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Aims Current risk scores do not accurately identify patients at highest risk of recurrent atherosclerotic cardiovascular disease
(ASCVD) in need of more intensive therapeutic interventions. Advances in high-throughput plasma proteomics, analysed
with machine learning techniques, may offer new opportunities to further improve risk stratification in these patients.

Methods
and results

Targeted plasma proteomics was performed in two secondary prevention cohorts: the Second Manifestations of
ARTerial disease (SMART) cohort (n= 870) and the Athero-Express cohort (n= 700). The primary outcome was
recurrent ASCVD (acute myocardial infarction, ischaemic stroke, and cardiovascular death). Machine learning tech-
niques with extreme gradient boosting were used to construct a protein model in the derivation cohort (SMART),
which was validated in the Athero-Express cohort and compared with a clinical risk model. Pathway analysis was per-
formed to identify specific pathways in high and low C-reactive protein (CRP) patient subsets. The protein model
outperformed the clinical model in both the derivation cohort [area under the curve (AUC): 0.810 vs. 0.750; P,
0.001] and validation cohort (AUC: 0.801 vs. 0.765; P, 0.001), provided significant net reclassification improvement
(0.173 in validation cohort) and was well calibrated. In contrast to a clear interleukin-6 signal in high CRP patients,
neutrophil-signalling-related proteins were associated with recurrent ASCVD in low CRP patients.

Conclusion A proteome-based risk model is superior to a clinical risk model in predicting recurrent ASCVD events. Neutrophil-
related pathways were found in low CRP patients, implying the presence of a residual inflammatory risk beyond trad-
itional NLRP3 pathways. The observed net reclassification improvement illustrates the potential of proteomics when
incorporated in a tailored therapeutic approach in secondary prevention patients.
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Key question
Does targeted plasma proteomics improve cardiovascular risk prediction in secondary prevention patients? Are different pathways contrib-
uting to cardiovascular risk in high and low C-reactive protein (CRP) patients?

Key finding
Cardiovascular risk prediction with targeted plasma proteomics outperformed prediction with clinical risk factors resulting in major net re-
classification improvement. Neutrophil-signalling-related proteins were associated with cardiovascular events in low CRP patients.

Take-home message
Routine implementation of a targeted protein panel in cardiovascular risk prediction holds promise to improve risk stratification in secondary
prevention. The involvement of neutrophil-related pathways in low CRP patients indicates residual inflammatory risk beyond NLRP3.

Structured Graphical Abstract Targeted proteomics in two secondary prevention cohorts outperforms a clinical risk model in terms
of discrimination and reclassification. The involvement of neutrophil-related pathways was found in the subset of low C-reactive protein
patients. ASCVD, atherosclerotic cardiovascular disease; AUC, area under the curve; NRI, net reclassification improvement; IDI, integrated
discrimination index.

Keywords ASCVD • Risk score • Proteomics • Machine learning • NLRP3 • C-reactive protein

Introduction
The residual burden of atherosclerotic cardiovascular disease
(ASCVD) remains large, despite the use of guideline-based pre-
ventive medication.1 The successful introduction of novel agents,
comprising proprotein convertase subtilisin-like/kexin type 9
inhibitors,2,3 low-dose oral anticoagulants,4 sodium-glucose co-
transporter 2 inhibitors,5 glucagon-like peptide-1 agonists,6,7 anti-

inflammatory agents,8,9 and icosapent ethyl,10 offers an opportun-
ity to further reduce the burden of recurrent ASCVD risk.
However, the expanding choice of novel agents has also under-
scored the need to implement cost-effective therapeutic regimes,
which mandates more accurate identification of patients at highest

