
Using Gaussian Model to Improve Biological
Sequence Comparison

QI DAI,1 XIAOQING LIU,2 LIHUA LI,1 YUHUA YAO,3 BIN HAN,1 LEI ZHU1

1Institute for Biomedical Engineering and Instrumentation, Hangzhou Dianzi University,
Hangzhou 310018, People’s Republic of China

2School of Science, Hangzhou Dianzi University; Hangzhou 310018, People’s Republic of China
3College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018,

People’s Republic of China

Received 11 March 2009; Accepted 14 April 2009
DOI 10.1002/jcc.21322

Published online 28 May 2009 in Wiley InterScience (www.interscience.wiley.com).

Abstract: One of the major tasks in biological sequence analysis is to compare biological sequences, which could serve
as evidence of structural and functional conservation, as well as of evolutionary relations among the sequences. Numerous
efficient methods have been developed for sequence comparison, but challenges remain. In this article, we proposed a
novel method to compare biological sequences based on Gaussian model. Instead of comparing the frequencies of k-words
in biological sequences directly, we considered the k-word frequency distribution under Gaussian model which gives the
different expression levels of k-words. The proposed method was tested by similarity search, evaluation on functionally
related genes, and phylogenetic analysis. The performance of our method was further compared with alignment-based
and alignment-free methods. The results demonstrate that Gaussian model provides more information about k-word
frequencies and improves the efficiency of sequence comparison.
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Introduction

The abundance of biomolecular sequence information (generated
as a result of the ever-increasing number of large-scale sequencing
projects), together with a relatively high cost of “wet lab” experi-
mentation, calls for powerful and efficient computational tools as
primary means for high-throughput genomic proteomic investiga-
tions. Therefore, computational methods of biological sequence
analysis become an indispensable part of the modern scientist’s
research arsenal.1 In protein studies, the results of sequence sim-
ilarity searches in databases help generate reasonable hypotheses
concerning structural and functional properties of proteins.2, 3 On the
DNA level, sequence analysis techniques make it possible to iden-
tify genes and functional elements in newly sequenced genomes.
Phylogenetic analysis4–9 not only provides us evolutionary rela-
tions among the sequences but also provides useful information for
pharmaceutical researchers to determine which medicinal species
share the same medical qualities. But, these efficient computational
methods rely heavily on sequence comparison.

Because of the importance of sequence comparison, numer-
ous methods have been developed.10–34 A typical approach to
sequence comparison is based on sequence alignment. Waterman10

and Durbin et al.11 provided comprehensive reviews about this
method. The search for optimal solutions using alignment-based
method encounters difficulties in: (i) computational load with regard
to large databases;12 (ii) choosing the scoring schemes.27

Because of the critical limitations of alignment method, the
emergence of research into alignment-free methods is appar-
ent and necessary. Many alignment-free methods have been
proposed, but they are still in the early development com-
pared with alignment-based method.14–34 Comparison methods
based on k-word frequencies may be the most well-developed
alignment-free methods. Reinert et al.26 studied the statistical
and probabilistic properties of words in sequences, with empha-
sis on the deductions of exact distributions and evaluation of its
asymptotic approximations. Word-based methods were recently
reviewed by Vinga and Almeida.27 Among these word-based
methods, each sequence is mapped into an n-dimensional vec-
tor according to its k-word frequencies. The similarity score
between sequences represented in vector spaces is further defined
by Euclidean distance,28 Mahalanobis distance,29 Kullback-Leibler
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discrepancy,30 Cosine distance31 between their corresponding vec-
tors. Recently, several novel word-based methods have been
designed for sequence comparison, such as D2z(32), Gdis.k,33 D2

and D3.34

This work presents a novel method for biological sequence com-
parison based on Gaussian model. Instead of comparing the k-word
frequencies of two sequences directly, we evaluate their k-word fre-
quencies in a probabilistic framework. Our method was evaluated
by extensive tests such as similarity search, evaluation on func-
tionally related genes, and phylogenetic analysis. A comparison
of performance between the proposed method and several typical
alignment-based or alignment-free methods was taken. The results
demonstrate that it is a promising word-method for sequence com-
parison with potential application in improvement on structure and
function prediction.

