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Abstract
Background: Few treatment options for alcohol use disorders (AUDs) exist and more are critically needed. Here, we assessed 
whether trace amine associated receptor 1 (TAAR1), a modulator of brain monoamine systems, is involved in the behavioral and 
reinforcement-related effects of ethanol and whether it could potentially serve as a therapeutic target.
Methods: Wild-type (WT) and TAAR1 knockout (KO) mice (75% C57J/BL6 and 25% 129S1/Sv background) were compared in tests 
of ethanol consumption (two-bottle choice [TBC]), motor impairment (loss of righting reflex, [LORR], locomotor activity) and ethanol 
clearance (blood ethanol level [BEL]).
Results: As compared with WT mice, KO mice displayed (1) significantly greater preference for and consumption of ethanol in a 
TBC paradigm (3%–11% vol/vol escalating over 10 weeks), with no significant difference observed in TBC with sucrose (1%–3%); 
(2) significantly greater sedative-like effects of acute ethanol (2.0 or 2.5 g/kg, intraperitoneal [i.p.]) manifested as LORR observed at 
a lower dose and for longer time, with similar BELs and rates of ethanol clearance; and (3) lower cumulative locomotor activity over 
60 minutes in response to an acute ethanol challenge (1.0–2.5 g/kg, i.p.).
Conclusions: The present findings are the first to implicate TAAR1 in the behavioral and reinforcement-related effects of ethanol and 
raise the question of whether specific drugs that target TAAR1 could potentially reduce alcohol consumption in humans with AUDs.
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Introduction
Along with cognitive, behavioral, and spiritual 
approaches, medications are used to assist in reduc-
ing alcohol consumption or craving during abstinence. 
Three medications are approved in the United States for 
treating alcoholism. These are: (1) disulfiram, an acet-
aldehyde dehydrogenase blocker that causes an adverse 
reaction to alcohol due to accumulation of acetalde-
hyde; (2) naltrexone, a substituted oxymorphone that 
functions as an opioid receptor antagonist. Naltrexone 
reduces the desire for alcohol and helps some motivated 
problem drinkers stay sober; and (3) acamprosate, a 
drug that alters excitatory activity of NMDA receptors. 
Acamprosate reduces the physical distress and emo-
tional discomfort of craving. Each of these drugs have 
variable effectiveness and acceptance levels within pop-
ulations and are used by a minority of people harboring 
a medical diagnosis of alcoholism. Additionally, cur-
rently available medications are prescribed to individu-
als who have already stopped drinking and are trying to 
maintain alcohol abstinence. There are no medications 
that are prescribed for people who are actively drinking 
alcohol yet want to stop drinking. Accordingly, more 
and better treatment options for alcoholism and preven-
tion of AUDs is a major objective.

Trace amine associated receptor 1 (TAAR1) is a G 
protein–coupled receptor that is expressed in monoam-
inergic brain regions implicated in the reward pathway, 
including the nucleus accumbens, ventral tegmental 
area, and substantia nigra.1–3 TAAR1 is activated by a 
wide spectrum of endogenous ligands including clas-
sic biogenic amines, trace amines, and thyronamines 
and is also a direct target of psychostimulant drugs of 
abuse including amphetamine, methamphetamine, and 
3,4-methylenedioxy-N-methamphetamine.3–5 Receptor 
activation results in cAMP/PKA and Ca++/PKC sig-
naling and phosphorylation of PKA and PKC.1,4,6,7 
In monoaminergic synaptosomes, cellular signaling 
pathways elicited from TAAR1 activation modulate 
dopamine transporter (DAT), norepinephrine trans-
porter (NET), and serotonin transporter (SERT) kinetic 
activity (inhibit uptake and promote efflux) as well as 
DAT internalization.7–10 In brain slices of the ventral 
tegmental area and dorsal raphe nucleus, TAAR1 acti-
vation inhibits the firing frequency of dopaminergic 
and serotonergic neurons, respectively.11,12