risk in order to solidify the highest absolute ASCVD benefit.11

Epidemiological surveys have demonstrated a highly variable re-

sidual risk in patients with established ASCVD ranging from ,5%
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to a more than 40% 10-year recurrence risk.12 Clinical character-
istics included in traditional risk prediction scores poorly discrimi-
nated individual recurrence of ASCVD,13 attested by the modest
c-statistic of 0.64 [95% confidence interval (CI) 0.63–0.65] of the
SecondManifestations of ARTerial disease (SMART) score in three
independent secondary prevention cohorts.12 Ridker14,15 has ar-
gued to use C-reactive protein (CRP) as stratifying marker in order
to identify residual inflammatory risk; however, it remains a matter
of debate whether CRP reflects the entirety of inflammatory re-
sponses involved in atherogenesis.16 Therefore, improved meth-
ods to identify patients at highest recurrence risk are needed to
help guide ASCVD risk-based therapeutic decisions.
Protein-based risk scores hold a major promise to improve

ASCVD risk prediction, since proteins are not only influenced by
the genetic background of an individual, but can also reflect adverse
changes due to lifestyle alterations and specific pathways contrib-
uting to ASCVD risk.17,18 Improvements in machine learning tech-
niques could allow clinical doctors to interpret the massive
datasets emerging from proteomic analyses in an outpatient set-
ting, which cannot be analysed using traditional statistical meth-
ods.17,19,20 Previously, we showed that the use of a targeted
proteomics approach outperformed traditional ASCVD risk scores
in a primary prevention setting.19 However, given their high recur-
rence risk, the most urgent need to identify highest-risk patients
pertains to secondary prevention patients.11,21

In the present study, we evaluated the predictive value of tar-
geted proteomics in a secondary prevention setting using advanced
machine learning techniques. To this end, we performed plasma

proteomics in two large secondary prevention cohorts. As a deriv-
ation cohort, we used a high-risk subset of secondary prevention
patients included in the SMART cohort, followed by validation of
these findings in an independent secondary prevention cohort;
the Athero-Express.22,23 In an exploratory analysis, inflammatory
pathways were assessed by dividing patients into high or
low residual inflammatory risk profiles based on baseline CRP
levels.

Methods

Selection of patients
The SMART cohort is an ongoing prospective single-centre cohort of
the University Medical Center Utrecht.22 Patients younger than 80
years were included from 1996 onwards, if they had clinically manifest
atherosclerotic disease or marked risk factors for atherosclerosis.
Previously, a clinical risk model (SMART) was developed and validated
to estimate the absolute risk for recurrent ASCVD events.24 We se-
lected all subjects who entered the SMART cohort for myocardial in-
farction, stroke, or transient ischaemic attack with a 10-year SMART
risk score above 15% and had blood samples available. A total of
870 participants were included as a derivation cohort.

The Athero-Express study was initiated in 2002, and included pa-
tients undergoing carotid and femoral endarterectomy for previous is-
chaemic cerebral events or peripheral artery disease.23 Patients were
followed up until 3 years after the endarterectomy. We included
700 subjects who underwent a carotid endarterectomy following a
stroke or transient ischaemic attack with plasma samples and complete
follow-up data available as validation cohort.
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Table 1 Patient characteristics

Characteristic Derivation cohort (SMART) Validation cohort (Athero-Express)

Number of patients 870 700

Age (years) 65 (9) 70 (9)

Male sex 657 (75.5) 479 (68.4)

BMI (kg/m2) 26.9+ 3.9 26.2+ 3.8

Systolic blood pressure (mmHg) 146+ 22 152+ 25

Diastolic blood pressure (mmHg) 82+ 12 82+ 31

Active smoking 299 (34.4) 81 (20.2)

Total cholesterol (mmol/L) 4.95+ 1.22 4.31+ 1.12

HDL cholesterol (mmol/L) 1.22+ 0.36 1.10+ 0.36

LDL cholesterol (mmol/L) 2.98+ 1.07 2.43+ 0.91

Triglycerides (mmol/L) 1.42 (1.00–2.10) 1.49 (1.08–2.04)

C-reactive protein (mg/L) 2.5 (1.2–5.2) 2.0 (1.0–4.5)

