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Exploring the mechanical 
and morphological rationality 
of tree branch structure based 
on 3D point cloud analysis 
and the finite element method
Satoru Tsugawa1,2*, Kaname Teratsuji3, Fumio Okura4, Koji Noshita5,6, Masaki Tateno7, 
Jingyao Zhang3 & Taku Demura2

Trees are thought to have acquired a mechanically optimized shape through evolution, but a scientific 
methodology to investigate the mechanical rationality of tree morphology remains to be established. 
The aim of this study was to develop a new method for 3D reconstruction of actual tree shape and 
to establish a theoretical formulation for elucidating the structure and function of tree branches. We 
obtained 3D point cloud data of tree shape of Japanese zelkova (Zelkova serrata) and Japanese larch 
(Larix kaempferi) using the NavVis Lidar scanner, then applied a cylinder structure extraction from 
point cloud data with error estimation. We then formulated the mechanical stress of branches under 
gravity using the elastic theory, and performed finite element method simulations to evaluate the 
mechanical characteristics. Subsequently, we constructed a mechanics-based theoretical formulation 
of branch development that ensures constant bending stress produces various branching patterns 
depending on growth properties. The derived theory recapitulates the trade-off among branch growth 
anisotropy, stress-gravity length, and branch shape, which may open the quantitative way to evaluate 
mechanical and morphological rationality of tree branches.

Tree morphology is strongly influenced both by self-weight as it grows older and by environmental conditions 
such as wind1,2, snow3, and light4. Since the surrounding environment changes over time, trees have the potential 
to dynamically optimize their shape to deal with mechanical stress. Similar to Wolff ’s law, where mechanical 
feedback reinforces bone density5, trees may reinforce their bodies in response to mechanical stress or loading, 
as exemplified by trunk bending and thigmotropism6. Furthermore, tree shape also depends on recovery from 
traumas, such as branch and trunk breaks7, hollow trunk8, wood decay9, cracks6, trimming10, and self-pruning11,12. 
Thus, tree shape is thought to be determined simultaneously by environmental responses and by self-optimiza-
tion. However, a quantitative evaluation of such mechanisms has yet to be conducted, mainly because 3D tree 
morphology is geometrically complex and technically hard to quantify.

With emerging developments in computational technologies, the speed and accuracy of 3D laser scanners to 
obtain detailed point cloud data have improved13. 3D reconstruction of the skeletal structure of bare trees (i.e., 
lacking foliage) from 3D scans has been well studied using skeletonization techniques14–16, which can recover 
3D structures representing actual tree shapes. However, for heterogeneous or incomplete 3D scans, it is better to 
fit the data to cylindrical structures rather than conducting naive skeletonization because the cylindrical fitting 
can be done only with a local heterogeneous or incomplete point cloud17. Cylinder-based approaches are often 
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used in engineering18–20 and in architecture21,22, and a recent method for tree skeletal extraction using cylinder 
fitting shows promising results for heterogeneous point clouds23.

Leveraging the recent growth of 3D reconstruction methods to recover accurate tree structures from 3D point 
clouds, we aimed to unveil the relationship between the morphological and mechanical properties of trees. First, 
we hypothesized that the branch-growing process is mechanically unstable in terms of compressive and tensile 
stresses, and verified it by performing mechanical simulations using the finite element method, which is a similar 
approach to the recent works24,25. Using the mechanical results, we constructed a theoretical formulation of tree 
branch depending on mechanics, shape, and growth based on the axiom of constant stress6,26. The basic idea 
behind our modeling is that the tree branch experiences mechanical constraints, which affect its shape and/or 
growth. Information on this type of constraint and the interactions among mechanics, shape, and growth, may 
provide a solid platform for investigating the mechanical and morphological rationality of tree shape.