Gaussian Model for k-word Frequencies of
Biological Sequences

Word Statistics

There is a large body of literatures on word statistics,26 where
sequences are interpreted as a succession of symbols and are further
analyzed by representing the frequencies of its small segments. A
k-word is a series of k consecutive letters in a sequence. The k-word
statistical analysis consists of counting occurrences of k-words in a
given sequence. For a sequence s, the count of a k-word w, denoted
by c(w), is the number of occurrence of w in the sequence s. The
standard approach for counting k-words in a sequence of length m is
to use a sliding window of length k, shifting the frame one base at a
time from position 1 to m−k+1. In this method, k-words are allowed
to overlap in the sequence. In this way, a sequence can be represented
by an n-dimensional vector Cs

k made up of k-word counts

Cs
k = (c(wk,1), c(wk,2), . . . , c(wk,n)), (1)

where n is the total number of all possible k-words. The frequencies
of k-words, Fs

k , can he calculated by

Fs
2 = (f (wk,1), f (wk,2), . . . , f (wk,n))

=
(

c(wk,1)

m − k + 1
,

c(wk,2)

m − k + 1
, . . . ,

c(wk,n)

m − k + 1

)
. (2)

For example, consider the DNA sequence s = AAAGGA, we can
obtain the vectors made up of 2-word counts and frequencies

Cs
2 = (c(AA), c(AG), c(GG), c(GA)) = (2, 1, 1, 1),

Fs
2 = (f (AA), f (AG), f (GG), f (GA)) = (0.4, 0.2, 0.2, 0.2).

Test for Normality of k-word Frequencies

In asymptotic cases, Gaussian, Poisson, and compound Poisson
approximations have been derived for word counts; the type of
approximation depends on the word length and on the method of

Figure 1. Histogram of 3-word frequency in HSLIPAS sequence, with
Gaussian curve.

counting word occurrences. In particular, if m is the length of the
sequence, then, for large m, the distribution of counts of a word can
be approximated by the normal distribution; this approximation is
good when the length of the word is relatively small compared to
the sequence length.1

The simplest method of assessing normality is to look at the
frequency distribution histogram. For example, the 3-word fre-
quency histogram of HSLIPAS (Human mRNA for lipoprotein
lipase) sequence appears in Figure 1. The most important things
to look at are the symmetry and peak of the curve. Figure 1 shows
that the distribution of 3-word frequencies of HSLIPAS sequence
approximately follows the Gaussian distribution. Visual appraisals
can only be used as an indication of the distribution and subsequently
better methods must be used.

To test formally for normality we use a Kolmogorov-Smirnov
test. Kolmogorov-Smirnov test is a goodness-of-fit test for any
statistical distribution. The test relies on the fact that the value
of the sample cumulative density function is asymptotically nor-
mally distributed. To apply the Kolmogorov-Smirnov test, the main
operations are as follows: (1) calculate the cumulative frequency
(normalized by the sample size) of the observations as a function of
class; (2) calculate the cumulative frequency for a true distribution
(most commonly, the Gaussian distribution); (3) find the greatest
discrepancy between the observed and expected cumulative frequen-
cies, which is called the “D-statistic.” The Kolmogorov-Smirnov
statistic (D) is defined as

D = sup
x

|Fn(x) − F(x)|, (3)

where F(x) is a given cumulative distribution function, and Fn(x)
is a empirical distribution function for n iid observations Xi, which
is defined as

Fn(x) = 1

n

n∑
i=1

IXi≤x , (4)
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Figure 2. Normal probability plot of of 3-word frequency in HSLIPAS
sequence, with the straight line as the null hypothesis of normality.

IXi≤x is the indicator function, equal to 1 if Xi ≤ x and equal to 0
otherwise.

Suppose that we have an i.i.d. data f (wk,1), f (wk,2), . . . , f (wk,n)

with some unknown distribution P and we would like to test the
hypothesis that P is equal to a Gaussian distribution P0, i.e., decide
between the following hypotheses:

H0 : P = P0, H1 : P �= P0. (5)

The p value obtained by Kolmogorov-Smirnov test tells us whether
the data is significantly different from the Gaussian distribution or
not. We reject the hypothesis if the test is significant at the 0.05
level. That is to say, if p < 0.05, we reject H0, do not reject H0 other-
wise. We also take the 3-word frequencies of HSLIPAS sequence for
example and perform Kolmogorov-Smirnov test. Since the p-value
is 0.63857, we accept H0. In addition, the way Kolmogorov-Smirnov
test work is by generating a normal probability plot,35 it is a graphi-
cal technique for assessing whether or not a data set is approximately
normally distributed. Figure 2 is the normal probability plot of 3-
word frequencies of HSLIPAS sequence. The straight line on Figure
2 is the null hypothesis of normality, the points on this plot form a
nearly linear pattern, which indicates that the Gaussian distribution
is a good model for the 3-word frequencies of HSLIPAS sequence.