Diabetes mellitus 178 (20.5) 163 (23.3)

Lipid-lowering therapy 546 (62.8) 541 (77.5)

Antihypertensive therapy 578 (66.4) 509 (72.9)

Follow-up time (years) 7.98 (4.61–12.16) 3.00 (2.17–3.10)

Recurrent ASCVD event 263 (30.2) 130 (18.6)

Myocardial infarction 48 (5.5) 39 (5.6)

Ischaemic stroke 105 (12.1) 53 (7.5)

Cardiovascular death 110 (12.6) 38 (5.4)

Only primary recurrent ASCVD events are shown. Values are n (%), mean+ standard deviation, or median (IQR) for skewed data (triglycerides, C-reactive protein, and
follow-up time). SMART, Second Manifestations of ARTerial disease; BMI, body mass index; ASCVD, atherosclerotic cardiovascular disease.

Targeted proteomics improves cardiovascular risk prediction 1571



Proteomic analyses
For both cohorts, the procedures for blood withdrawal and storage
have been described previously.22,23 In short, plasma samples were col-
lected fasting at baseline in the derivation cohort, whereas samples
were collected non-fasting on the preoperative day in the validation
cohort. In both cohorts, plasma samples were directly centrifuged
and stored at −80°C for future analyses. For this study, frozen plasma
samples of selected subjects from both cohorts were collected from
storage and transferred to Olink proteomics AB (Utrecht, The
Netherlands) on dry ice for Proximity Extension Assay analysis. We
measured levels of 276 proteins from the Cardiovascular II,
Cardiovascular III, and Cardiometabolic panels. These panels were se-
lected based on known associations with ASCVD. All samples with a
quality control warning or with ≥40% of measurements below the
lower limit of detection (LOD) were excluded from the analysis; sep-
arately per proteomic panel. In addition, proteins with ≥90% of sam-
ples below the LOD were excluded from the model.

Statistical and machine learning methods
In both cohorts, we defined the primary outcome as the first recurrent
ASCVD event, comprising acute myocardial infarction, ischaemic
stroke, and cardiovascular death.

In the derivation cohort, we constructed three classification models:
first, measured proteins passing quality control (267 proteins) were
used to construct a protein-based model with 50 proteins with the
highest predictive value. Second, to compare the protein model with
current clinical practice, a clinical risk model was constructed and op-
timized using the same approach as the protein model, including para-
meters of different validated risk scores such as SMART, Reynolds Risk
Score, and Framingham Risk Score.24–27 The clinical risk model com-
prised the following parameters: age, sex, body mass index, systolic
blood pressure, total cholesterol, HDL cholesterol, CRP, smoking sta-
tus, the presence of diabetes, the use of antihypertensive medication,

and family history of cardiovascular disease. A third combined model
was formed by stacking the clinical risk parameters with the protein
parameters. For use in the validation cohort, all three models were re-
calibrated to allow an equal comparison and avoid miscalibration.28

All models were constructed using the same machine learning tech-
niques. For the training and evaluation of the models as well as identi-
fication of the most reliable biomarker signature in our datasets (both
proteomics and clinical), we used stability selection with extreme gra-
dient boosting to predict a binary outcome (event/non-event).29,30 The
model hyperparameters were selected using a Randomized Grid
Search followed by classifier calibration using the Sigmoid method,31

both performed on the validation set. To prevent overfitting, ‘leave
one out cross-validation’ was employed on a random subset with
half the dimension of the original dataset. For increased confidence,
this process was repeated 20 times. This method was coupled with a
rigorous stability selection procedure to ensure the reliability and ro-
bustness of the obtained parameters. Finally, a permutation test (ran-
domization test) was applied to evaluate the statistical validity of the
results,32 since standard univariate significance tests cannot be applied
to the used models due to the non-linear combination of feature
functions.