This paper is organized as follows. As examples of different types of tree shapes, we have selectively chosen 
a cone-shaped Japanese zelkova (Zelkova serrata) and a spreading-shaped Japanese larch (Larix kaempferi). 
The structures (skeletons with branch thickness) of the two tree shapes were extracted using a cylinder-based 
3D reconstruction method. Subsequently, the statistical distributions of the radius, branch-opening angle, and 
branch-rotating angle of the cylinders (branch axes) were obtained. Using the morphological features, we used 
the finite element method to detect mechanical stress depending on the branch inclination angle, branch length, 
and branch radius. Consistent with the stress distribution, we also constructed a mechanics-based theoretical 
formulation of branching structure to demonstrate the possibility that the tree branch shape may result from 
the axiom of constant bending stress during development. Finally, we discuss some implications of our findings 
and possible future directions.

Results
Cylinder‑based structure extraction reveals the detailed morphology of Japanese zelkova and 
Japanese larch.  Figure 1A and B show the 3D point cloud data of Japanese zelkova and Japanese larch 
obtained by consecutive scans of the laser scanner (see Methods in details). From the point clouds, we extracted 
the skeletal structure as well as the branch thickness (Methods). Figure 1C and F depict the center of the cylin-
ders colored by their radii (i.e., branch thickness). Figure 1D and G show the skeletal structure estimated by the 
Euclidean minimum spanning tree (EMST) algorithm (see Methods) and Fig. 1E and H render the extracted 
cylinders with their thickness. From these results, we could visually confirm that the detailed morphology of 
target trees was successfully extracted from 3D point clouds.

The branch angles are different between Japanese zelkova and Japanese larch.  Based on the 
extracted cylinder structure, we quantified some characteristic features of tree branches. Here, the whole tree 
structure was not examined because of sparse data points at the tips of the branches. Instead, we quantified 
detailed morphology in the range x: [−1 : 1 ], y: [−1 : 1 ], and z: [ 0 : 5 ] (m) with the origin of coordinates as 
the base of the trunk. For the following discussions, we named the vectors along the cylinder centers as −→t  for 
trunk and −→s  for branch. More precisely, we named the whole structure of the branch as “branch” and the local 
structure of the branch as “sub-branch” (Fig. 2A). The discretization scale is denoted by d and the height of the 
base of the branch as hb . The radius of the local cylinder is defined as r . For this setting, the averaged direction of 
the branch (ADB; θb ) is defined as the direction in which the branch is inclined with the averaged angle of sub-
branches. The angle on the xy-plane is named as “rotating angle” hereafter and θ = 0 was chosen from x > 0 , 
y = 0 of the original coordinate system. The rotating angle of the sub-branch θri was then defined as the xy-angle 
of the sub-branch with the position vector of the base of the sub-branch −→ri  , and the opening angle of the sub-
branch φsi was defined as the deflection angle (bz-angle) from the axis of ADB ( b-axis) to the discretized vector 
along the local cylinder si (Fig. 2B).

As a result, we found that the ADB is very different between Japanese zelkova and Japanese larch (Fig. 2C), 
where Japanese zelkova has almost uniformly distributed angles at around 2.0 m while Japanese larch has a 
similar uniform distribution with different height (1.8–5.0 m). This indicates that the relationship between θb 
and hb differs between tree types. For the bz-angle of branching (Fig. 2D), Japanese zelkova has angles with a 
range [ π/4 : π/2 ] while Japanese larch has angles around 0 with different height (1.8–5.0 m). This indicates that 
the relationship between φs0 and hb also differs between the two tree types.

To capture a general trend of distributions of the rotating and opening angles and radii of sub-branches, we 
plotted all the data with boxplot (Fig. 2E). The opening angle φsi was significantly different with student’s t-test 
(p < 0.001) whereas the rotating angle and radius were not significantly different. For example, the trend of the 
branching pattern was inclined in Japanese zelkova with the range [ π/4 : π/2 ] (Fig. 2F and G) and that in Japa-
nese larch was almost horizontally aligned (Fig. 2H and I).