Given the ability of TAAR1 to modulate dopamine 
as well as other monoamines8,13 and the involvement 

of dopamine as well as other monoamines in alcohol 
abuse,14,15 this study tested the hypothesis that TAAR1 
is involved in the behavioral and reinforcement-related 
effects of ethanol. The effects of ethanol in wild-type 
(WT, 75% C57J/BL6 and 25% 129S1/Sv) and con-
genic TAAR1 knockout (KO) mice were compared in 
tests of ethanol consumption (2-bottle choice [TBC]), 
motor impairment (loss of righting reflex [LORR]), 
locomotor activity and the ethanol clearance (blood 
ethanol levels [BEL]). The findings provide the first 
evidence that the TAAR1 receptor is a modulator of 
ethanol responsiveness and ethanol-related behaviors 
and suggest that TAAR1-targeted drugs be investi-
gated as potential therapeutics for combating AUDs.

Materials and Methods
Subjects
Homozygous male and female WT (+/+) and KO 
(-/-) mice (strain background: 75% C57BL/6J and 
25% 129S1/Sv) were maintained on a 12-hour light/
dark lighting schedule at a room temperature of 
22 °C ± 1 °C with food and water available ad libitum. 
All experiments were conducted during the middle 
hours of the light cycle. The KO mice were derived 
from heterozygous breeding pairs, originally gifted 
from Lundbeck Research USA, Inc (Paramus, NJ). 
Their origination has been previously described.16 
Briefly, KO mice lack the coding sequence of the 
TAAR1 gene (which is a single exon) as well as 1.0 
kilobase (kb) of upstream sequence and 1.3 kb of down-
stream sequence. The deleted sequence was replaced 
with a neo cassette in reverse orientation. Accordingly, 
the KO mice do not express TAAR1 protein. Mice 
were generally 8 to 12 weeks old at the time of study, 
with the exception of LORR and BEL measurements 
that used some mice that were 24 weeks old at the time 
of study. Due to funding limitations, we used available 
populations of mice for the different behavioral testing 
paradigms, which were performed sequentially over 
time. In this regard, we controlled for age and sex 
within each behavioral test to the best of our abilities. 
All animal care was in accordance with the Guide for 
the Care and Use of Laboratory Animals (National 
Research Council, National Academy Press, 1996) and 
all procedures were conducted in accordance with the 
Animal Experimentation Protocol #04184 approved 
by the Harvard Medical Area Standing Committee on 
Animals.
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Solutions
For 2-bottle choice, 200-proof ethanol (Pharmco-
AAPER, Brookfield, CT) was diluted into tap water 
at concentrations ranging from 3% to11% (vol/vol). 
Sugar (Office Snax, Hinsdale, IL) was dissolved into 
tap water at concentrations of either 1% or 3% (wt/
vol), and 200-proof ethanol was diluted into saline at 
20% vol/vol for i.p. injections.

Equipment
For 2-bottle choice, large breeding cages (10 × 18 in) 
were equipped with tops that were custom modified 
to allow access to two 50 mL drinking tubes equipped 
with Lixit valves (Med Associates Inc., St. Albans, 
VT). For LORR assessments, a custom-designed 
trough was made of metal shaped in an upside down 
W with a sheet of Plexiglas covering it. Locomotor 
assessments were conducted in ventilated, sound-
attenuated chambers with white background noise 
(MED Associates, St. Albans, VT). The square open-
field plexiglas arena (11  cm × 11  cm) within each 
chamber was equipped with 3 rows of infrared light-
sensitive photocells mounted at 40, 115, and 195 mm 
above the floor. All locomotor assessments were 
performed under illuminated conditions. An Analox 
AM1 series analyzer (Analox Instruments USA Inc., 
Lunenburg, MA) was used to determine BELs. Each 
apparatus was sanitized between animals.