To further explore the inflammatory pathways involved, we per-
formed additional analyses by dividing the SMART cohort in a high
CRP (.2 mg/L) and low CRP (≤2 mg/L) group. Patients with a sus-
pected acute inflammatory episode (CRP. 20 mg/L) were excluded.
In both groups, a model comprising 50 proteins was constructed to
predict recurrent ASCVD events. Protein–protein association net-
works were assessed and graphically displayed using STRING v11
(string-db.org).33 Normalized protein expression (NPX) values (rela-
tive quantification on log2 scale) for interleukin-6 (IL-6) were com-
pared between high and low CRP groups. To identify high or low
CRP-specific proteins, the top 10 proteins from both groups were
compared with the overall model.

Figure 1Discriminatory value in the derivation and validation cohort. Receiver operating characteristic curve of protein, clinical, and combined
model in the derivation cohort (A) and in the validation cohort (B). The 95% confidence interval is shown between brackets. AUC, area under
the curve.
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Model performance was reported by means of discrimination, cali-
bration, and reclassification. Discrimination was assessed using the re-
ceiver operating characteristic (ROC) curve with an area under the
curve (AUC). Relative protein importance was reported in a bar
plot.34 Calibration plots were constructed to display calibration per-
formance. Reclassification performance was assessed using the
category-free net reclassification improvement (NRI. 0) and inte-
grated discrimination index (IDI).28 95% CI were reported using boot-
strap intervals for point estimates of performance metrics when
asymptotic intervals were not available.

Data are presented as mean+ standard deviation for normally dis-
tributed variables or median with interquartile range (IQR) for skewed
data. Categorical variables are expressed as absolute numbers and per-
centages. Independent sample t-tests andMann–Whitney U-tests were
used where appropriate. Two-sided P-values of ≤0.05 were consid-
ered statistically significant. Data were analysed using Python version
3.7 (www.python.org) and RStudio version 3.6.1 (R Foundation,
Vienna, Austria).

Results
Patient characteristics of both the derivation and validation cohort
are listed in Table 1. In the derivation cohort, 263 (30.2%) partici-
pants experienced a recurrent ASCVD event during a median
follow-up of 8.0 (4.6–12.2) years. The primary recurrent event con-
sisted of myocardial infarction in 48 (5.5%) patients, ischaemic
stroke in 105 (12.1%) patients, and 110 (12.6%) patients died of car-
diovascular causes. In the validation cohort, 130 (18.6%) participants
experienced a recurrent ASCVD event during amedian follow-up of
3.0 (2.2–3.1) years. In this cohort, the primary recurrent ASCVD
event was a myocardial infarction in 39 (5.6%) patients, whereas
53 (7.5%) patients had an ischaemic stroke and 38 (5.4%) patients
died of cardiovascular causes. The final proteomic analysis included
267 unique proteins after exclusion of nine proteins with ≥90% of
values below the LOD (see Supplementary material online, Table 1).

Discriminatory value of proteomic risk
model
In the derivation cohort, prediction of recurrent ASCVD events using
the protein model resulted in an ROC AUC of 0.810 (95% CI 0.797–

0.823; Figure 1A and Table 2). The proteins with their relative import-
ance are shown in Figure 2. In comparison, the clinical risk model re-
sulted in an ROC AUC of 0.750 (95% CI 0.734–0.765; Figure 1A and
Table 2). Combination of both models led to an ROC AUC of 0.824
(95% CI 0.812–0.835; Figure 1A and Table 2). The protein model per-
formed significantly better than the clinical risk model (delta AUC
0.060, 95% CI 0.040–0.083, P, 0.001), whereas the combination of
both models was only slightly superior to the protein model alone
(delta AUC 0.014, 95% CI 0.009–0.019, P, 0.001).