From these results, we hypothesized that the trees have different mechanical strategies that determine their 
shapes. In order to confirm this, we analyzed the mechanics of sub-branch morphology.

Mechanical stress of the sub‑branch derived from its own weight depends on the inclination 
angle of the sub‑branch.  To investigate the mechanics of sub-branch morphology, we performed the 
finite element method simulation (see Methods). We set up the 2D rectangular material under gravity with a 
fixed boundary condition on one side and a free boundary condition on the other side. With this setup, we can 
quantitatively evaluate the stress, strain and displacement of the cross section of the tree branch after the vertical 
self-weight was applied. We then systematically changed the opening angle of the sub-branch φs (Fig. 3A). In 
general, the material experiences three types of mechanical stress (bending stress, compressive or tensile stress, 
and shear stress27). Here, we only considered the mechanical stress of the sub-branch caused by its own weight. 
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The shear stress is expected to be small compared with the other two (normal) stresses assuming the length of 
the sub-branch is long enough compared to the radius. The elastic theory provides us the strain energy derived 
from the bending stress with the angle φs as Wbending =

π(ρdg)
2
d3

2E cos2φs and that derived from the compressive 
stress as Wcompress =

π(ρrg)
2
d3

2E sin2φs (Fig. 3B). To visualize these contributions, we plotted von Mises stress and 
the principal direction of stress as a function of the angle φs (Fig. 3C–G). As shown here, the sub-branch with 
angle φs = 0 similar to the Japanese larch type mainly suffers bending stress whereas the sub-branch with angle 
φs > π/4 similar to the Japanese zelkova type suffers both bending and compressive stresses.

These are the fundamental mechanical differences depending on the branch inclination angle.

Branch primary growth and secondary growth result in mechanical instability.  Next, we sys-
tematically changed the length and radius of the sub-branch d and r (Fig. 4). According to the strain energy 
formulation for bending stress and compressive stress of the sub-branch, it is expected that increases of both d 
and r result in increases in mechanical stresses. To confirm these hypotheses, we plotted von Mises stress and 
principal direction of stress as a function of d and r in Fig. 4. The sub-branch with large d exhibits a larger magni-
tude of bending and compressive stresses. The sub-branch with large r exhibits larger compressive stress whereas 
the bending stress was not influenced by this perturbation. These results indicate that the increase in length d 
results in mechanical instability from bending and compressive stresses, and on the other hand, the increase in 
radius r results in mechanical instability only from compressive stress, being consistent with the strain energy 
formulations.

To summarize the results, the branch primary growth with d is a mechanically unstable process both in 
bending and compressive stresses, and the branch secondary growth with r is a mechanically unstable process 
in compressive stress.

Figure 1.   3D reconstruction of tree shapes. (A) Japanese zelkova. Scale bar is 50 cm. Photograph was taken by 
Kaname Teratsuji (Kyoto Univ.). (B) Japanese larch. Scale bar is 50 cm. Photograph was taken by Keiji Suzuki 
(image_technology_room, IIS, Univ. Tokyo). (C, F) Extracted centers of local cylinder structures for Japanese 
zelkova (C) and for Japanese larch (F). The color shows the radius of local circle. (D, G) Extracted skeletons 
derived from the EMST algorithm for Japanese zelkova (D) and for Japanese larch (G). (E, H) Extracted 
cylinders for Japanese zelkova (E) and for Japanese larch (H).
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Theoretical formulation of branch structure based on local stress relaxation by changing its 
growth direction.  These mechanical results described above demonstrate that the branch suffers more 
stress by increasing its length and radius. It means that the branches are inherently required to deal with this 
excess stress by growth in order to avoid a crack or, in the worst case, a break. We therefore hypothesized that the 
branch may avoid this mechanical instability by changing its direction of growth to locally relax the mechanical 
stress. For branches, the bending stress should be the dominant factor, so we only considered bending stress in 
the following formulation. To consider the hypothesis, we set up a virtual growing branch in length and in radius 
(Fig. 5A). By defining the curved coordinate along branch s where s = 0 at the branch base and s = L at the 
branch tip, we defined the primary growth using L(t) and the secondary growth using r(s, t) . At the branch base, 
we used the radius r0(t) = r(s = 0, t) . We assumed that the concentrated weight is applied at the barycenter of 
the branch with x-coordinate xG . In the literature, this formulation is similar to the cost function of material 
building energy and bending strain energy of a 2D straight beam that is based on the axiom of constant bending 
stress26.