The 2-bottle choice: ethanol versus 
water
The 2-bottle choice procedures allow for measurement 
of ethanol preference and intake under conditions of 
voluntary consumption. In our studies, a counterbal-
anced procedure was employed. Naïve female mice 
(approximately 20–24 g) were pair housed and were 
8 to 12 weeks old at study initiation (n = 9 cages per 
genotype). Mice were allowed to drink from either 
a drinking tube filled with tap water or a drinking 
tube filled with escalating concentrations (3%, 5%, 
7%, 9%, and 11% vol/vol) of ethanol. Drinking tubes 
were set up Monday and made continuously avail-
able through Friday. Tubes were weighed Monday, 
Wednesday, and Friday to determine the weight 
of each liquid consumed. Fluids in the tubes were 
refreshed and tube positions oscillated on Wednes-
days to control for side biases. The mice remained 
at each concentration of ethanol for 2 5-day testing 

sessions, with a single water bottle that was oscillated 
each weekend (for a total of 2 weeks), after which 
they would advance to the next highest concentration 
of ethanol. For each 2-week period, an average num-
ber of grams per day per cage was obtained for both 
the ethanol bottle and the water bottle, and the per-
cent drinking from the ethanol bottle relative to the 
total amount of liquid consumed was calculated.

Two-bottle choice: sucrose solution 
versus water
To determine the generality of any effects observed 
with ethanol, preference for a nonethanol caloric bev-
erage was also assessed. Age-matched, naïve, and 
paired female mice were assessed in parallel using 
the same paradigm as above with escalating concen-
trations (1% and 3% w/v) of sucrose solution versus 
water (n = 4 cages per genotype).

Loss of righting reflex (LORR)
Duration of LORR is typically thought to measure the 
anesthetic or sedative actions of ethanol. Here, naïve 
male and female WT and KO mice (2.5–6  months 
of age) were injected with ethanol. Three doses of 
ethanol were tested: (1) 18 (6 male and 3 female WT 
and KO) mice were assessed following 1.5 g/kg, i.p.; 
(2) 22 (7 female and 4 male WT, 5 female and 6 male KO) 
mice were assessed following 2.0 g/kg, i.p.; and (3) 38 
(7 female and 12 male WT and KO) mice were assessed 
following 2.5 g/kg, i.p. Each mouse was placed into a 
clean holding cage for 1 minute. Mice were then placed 
in the supine position in a V-shaped trough 2 times con-
secutively every minute to assess ability to right. LORR 
was defined as the time interval spanning from the ini-
tiation of an inability to right for at least 1 full minute 
until the mouse could right 2 times consecutively. If no 
LORR was observed, the test concluded at 20 minutes.

Locomotor activity
Locomotor activity in naïve male and female WT and 
KO mice (11–13 weeks old) was assessed following 
i.p. administration of saline, 1.0, 1.5, 2.0, or 2.5 g/kg 
ethanol (n = 4 per genotype, per dose, and per sex). 
Following a 20 minute habituation to the test cham-
ber apparatus, mice were assessed for a 1-hour period. 
Additionally, a group of older WT and KO mice 
(9 months old, n = 8 per genotype) that had 2 previous 
exposures to ethanol were also assessed following a 
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2.0 g/kg, i.p. dose and 15 minutes of habituation, for 
a 2-hour period (Supplemental Fig. 1).

Determination of BELs
We assessed BEL in male and female WT and KO 
mice (approximately 50–50  split, as indicated; 
2–8  months old) treated with 2.5  g/kg ethanol 
(i.p.). At selected time points (2, 5, 10, 20, 30, 45, 
180 minutes, 19 hours and 24 hours), animals were 
euthanized and trunk blood was collected for deter-
mination of BELs. Blood samples were immediately 
centrifuged at 3200 rpm for 8 to 12  minutes. The 
plasma was drawn off, transferred to polypropylene 
tubes, and then frozen until analysis. Triple determi-
nations of BALs were conducted using a rapid high 
performance plasma alcohol analysis using alcohol 
oxidase with an AM1 series analyzer and Analox Kit 
GMRD-113 (Analox Instruments USA, Lunenberg, 
MA).17 This process detects BEL ranges from 0 to 
350 mg/dL using an internal standard of 100 mg/dL.