After recalibration of all models, the discriminatory value was
tested in the validation cohort. Validation of the prediction of re-
current ASCVD events using the protein model resulted in an
ROC AUC of 0.801 (95% CI 0.785–0.817; Figure 1B and Table 2).
In comparison, the clinical risk model resulted in an ROC AUC
of 0.765 (95% CI 0.743–0.784; Figure 1B and Table 2).
Combination of both models led to an ROC AUC of 0.792
(95% CI 0.771–0.811; Figure 1B and Table 2). In the validation co-
hort, the protein model also outperformed the clinical risk model
(delta AUC 0.036, 95% CI 0.020–0.051, P, 0.001), whereas a
combination of both models was not superior to the protein model
alone (delta AUC −0.007, 95% CI −0.023 to 0.004, P= 0.996).

Calibration and reclassification of the
proteomic risk model
The calibration plots of the proteomic, clinical, and combinedmod-
el for both the derivation cohort and validation cohort (after reca-
libration) are shown in Figure 3. The six models were well
calibrated, although risk was slightly underestimated in the
highest-risk categories. We calculated the NRI and IDI by compar-
ing the protein model with the clinical risk model (Table 1). In the
derivation cohort, the NRI was 0.152 (95% CI 0.110–0.196) and
the IDI was 0.098 (95% CI 0.073–0.122), compared with an NRI
of 0.173 (95% CI 0.133–0.211) and an IDI of 0.085 (95% CI
0.068–0.101) in the validation cohort.

Predictive value in high and low
C-reactive protein subsets
In clinical practice, CRP is used to identify patients with ‘residual
inflammatory risk’. To evaluate the impact of CRP on the
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Table 2 Performance metrics

Clinical model Protein model Combined model

AUC

Derivation cohort 0.750 (0.734–0.765) 0.810 (0.797–0.823) 0.824 (0.812–0.835)

Validation cohort 0.765 (0.743–0.784) 0.801 (0.785–0.817) 0.792 (0.771–0.811)

NRI

Derivation cohort Reference 0.152 (0.110–0.196) 0.174 (0.134–0.218)

Validation cohort Reference 0.173 (0.133–0.211) 0.146 (0.099–0.188)

IDI

Derivation cohort Reference 0.098 (0.073–0.122) 0.116 (0.094–0.139)

Validation cohort Reference 0.085 (0.068–0.101) 0.070 (0.049–0.090)

Summary statistics of performance: area under the curve (AUC), net reclassification improvement (NRI), and integrated discrimination index (IDI). 95% confidence interval is
shown between parentheses.

Targeted proteomics improves cardiovascular risk prediction 1573

www.python.org
http://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehac055#supplementary-data


performance of the proteomic panel, we divided patients based
on CRP levels in the SMART cohort, resulting in 373 patients
classified as low CRP (≤2 mg/L) vs. 463 patients classified as
high CRP (.2 mg/L). Thirty-four patients with a suspected acute
inflammatory episode (CRP. 20 mg/L) were excluded from the
analysis. In the low CRP group, 27.3% of patients experienced
an ASCVD event during follow-up, compared with 32.0% of pa-
tients in the high CRP group (P= 0.13). Interleukin-6 levels
were much higher in the high CRP group compared with the

low CRP group [NPX (log2 scale) 13.50, IQR 10.24–18.45 vs.
8.63, IQR 6.71–11.27]. The overview of the network pathway
analysis in the high and low CRP group is depicted in
Supplementary material online, Figure 1. The high CRP group
showed a central role for IL-6, which was not present in the
low CRP protein model. Conversely, four different inflammatory
proteins, which were neither in the initial model nor in the high
CRP group, were identified in the top 10 predicting proteins of
the low CRP group (Table 3).