Figure 2.   Quantification of some characteristic features of branching pattern. (A) Schematic illustration of a 
trunk, branch, and sub-branch. (B) Definition of averaged direction of branch and the rotating and opening 
angles of sub-branch. (C) Height of the branch base (m) as a function of rotating angle of branch (rad.). 
(D) Height of branch base (unit m) as a function of opening angle of branch (unit rad.). (E) Boxplots of the 
distributions of the opening angles (deg.), rotating angles (deg.) and radii (m) of all the sub-branches. The 
index * means the statistical difference with student’s t-test with p < 0.001. (F, G) Examples of Japanese zelkova 
branches. (H, I) Examples of Japanese larch branches.
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Depending on the input of the branch shape function y = f (x) and growth properties of L(t) and r0(t) , we 
can evaluate the mechanical state associated with branch growth. For example, the spatio-temporal radius in a 
tapered case is defined as

where the primary growth is assumed as L(t) = GLt
β and the secondary growth at the branch base is assumed 

as r0(t) = Grt
γ . The branch tapered property from base to tip is denoted by the index α . For the case with 

α = 1.5,β = 0.25, γ = 0.5,GL = 0.8, and Gr = 0.1 , the spatio-temporal distribution of r(s, t) can be evaluated 
(Fig. 5B). In the following formulation, we set the radius spatial distribution as a constant, i.e., r(s) = r0 , because 
we did not obtain tapering information due to the restricted spatial scale.

To test the hypothesis, we assumed that the maximal bending stress at the branch base is constant during 
growth. The constant maximal bending stress can be formulated as

r(s, t) = r0(t)
(r0(t)+ s)−α

− (r0(t)+ L(t))−α

r0(t)
−α

− (r0(t)+ L(t))−α .

Figure 3.   Mechanical stress derived from elastic theory and finite element method simulations depending on 
the sub-branch opening angle φs . (A) Schematic illustration of sub-branch. (B) Theoretically estimated value 
of strain energy for bending (red), for compression (blue) and total of them (purple). (C–G) The mechanical 
stress vector field with tensile and compressive stress components (left or bottom) and von-mises stress 
distribution (right or top) are shown for φs = 0 (C), φs = π/6 (D), φs = π/4 (E), φs = π/3 (F), and φs = π/2 
(G).



6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:4054  | https://doi.org/10.1038/s41598-022-08030-5

www.nature.com/scientificreports/

where the self-weight is w(t) = ρg
∫ L(t)
0

πr(s, t)2ds , and the section modulus is Z(t) = πr0(t)
3/4 . In the case 

of a non-tapered branch with r(s, t) = r0(t),

As a result, the x-coordinate at the barycenter xG(t) is given by,

On the other hand, the index xG(t) as a geometric definition can be written as

Therefore, the governing equation of branch shape x(s) can be given as,

In the simple case with x(s) = s corresponding to f (x) = 026, the equation becomes L(t)
2

2 =
K1Gr
4ρg tγ , which 

results in

These are the governing growth constraints for a straight-shaped branch derived from constant bending stress 
during growth. For the general case with x(s) = sδ(δ > 0) , the shape function can be expressed as, for example 

τ(t) =
w(t)xG(t)

Z(t)
=

4ρg
∫ L(t)
0

r(s, t)2ds

r0(t)
3

xG(t) = const(K1)

τ (t) =
4ρgL(t)xG(t)

r0(t)
= const(K1).

xG(t) =
K1r0(t)

4ρgL(t)
=

K1Gr

4ρgGL
tγ−β .

xG(t) =

∫ L(t)
0

πr20x(s)ds∫ L(t)
0

πr20ds
=

∫ L(t)
0

x(s)ds

L(t)
.