Results
Two-bottle choice
We assessed whether WT and KO mice differed in 
their preference for drinking ethanol using a two-
bottle choice paradigm. WT and KO mice differed 
in the percent of total drinking that was from the 
ethanol bottle (Fig.  1A). Overall, KO mice drank a 
significantly greater volume of ethanol solution versus 
water as compared with WT mice (2-way analy-
sis of variance [ANOVA], F1,16 = 23.59, P , 0.001). 
Genotype accounted for 19.85% of the total variance 

in bottle choice. The magnitude of this difference was 
dependent on ethanol concentration, which also had 
overall significance (2-way ANOVA, F4,64  =  19.09, 
P ,  0.001, Bonferroni t tests, P ,  0.001 at the 5% 
ethanol concentration; P , 0.05 at 3% and 7% ethanol 
concentrations), which accounted for 34.38% of the 
variance. This choice behavior resulted in the KO mice 
consuming more total ethanol per day (on average) 
than WT mice at every concentration tested (Table 1).

We also analyzed the total amount of liquid con-
sumed by the WT and KO mice during each 2-week 
interval as the concentration of ethanol solution avail-
able increased. WT and KO mice differed in the amount 
(grams) of total liquid (ethanol plus water) that they 
consumed (Fig.  1B). Overall, WT mice consistently 
drank more total liquid than KO mice (2-way ANOVA, 
F1,16  =  6.32, P  =  0.023), with genotype accounting 
for 15.8% of the total variance. The concentration of 
ethanol solution available was also an overall signifi-
cant factor (2-way ANOVA, F4,64 = 5.12, P = 0.0012, 
Bonferroni t tests, P , 0.01 at the 5% ethanol concen-
tration), accounting for 9.66% of the total variance.

In contrast to ethanol two-bottle choice, WT and 
KO mice showed no significant difference in the per-
cent of total drinking that was from the sucrose bottle 
in a sucrose two-bottle choice experiment, at either 
1% or 3% concentrations of sucrose (Fig. 1C).

Loss of righting reflex (LORR)
No mice showed LORR following 1.5  g/kg etha-
nol (n = 9 per genotype, Fig. 2A). At 2.0 g/kg, 5 of 
11 KO mice showed LORR that lasted between 25 to 
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110 minutes, whereas none of the 11 WT mice dis-
played LORR (n  =  11 per genotype, Fig.  2B). At 
2.5  g/kg, all mice all displayed LORR, and LORR 
in KO mice continued as much as 40 minutes longer 
than any WT tested (n = 19 per genotype, Fig. 2C).

Locomotion
Naïve male and female WT and KO mice were admin-
istered saline or a 1.0  g/kg, 1.5  g/kg, 2.0  g/kg, or 
2.5 g/kg i.p. injection of ethanol (20% vol/vol), and 
locomotor activity was measured for 60  minutes in 
an activity chamber at 5-minute intervals. There were 
no overall significant differences between KO and 
WT mice of either sex at any of the doses of ethanol 
tested, but there was a significant difference between 
measures at different time points (2-way ANOVA per-
formed on each line graph in Fig. 3: genotype, ns; time 
points, F12,72 = 2.77 to 12.60, P , 0.01 in each analysis, 
Bonferroni t tests as indicated in Fig. 3 line graphs). 
Cumulative counts over the 60-minute test interval 