Figure 2 Importance plot of the protein model. Importance plot of the proteins in the protein model from the derivation cohort. The import-
ance refers to the extent to which a model relies on a given protein. Shown is the relative importance of the 50 proteins in the model.
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Discussion
Using targeted proteomics in two cohorts comprising 1570 patients
with established arterial disease, we show that a panel of 50 pro-
teins is superior to a clinical risk model in predicting recurrent
ASCVD events. In both the derivation and the validation cohort,
the proteomic model performed better in terms of discrimination,
was similarly well calibrated and provided a significant NRI over the
clinical risk model (Structured Graphical Abstract). Collectively, these
data confirm the potential of improved, proteome-supported risk
stratification in a secondary prevention setting.
Atherosclerotic cardiovascular disease risk prediction using clin-

ical characteristics performs relatively poor in terms of discrimin-
ation.12,13 We previously showed that a targeted proteomics
panel improves the prediction of ASCVD events in a primary pre-
vention setting.19 Ganz et al.35 illustrated that a nine-protein risk
score also predicted recurrent ASCVD events in patients with cor-
onary heart disease with modest discrimination (C-statistic 0.70 in
validation). With improved proteomic and machine learning tech-
niques, we now show that the use of proteomics significantly out-
performs clinical risk prediction in two large secondary prevention
cohorts (AUC of 0.801 in the validation cohort, delta AUC 0.036).
Whereas in the highest-risk groups the models tended to under-
estimate ASCVD recurrence risk, the protein, clinical, and com-
bined models were similarly and well calibrated.

Recurrent cardiovascular events:
predictive proteins
A targeted proteomics panel was used comprising proteins related
to ASCVD, metabolism, and inflammation. N-terminal pro-B-type

natriuretic peptide (NT-proBNP), an established marker for heart
failure,27 was the protein with the strongest predictive value. NT-
proBNP was also found among the top proteins predicting primary
ASCVD events in an earlier study.19 Kidney injury molecule-1
(KIM-1) was the second most predicting protein, and has been as-
sociated with cardiorenal syndrome.36 The top three proteins
were completed by matrix metalloproteinase 7 (MMP-7), which
was also found in the primary prevention population.19 MMP-7
and its family of matrix metalloproteinases, the main group of en-
zymes responsible for degradation of the extracellular matrix, are
associated with plaque instability, through macrophage-related
pathways.37 Lastly, growth differentiation factor 15 (GDF-15), as
the top predictive protein in the earlier primary prevention co-
hort,19 was the fourth most predictive protein in this study.
GDF-15 has been shown to play an important role in leucocyte in-
tegrin activation after myocardial infarction.38 The other proteins
in the panel were primarily related to immune system involvement
in atherosclerosis, including chemotaxis, migration, apoptosis, and
angiogenesis.19,39

Residual inflammatory atherosclerotic
cardiovascular disease risk
With respect to the residual inflammatory ASCVD risk, attention
has primarily focused on the NLRP3 inflammasome with CRP as
a reliable downstream marker.15 In a recent sub-study from low-
dose colchicine for secondary prevention of cardiovascular disease
(LoDoCo2),40 evaluating the impact of colchicine in secondary
prevention, we observed colchicine-induced changes in a panel
of 37 inflammatory proteins; the majority of which were, however,
unrelated to CRP change. To evaluate the impact of CRP on the

Figure 3. Calibration in the derivation and validation cohort. Calibration plots for the protein (A), clinical (B), and combined (C ) model in the
derivation cohort (SMART) and the protein (D), clinical (E), and combined (F ) model in the validation cohort (Athero-Express). Predicted event
risk vs. observed event rate per risk category quintiles.
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performance of a proteomic panel containing multiple inflamma-
tory proteins, we compared the predictive value of our proteomic
panel between patients with high (.2 mg/L) vs. low baseline
(≤2 mg/L) CRP. As observed in Supplementary material online,
Figure 2, the central protein in the high CRP group, linked to
many other crucial proteins in the model, is IL-6 with much higher
levels in the high CRP group compared with the low CRP group,
substantiating the involvement of the NLRP3-IL6 pathway leading
to CRP elevation. To further evaluate a potential role of inflamma-
tory factors in patients with low CRP, we compared the 10 most
important proteins in both high and lowCRP groups with the over-
all 50 protein model. In contrast to the top 10 proteins in the high
CRP protein model, which were all present in the overall protein
model, the top 10 proteins in the low CRP group comprised
four proteins not represented in the initial model nor in the high
CRP model: α1-microglobulin-bikunin precursor (AMBP),
nidogen-1 (NID1; also known as entactin), tissue factor (TF), and
vasorin (VASN). All four proteins are related to neutrophil signal-
ling, implying a role for pro-inflammatory innate immunity activa-
tion in the low CRP group independent from the NLRP3-IL6
inflammasome pathway.40 Thus, α1-microglobulin, which is a plas-
ma and tissue protein derived from AMBP, has been shown to in-
hibit oxidation of LDL through the inhibition of myeloperoxidase
(MPO).41 MPO, abundantly present in neutrophilic granules,42

