally, these
trials lacked statistical analysis of the cost-effectiveness
and diagnostic efficiency of AI.

Despite the superior performance of AI-assisted
cervical cytology screening and colposcopy, several
challenges need to be addressed in future research.
First, more multicentre, large-sample prospective
studies are needed to internally and externally validate
AI performance. Second, AI algorithms typically require
millions of observations to achieve acceptable perfor-
mance levels. Future research should focus on the
standardization, authenticity, and accuracy of data
collection. Third, given the diversity of AI algorithms,
improving the compatibility of AI software is crucial.
Fourth, further enhancing the diagnostic performance
of AI to reduce misdiagnosis and missed diagnosis rates
is essential. Additionally, varying prevalence rates of
abnormalities across different populations can signifi-
cantly affect the utility and predictive value of AI
models, making it important to contextualize AI per-
formance in low-prevalence settings. Moreover,
enriched datasets may lead to inflated performance
metrics, highlighting the importance of external valida-
tion for assessing model robustness in real-world
screening settings. Addressing the challenges of data
scarcity and model validation will ensure the reliability
and practicality of AI in diagnosing rare cases. Fifth, to
ensure the ethical, legal, and effective clinical applica-
tion of AI in medicine, it is crucial to develop regula-
tions, address ethical concerns such as data privacy and
algorithm fairness, and establish AI image cloud plat-
forms to enhance diagnostic support, improve clinician
skills, and expand healthcare access in resource-limited
areas. Finally, improving research on health economics
and the diagnostic efficiency of AI is essential.
www.thelancet.com Vol 80 February, 2025
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AI demonstrates high accuracy, sensitivity, and
specificity in cervical cytology screening and colposcopy.
Notably, AI has superior accuracy in colposcopic exam-
inations compared with experienced colposcopists. The
analysis of data from both developed and developing
countries highlights the potential clinical significance of
AI in improving cervical cancer screening performance
in LMICs, thereby accelerating the elimination of cer-
vical cancer worldwide. We urge clinicians and public
health program designers to be aware of the remarkable
diagnostic accuracy of AI and its ability to assist
healthcare professionals, especially in LMICs with
limited healthcare resources.
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