∫ L(t)

0

x(s)ds =
K1Gr

4ρg
tγ .

G2
L =

K1Gr

2ρg
, 2β = γ.

Figure 4.   Mechanical stress derived from elastic theory and finite element method simulations depending on 
the length d and radius r of the sub-branch. (A) Theoretically estimated value of strain energy for bending (red), 
for compression (blue) and total of them (purple). (B–F) The mechanical stress vector field with tensile and 
compressive stress components (left) and von-mises stress distribution (right) are shown for (d, r) = (0.05, 0.24) 
(B), (d, r) = (0.05, 0.16) (C), (d, r) = (0.05, 0.08) (D), (d, r) = (0.10, 0.08) (E), and (d, r) = (0.15, 0.08) (F).
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f (x) = (x + 1)
1
δ − (x + 1) with y(s) = (sδ + 1)

1
δ − (sδ + 1) , and the equation becomes L(t)

δ+1

δ+1 =
K1Gr
4ρg tγ . The 

growth constraints become

To visualize the obtained result (*), we plotted the shape function with various values of δ (Fig. 5C). In this 
visualization, the branch length is fixed with a constant for comparison,

K1

ρg
=

4Gδ+1
L

Gr(δ + 1)
, δ =

γ

β
− 1.(∗)

Figure 5.   Theoretical formulation of branch structure. (A) Schematic illustration of the growing branch model. 
(B) A typical example of r(s,t). (C) Branch shape function. (D) The shape parameter δ as functions of β and γ . 
(E) The mechanical parameter K1/ρg as functions of β and γ . (F) Diagram of the trade-off between growth 
anisotropy ε and stress-gravity length K1/ρg as a function of the shape parameter δ.
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where tc = 5.2(a.u.) . We also show the color plots of the index δ and the target stress-gravity length K1/ρg as 
functions of β and γ (Fig. 5D and E). These diagrams represent the growth constraints, which connect the branch 
shape, growth, and mechanics. Here, the index ε = γ/β indicates the growth anisotropy which is the ratio of 
the primary (axial) growth and secondary (radial) growth. The index K1 indicates the target stress which is the 
expected stress from self-weight where the tree branch can keep the horizontal morphology if the target stress 
becomes low (with a light loading) whereas it cannot keep it if the target stress becomes high (with a heavy 
loading). Therefore, the index K1/ρg indicates how the target stress contributes to the self-weight which can be 
selectable by tree, therefore we call it a mechanical strategy parameter. Finally, we evaluated the trade-off between 
growth (growth anisotropy ε = γ/β ) and mechanics (stress-gravity length K1/ρg ) as a function of the shape 
parameter δ (Fig. 5F). The meaning of the trade-off is revisited in the discussion section.

From the data analyses, the shape parameter for Japanese zelkova was δ = 0− 0.7, i.e., the growth anisot-
ropy was low and the target stress was high, and the shape parameter for Japanese larch was δ = 0.9 ∼ 1.0 , 
i.e., the growth anisotropy was high and the target stress was low (Fig. 6). These results mean that the growth-
mechanics strategy differs between these two tree types, which determines their unique shapes.

Overall, we theoretically formulated the relationship between branch shape, growth, and mechanics based 
on the axiom of constant bending stress.