has been shown to oxidize LDL, aggravating atherogenesis.43

NID-1 (entactin) is a component of basement membranes stimu-
lating neutrophil adhesion and chemotaxis.44 Tissue factor has
been shown to contribute to thrombosis at the site of plaque rup-
ture via release from neutrophil extracellular traps and is critical in

the formation of arterial thrombosis.45 Vasorin directly binds to
and attenuates signalling of transforming growth factor
beta (TGFß).46 TGFß, which can be produced by infiltrating cells
such as neutrophils and macrophages, has been shown to have
both atherogenic and atheroprotective properties.47,48 The pre-
ponderance of these neutrophil-related proteins in the model
best predicting recurrent ASCVD risk in the low CRP group corre-
sponds to our findings in LoDoCo2, where proteins related to
neutrophil-activation such as MPO were reduced following colchi-
cine treatment.40 Collectively, these findings imply a residual in-
flammatory risk also in secondary prevention patients with low
CRP, with preliminary evidence pointing to the potential involve-
ment of neutrophil-related pathways.

Strengths and limitations
The use of samples of two large, well-defined secondary preven-
tion cohorts has supported a robust proteomic analysis. The use
of state-of-the-art machine learning technology allows the discov-
ery of non-linear relationships and interactions between proteins,
which would not have been identified with traditional statistical
methodology.

Several limitations to our study merit discussion. First, by using
targeted proteomics, proteins not included in these panels which
also predict recurrent ASCVD events may have been missed.
However, the goal of this study was to evaluate the feasibility of
a high-throughput, protein-based risk score for clinical use, rather
than novel protein discovery. Nevertheless, we cannot exclude
that the predictive value of a larger protein panel may be even bet-
ter. Second, the derivation and validation cohort had selective and
different enrolment criteria as well as different event risk distribu-
tion, which could complicate extrapolation to other risk groups.
In the derivation cohort (SMART), patients were included follow-
ing a myocardial infarction, ischaemic stroke, or transient ischae-
mic attack, whereas the patients from the validation cohort
(Athero-Express) were included after carotid endarterectomy
following an ischaemic stroke or transient ischaemic attack.
Remarkably, while included after carotid endarterectomy, the
relative proportion of patients with a myocardial infarction was
higher in the validation cohort compared with the derivation
cohort (30.0% vs. 18.3%). Despite these differences between
the cohorts, the protein model performance in the validation co-
hort was comparable to the derivation cohort after recalibration,
suggesting suitability for use in different populations. Yet, both
cohorts primarily consisted of subjects from European ancestry,
so extrapolation to other ethnicities remains to be determined.
Lastly, in the derivation cohort, samples were collected after
overnight fasting, in contrast to the validation cohort in which
the samples were collected non-fasting.