were also analyzed (Fig. 3, bar graphs). Female KO 
mice showed significantly lower levels of total loco-
motion over the 60-minute test period following expo-
sure to 2.5 g/kg ethanol (t test, P , 0.01, Fig. 3E), as 
did male KO mice following exposure to 1.0 g/kg eth-
anol (t test, P , 0.01, Fig. 3B). Also, when male and 
female data were combined and analyzed, KO mice 
showed significantly lower levels of total locomotion 
over the 60-minute test period following exposure to 
2.5 g/kg ethanol (t test, P , 0.01, Fig. 3E). Lastly, an 
additional group of WT and KO mice (n = 6 male and 
2 female for each genotype) which had been exposed 
for the first time to ethanol on each of the 2 previous 
days was tested on the third day with a 2.0 g/kg dose 
of ethanol (i.p.) and locomotor activity was measured 
for 120  minutes in an activity chamber at 5-minute 
intervals (Supplemental Fig.  1). Overall, a similar 
pattern was observed, with KO mice showing signifi-
cantly lower locomotor activity as compared with WT 
mice (2-way ANOVA, genotype and time: genotype, 
F1,14 = 5.85, P , 0.03; time, F24,336 = 11.73, P , 0.001; 
Bonferroni t tests, as indicated, P , 0.01).

Blood ethanol level (BEL)
To investigate whether WT and KO mice differ in 
their ability to metabolize ethanol, BELs were mea-
sured following injection of 2.5 g/kg ethanol (i.p.) in 
separate groups of WT and KO mice and then eutha-
nized at different time points (0.03–24 hours postin-
jection; number and sex of mice are matched between 
genotypes and are indicated in Fig. 4, top). Data were 
analyzed using noncompartmental pharmacokinetic 
analysis (PKSolver, see Zhang et  al).18 All pharma-
cokinetic parameters between genotypes were almost 

Table 1. Average ethanol consumed per day during each 
2-week period of ascending concentrations of ethanol 
availability.

% ethanol Genotype g/kg/day/mouse
3% WT 3.04 ± 0.73

KO 4.85 ± 0.47
5% WT 6.35 ± 1.21

KO 10.13 ± 0.87
7% WT 7.96 ± 1.65

KO 12.03 ± 1.49
9% WT 5.74 ± 1.08

KO 9.56 ± 1.78
11% WT 3.2 ± 1.19

KO 5.32 ± 1.54
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Figure 2. Loss of righting reflex (LORR). Naïve WT (solid lines) and KO (dotted lines) mice were treated with either a 1.5 g/kg, 2.0 g/kg, or 2.5 g/kg dose 
of ethanol (i.p.) and tested for LORR. (A) At 1.5 g/kg ethanol, no mice showed LORR (n = 9 per genotype). (B) At 2.0 g/kg, 5 of 11 KO showed LORR that 
lasted between 25 and 110 minutes, whereas none of 11 WT displayed LORR. (C) At 2.5 g/kg, 19 KO and 19 WT mice all displayed LORR, and LORR in 
KO mice continued as much as 40 minutes longer than any WT tested.
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identical (see Fig. 4, bottom), including elimination 
half-life (t1/2), maximal concentration (Cmax), area 
under the curve from 0 to last time (AUC0-t), clear-
ance rate (Cl), volume of distribution based on termi-
nal slope (Vz) and mean residence time (MRT).

Discussion
The present study demonstrates that deletion of 
TAAR1 in mixed-strain (background 75% C57BL/6J 
and 25% 129S1/Sv) mice results in adult KO mice 
that show a greater preference for ethanol and 
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Figure 3. Locomotion. Male and female WT (solid lines and bars) and KO (dotted lines and striped bars) were administered saline (A), 1.0 g/kg (B), 
1.5 g/kg (C), 2.0 g/kg (D) or 2.5 g/kg (E) ethanol (20% vol/vol) by i.p. injection, and locomotor activity was measured in 5-minute intervals for 60 minutes 
(n = 4 per genotype per dose). There were no overall significant differences between KO and WT mice of either sex at any of the doses of ethanol tested, 
but there was an overall significant difference between measures at different time points (2-way ANOVA, F12,72 = 2.77 to 12.60, P , 0.01 in each analysis, 
Bonferroni t tests *P , 0.05, **P , 0.01). Female KO mice showed significantly lower levels of total locomotion over the 60-minute test period following 
exposure to 2.5 g/kg ethanol (t test, **P , 0.01, row E), as did male KO mice following exposure to 1.0 g/kg ethanol (t test, **P , 0.01, row B). With both 
sexes combined, KO mice showed significantly lower levels of total locomotion over the 60-minute test period following exposure to 2.5 g/kg ethanol (t test, 
**P , 0.01, row E).
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consume more ethanol than their WT counterparts. 
The TAAR1  KO mice in this study also had a 
greater sensitivity to the sedative effects of ethanol 
and showed a longer duration of motor impairment 
following ethanol exposure, yet KO and WT mice 
showed similar ethanol pharmacokinetics. Consistent 
with this observation, a greater reduction in locomo-
tion in response to ethanol was also observed in the 
KO mice as compared with WT mice. These findings 
are the first to implicate a role for TAAR1  in the 
behavioral and reinforcement-related effects of etha-
nol and raise the question of whether specific drugs 
that target TAAR1 could potentially reduce alcohol 
consumption in humans with AUDs.