Discussion
In this study, we evaluated the detailed morphology of Japanese zelkova and Japanese larch and constructed two 
mechanical hypotheses. The first hypothesis was that the trees have different mechanical strategies that determine 
their shapes; this was supported by the following two mechanical results: (1) The mechanical stress depends on 
the branch inclination angle. (2) Branch primary and secondary growth result in mechanical instability. These 
findings prompted us to consider the next hypothesis that the branch may avoid the mechanical instability by 
changing its growth direction to locally relax the mechanical stress. Based on the axiom of constant maximal 
bending stress discussed with a 2D straight beam26, we formulated the governing equation of curved branch 
shape, which recapitulates the trade-off among branch growth anisotropy, stress-gravity length, and branch shape.

What are the biological implications of the trade-off among growth, mechanics, and shape? The meaning 
of the trade-off between growth anisotropy and stress-gravity length depending on the branch shape (vertical 
or horizontal) is that the growth anisotropy increases and the branch stress level decreases as the branch angle 
inclines to be horizontal. More precisely, we found that there exists a growth-shape constraint ( δ = γ

β
− 1 ), i.e., 

a growth pattern realizing the relatively constant barycenter, and a mechanics-shape constraint ( K1
ρg =

4Gδ+1
L

Gr (δ+1) ), 
i.e., maintaining the bending stress at the target which is often the upper limit of the bending stress. As stated 
in a previous study26, the branch shape may be constrained by mechanics through maximal bending stress. In 
addition to this finding, we explored the growth-shape constraint using a more general spatio-temporal branch 
shape, which covered shape (length and radius) and mechanical properties (bending and compressive stresses) 
at the sub-branch scale. This demonstrated that the growth, mechanics, and shape are highly constrained by 
each other. Furthermore, one can use these constraints to predict the growth or mechanical strategies of a tree 
branch only from branch shape.

L(tc) =

tc∫

0

√
1+

(
dy(s)

dx(s)

)2

dx,

Figure 6.   (A, B) Shape parameter δ for each branch for Japanese zelkova (A) and for Japanese larch (B).
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Tree botanical studies are closely related to studies of evolution27,28. Generally, tree shape is classified into two 
categories. One is the excurrent shape with a cone-shaped morphology represented by Japanese larch, and the 
other is the decurrent shape with a spreading-shaped morphology represented by Japanese zelkova. Using the 
obtained growth-mechanics-shape constraint, the next challenge might be a growth or mechanical classifica-
tion based on the actual tree point cloud data. In our measurements and estimations of mechanical properties, 
Japanese larch showed high growth anisotropy and low target stress, and Japanese zelkova showed low growth 
anisotropy and high target stress. This implies that Japanese larch has a higher potential to form wide branching 
patterns than Japanese zelkova. As many point cloud data will be obtained in the future, the data-model combined 
approach may become a simple and powerful analytical tool to study mechanical characteristics of woody plant 
due to changes in their morphological structure. It will also undoubtedly raise new questions in plant science, 
physics, information science, agriculture, and mechanical engineering.

Methods
We acquired 3D point cloud data of the target trees with a laser scanner where the target trees were not foliaged 
in order to obtain the accurate branch structure. Inputting the point cloud data, we extracted the skeleton struc-
ture of the dominant branches using point cloud processing. The extracted structures were used for mechanical 
simulation by the finite element method.

Point cloud data acquisition.  The point cloud data for Japanese zelkova (Zelkova serrata) (Keyaki in 
Japanese) and Japanese larch (Larix kaempferi) (Karamatsu in Japanese) were obtained by a NavVis Lider scan-
ner (M6 Trolley, NavVis, USA) at Nikko Botanical Garden (the Graduate School of Science, University of Tokyo; 
1842 Hanaishi-cho, Nikko, 321–1435 Japan) and at Nikko Daiya River Park (844 Segawa, Nikko, 321–1263 
Japan). The scanner was moved around the trees to capture the traveling distance of emitted lights between the 
observed point and the tree. We then aligned the captured 3D scans to create a single point cloud data using the 
software bundled with the scanner.

Cylinder‑based skeletal structure extraction.  Given a point cloud, we extracted the skeletal structure 
of the target tree. Here, we describe the details of our algorithm, although it resembles the existing cylinder-
based approach23.