Clinical relevance
Single plasma risk markers have failed to robustly improve ASCVD
risk scores to date.49,50 Using a panel of 50 proteins, we show a sig-
nificant improvement in discrimination and clinical value attested
by the NRI and IDI in secondary prevention. The introduction of
expensive novel therapeutics combined with the large variation
in ASCVD recurrence risk in secondary prevention underscores
the importance of reliable ASCVD risk stratification, which is

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3 Most important proteins in the overall, high,
and low C-reactive protein group

Overall High CRP subset Low CRP subset

NT-proBNP NT-proBNP KIM1

KIM1 HAOX1 BNP

MMP-7 OPN ADM

GDF-15 KIM1 AMBP

HAOX1 PSGL-1 NID1

TGFBI GDF-15 TIMP4

ENG TIMD4 FABP2

BNP MMP-2 NT-proBNP

ADM CTSL1 VASN

U-PAR XCL1 TF

Overview of the 10 most important proteins in the overall group as well as in the
high and low CRP groups. Marked bold are proteins not in the overall 50-protein
model. CRP, C-reactive protein; NT-proBNP, N-terminal prohormone brain
natriuretic peptide; KIM-1, kidney injury molecule 1; MMP-7, matrix
metalloproteinase 7; GDF-15, growth/differentiation factor 15; HAOX1,
hydroxyacid oxidase 1; TGFBI, transforming growth factor-β-induced protein
ig-h3; ENG, endoglin; BNP, brain natriuretic peptide; ADM, adrenomedullin;
U-PAR, urokinase plasminogen activator surface receptor; OPN, osteopontin;
PSGL-1, P-selectin glycoprotein ligand 1; TIMD4, T-cell immunoglobulin and
mucin domain-containing protein 4; MMP-2, matrix metalloproteinase-2;
CTSL1, cathepsin L1; XCL1, lymphotactin; AMBP, α1-microglobulin-bikunin
precursor; NID1, nidogen-1; TIMP4, metalloproteinase inhibitor 4; FABP2,
intestinal-type fatty acid-binding protein; VASN, vasorin; TF, tissue factor.
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essential when adhering to the ‘highest risk—highest benefit’ prin-
ciple determining cost-efficacy of expensive novel medication.11

Routine implementation of a dedicated protein panel on top of
clinical risk factors may therefore hold a promise to improve thera-
peutic decisions in secondary prevention.
C-reactive protein has been validated as a reliable marker of re-

sidual inflammatory risk,15 as well as a biomarker predicting thera-
peutic benefit from anti-inflammatory therapies.9 Conversely,
colchicine treatment was recently reported to markedly reduce
the residual ASCVD event rate in post-acute coronary syndrome
patients, not selected for CRP elevation,8 whereas colchicine low-
ered CRP by only 10%.40 In the present study, we observe a pre-
ponderance of neutrophil-related proteins contributing to
ASCVD risk prediction in patients with low CRP, implying another
potential source of residual inflammatory risk independent of the
IL6-CRP pathway.15 Collectively, these data lend further support
to target specific pathways identified by proteomic analysis. The
use of such a pathway-guided strategy instead of a single biomarker
approach warrants prospective trials for further validation.
Propelled by expanding proteomic and machine learning tech-

nologies, optimal conditions for a high-throughput proteomic assay
are approaching. As opposed to clinical risk scores or risk assess-
ment based on genetic candidate genes,51 proteomic scores may
more accurately mirror changes in lifestyle.17,18 The major NRI
of ASCVD risk in secondary prevention heralds an important fur-
ther step towards a tailored therapeutic approach in secondary
prevention patients, aimed at introducing the use of effective novel
medication in the highest-risk patients in a cost-effective manner.11

Conclusions
We show that a panel of 50 proteins is superior to a clinical risk
model in predicting recurrent ASCVD events. In both the deriv-
ation and the validation cohort, the proteomic model performed
better in terms of discrimination and provided significant NRI
whereas calibration was comparable in comparison to the clinical
risk model. In addition, we found involvement of neutrophil-
related pathways in the subset of low CRP patients, indicating a re-
sidual inflammatory ASCVD risk beyond the traditional NLRP3
pathways. Further, large prospective studies will have to confirm
the value of proteome-based risk scores in secondary prevention
before routine clinical implementation can be advocated.

Supplementary material
Supplementary material is available at European Heart Journal
online.
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