In the absence of any overt behavioral abnormali-
ties under baseline conditions, KO mice show a phar-
macogenic phenotype of an enhanced locomotive 
response to amphetamine and methamphetamine, 
coincident with an increase in the release of biogenic 
amines.2,16,19 Consistent with the augmented locomotor 
response, KO mice acquire methamphetamine-induced 

conditioned place preference (CPP) earlier than 
WT mice and retain CPP longer during extinction 
training.19 Notably though, both genotypes display 
similar levels of morphine-induced CPP. These data 
suggest that TAAR1 plays a modulatory role in the 
behavioral sensitization to amphetamine-based 
psychostimulants and a selective role in the condi-
tioned reinforcing effects of methamphetamine versus 
morphine. This differential effect may involve dop-
amine in that dopamine released by amphetamine (or 
methamphetamine) interacts with dopamine D1 (and 
D2) receptors to establish CPP,20 whereas D1 recep-
tors are reportedly not required for morphine-induced 
CPP.21 In this regard, other drugs of abuse also involve 
dopamine receptor-dependent reward mechanisms, 
including ethanol. Both dopamine D1 and D2 receptor 
mechanisms have been implicated in ethanol-seeking 
behavior in mice.22 Dopamine D3 receptors are also 
implicated in ethanol seeking and relapse behaviors 
in mice and rats23–25 as well as in ethanol preference 
and intake in alcohol-preferring in rats.26 Collectively, 
and in the context of the present study, the pharma-
cogenic phenotypes observed in KO mice along with 
the ability of TAAR1 activation to regulate dopamine 
suggest that TAAR1 is a modulator of dopamine-
mediated rewarding effects of drugs of abuse. Nota-
bly, this includes amphetamine-like psychostimulants 
such as methamphetamine, which directly binds to 
the receptor, as well as ethanol, which may indirectly 
alter TAAR1 signaling via its ability to affect levels of 
endogenous TAAR1 agonists (eg, dopamine, but also 
trace amines). Additionally, TAAR1-mediated effects 
on NET and SERT function suggest a pharmacology 
for the TAAR1 receptor that is unique and distinct 
from other monoamine receptors. In this regard, the 
present study warrants further investigation of TAAR1 
as a potential therapeutic target for addictive disor-
ders generally and for AUDs specifically that may 
function in a distinctly different manner than current 
pharmacotherapies.9,10,13,27