Our method first finds the local axes (i.e., branch directions) from the tangent plane fit to the neighboring 
points. We then fit cylinders along the axes to represent local branches. We finally extracted the skeletal structure 
using the EMST algorithm. We describe the detail of each process below.

Local tangent plane fitting.  We first found the local tangent plane of the randomly picked i-th point, 
pi = (xi , yi , zi) , based on the error between a plane and the data, i.e., Ei =

(
axi + byi + c − zi

)2 . A set of neigh-
boring points of pi was selected as the points inside a sphere with radius rn centered by pi . We empirically deter-
mined rn so that at least 15 points were contained in the sphere (see Figure S1 for details).

Local branch direction estimation.  After fitting the local tangent plane, we estimated the local branch direction 
where pi belongs to, which will be the axis direction of the cylinder. Figure S2 illustrates a synthetic example. We 
set a certain threshold αhc ( 0 < α < 1 ) where the index hc is the maximal height of the points from the local tan-
gent plane. We picked all the data points below the threshold and applied principal component analysis (PCA). 
By changing the parameter α , the local axial data structure was extracted (see Figure S2B). In our experiment, 
we found α needs to be less than 0.7 to detect the orientation by PCA with our desired precision 0.1 (radian).

Local cylinder fitting.  Once the axis was determined, we projected the points around pi on a plane perpendicu-
lar to the axis and fit a circle on the plane. To assess the reliability of the obtained circle, we applied this method 
with different α , and found that less than 0.3–0.4 is needed to detect the precise circle with our desired precision 
of 0.1 (radian), as shown in Figure S3. Therefore, we used the parameter α = 0.3 to ensure α < 0.7 for the ori-
entation detection mentioned above. After fitting the circle, we determined the corresponding cylinder so that 
it had the axis with estimated direction passing through the center of the estimated circle. We simultaneously 
yielded the local branch thickness as the radius of the estimated circle.

Skeleton extraction using Euclidean minimum spanning tree (EMST).  The basic idea of the EMST is that the 
skeletal structure of the tree shape can be described by the sum of the edge weights (e.g. Euclidean distance of the 
sub-branch length in our case) being as small as possible. Once we get the edge weights, the connected network 
in space can be reconstructed which is the description of the skeleton structure of the tree shape. In order to use 
EMST, we firstly avoid the large fitting error as shown in Fig. 1C and F. To decrease the outliers, we discarded 
the cylinders with a higher fitting error larger than using a certain error threshold (0.02 m in mean absolute 
error). After this process, we could obtain the skeletal structure with a few exceptions, those which were located 
outside the tree or missing branch points. We thus manually removed the outliers and inserted several missing 
points using MeshLab software. After these discarding processes, we applied the EMST algorithm to obtain the 
skeleton of the point cloud.

Finite element method simulations.  We built a mechanical model of branch structure based on finite 
element method simulations using FreeFem++29. Assuming the 2D solid rectangular material under gravity with 
a fixed boundary condition on one side and a free boundary condition on the other side, we modeled a cross sec-
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tion of the tree branch. We used 2D linear triangle elements in order to quantify the inner stress structure under 
gravity. The nodes and elements are generated such that the side of the triangle element becomes sufficiently 
smaller than 1/50 of the branch length. For the stress–strain relationship, we used the generalized Hooke’s law 
linking the stress tensor σ and the strain tensor ε through the elasticity matrix,

where A =
E

1−ν2
,B =

Eν
1−ν

,C =
E

1+ν
 , E being the elastic modulus, and ν being Poisson’s ratio. In the simulation, 

E and ν were set to be 10 GPa and 0.35, respectively. We quantified stress, strain, and displacement of the branch 
under the uniform self-weight condition. We changed the branch base angle and corresponding fixed boundary 
condition and changed the morphology (length and radius of the branch) and obtained the stress information 
inside the branch.
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