TAAR1 was discovered in 2001,1,4 but specific 
drugs that target the receptor did not come along until 
recently.11,28–32 The discovery of compounds that spe-
cifically target TAAR1 is now enabling deeper inves-
tigations into the role of TAAR1  in the rewarding 
effects of drugs of abuse. For example, Revel et al29 
showed that the TAAR1 agonist RO5166017  inhib-
ited the firing frequency of dopamine and serotonin 
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Figure 4. Blood ethanol level (BEL). We assessed BELs in KO and WT 
mice (n = 4–11 mice per time point, as indicated) that were administered 
a 2.5 g/kg dose of ethanol (i.p.). Pharmacokinetic analysis showed no dif-
ferences between genotype for any relevant parameter associated with 
ethanol metabolism.
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neurons in regions where TAAR1 is expressed (eg, 
VTA and dorsal raphe nucleus) and blocked dop-
amine-dependent hyperlocomotion in cocaine-treated 
mice and DAT knockout mice as well as hyperactivity 
induced by an NMDA antagonist. Mice injected with 
cocaine displayed elevated locomotor activity, and 
RO5166017  given orally prevented this effect in a 
dose-dependent manner. RO5166017 alone had little 
or no effect on locomotion. In KO mice, cocaine ele-
vated locomotor activity to a similar extent as in WT 
mice, but only in WT mice did RO5166017 prevent 
the cocaine-induced hyperlocomotion. Interestingly, 
RO5166017 also inhibited stereotypies induced by 
cocaine in WT mice, and this effect was lost in the 
KO mice. Lastly, the first potent and selective TAAR1 
partial agonist, RO5203648, specifically blocked 
cocaine self administration in rats.30 The drug did not 
significantly alter operant responding for 10% sucrose 
or increases in the reinforcing effectiveness of sucrose 
under a progressive ratio schedule of reinforcement, 
suggesting that a TAAR1 partial agonist does not 
impair motor or motivational processes. Accordingly, 
compounds that target TAAR1 are capable of modify-
ing self administration of cocaine, and accordingly, in 
the context of the present data implicating a role for 
TAAR1 in modulating ethanol-induced behaviors, it 
is reasonable to speculate that these compounds may 
be efficacious in altering self administration of etha-
nol as well.

It is notable that TAAR1 mRNA and protein have 
been detected in a variety of brain areas including 
many of the areas that are critical to the “alcohol” 
circuitry, such as the nucleus accumbens, amygdala, 
hippocampus, substantia nigra, ventral tegmental 
area, and raphe nuclei.1–3,10 While this receptor has 
been studied extensively in the monoamine system, 
it is largely unstudied in other brain regions. TAAR1 
agonist treatment of striatal or thalamic synapto-
somes promotes changes in DAT/SERT and NET 
kinetic activity, respectively, by promoting PKA and 
PKC phosphorylation cascades,9,10 so it is likely that 
TAAR1 expressed in other brain regions can also 
promote PKA and PKC signaling cascades upon 
stimulation.

In summary, this is the first study to investigate the 
involvement of TAAR1 in the biological and behav-
ioral effects of ethanol. The enhanced preference, 
consumption, and sedative effects of ethanol observed 

in KO mice demonstrate a role for TAAR1 in modulat-
ing the behavioral and reinforcement-related effects of 
ethanol. These findings suggest that TAAR1 may be 
part of a novel mechanism contributing to the effects 
of ethanol in the brain and that TAAR1-targeted com-
pounds may have potential as candidate medications 
for AUDs. Defining a role for TAAR1 in modulating 
the effects of ethanol can have a large potential impact. 
If efficacious, TAAR1-targeted drugs would function 
through a mechanism distinct from other clinically 
available drugs used for treating alcoholism/AUDs or 
those that are in preclinical or clinical trials. Further, 
they may have fewer side effects, in that they may 
regulate brain monoamines without binding directly 
to monoamine transporters and/or classic monoamine 
receptors.8,13,27
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Figure S1. Locomotion. An additional group of WT and KO mice (n = 6 male and 2 female for each genotype) which had been exposed for the first time 
to ethanol on each of 2 days prior days was tested on the third day with a 2.0 g/kg dose of ethanol and locomotor activity was measured for 120 minutes 
in an activity chamber at 5-minute intervals. KO mice showed significantly lower locomotor activity as compared with WT mice (2-way ANOVA, genotype 
and time: genotype, F1,14 = 5.85, P , 0.03; time, F24,336 = 11.73, P , 0.001; Bonferroni t tests **P , 0.01).
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