It is worthwhile pointing out that Kolmogorov-Smirnov test is
designed to test a simple hypothesis P = P0 for a given normal dis-
tribution P0. But, if we estimated this distribution, N(µ̂, σ̂ 2) from the
data f (wk,1), f (wk,2), . . . , f (wk,n), formally, Kolmogorov-Smirnov
test is inaccurate in this case. There is a version of Kolmogorov-
Smirnov test, called Lilliefors test,36 that tests normality of the
distribution by comparing the data with a fitted Gaussian distribution
as we did above, but with a correction to give a more accurate approx-
imation of the distribution of the test statistic. The test proceeds as
follows: (1) estimate the population mean and population variance
based on the data; (2) find the maximum discrepancy between the
empirical distribution function and the cumulative distribution func-
tion (CDF) of the normal distribution with the estimated mean and
estimated variance, just as in the Kolmogorov-Smirnov test, this
will be the test statistic; (3) confront the question of whether the

maximum discrepancy is large enough to be statistically significant,
thus requiring rejection of the null hypothesis. We also take the 3-
word frequencies of HSLIPAS sequence for example and perform
Lilliefors test. First, we estimate the population mean µ̂ = 0.0156
and population variance σ̂ 2 = 0.0066 based on the 3-word fre-
quencies of HSLIPAS sequence. Then, we perform Lilliefors test
that the 3-word frequencies of HSLIPAS sequence comes from the
distribution N(0.0156, 0.0066). At the 0.05 significance level, we
accept the normality of 3-word frequencies of HSLIPAS sequence
with p-value 0.19537.

Gaussian Model for k-word Frequencies

Many methods for sequence comparison are to fix a short word
length k, compute the frequencies of all k-words in each sequence,
and assess the similarity of the two frequency vectors. For exam-
ple, the dissimilarity score between two sequences X and Y are the
Euclidian distance28 or cosine of the angle31 between their k-word
frequency vectors FX

k and FY
k . Sometimes, these simple methods

are not satisfying for sequence comparison, because (i) they treat all
word types equally, despite that they have different background, and
(ii) it does not take into account the fact that, for a given k-word, the
probability is not a linear function of the number of occurrences. To
overcome the problems, the Mahalanobis and standard Euclidean
distance, which take into account the data covariance structure,
were proposed for sequence comparison.29 In this article, we treat
the above two problems by using a probabilistic model of k-word
frequencies.

The Kolmogorov-Smirnov test indicates that the k-word fre-
quencies of biological sequences can be approximated by Gaussian
distribution. This approximation is good when the length of the word
is relatively small compared to the sequence length.1 In what fol-
lows we will explore sequence comparison method on the basis of
the Gaussian distribution of word frequencies.

The Gaussian distribution, also called the normal distribution, is
an important family of continuous probability distributions, appli-
cable in many fields. Each member of the family may be defined
by two parameters, location and scale: the mean (“average,” µ) and
variance (standard deviation squared, σ 2) respectively. The stan-
dard Gaussian distribution is the Gaussian distribution with a mean
of zero and a variance of one. To indicate that a real-valued random
variable X is normally distributed with mean µ and variance σ 2 ≥ 0,
we write

X ∼ N(µ, σ 2). (6)

There are various ways to characterize a probability distribution.
The most widely used one is probability density function (PDF).
The probability density function of the Gaussian distribution is

ϕµ,σ 2 (x) = 1

σ
√

2π
e− (x−µ)2

2σ2 = 1

σ
ϕ

(
x − µ

σ

)
, x ∈ R, (7)

where σ > 0 is the standard deviation, the real parameter µ is the
expected value, and

ϕ(x) = ϕ0,1(x) = e−x2/2

√
2π

, x ∈ R, (8)
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is the density function of the “standard” Gaussian distribution: i.e.,
the Gaussian distribution with µ = 0 and σ = 1. The distribution
function of the Gaussian distribution is expressed in terms of the
density function as follows:

�µ,σ 2 (x) =
∫ x

−∞
1

σ
√

2π
e− (t−µ)2

2σ2 dt = 1

σ
√

2π

∫ x

−∞
e− (t−µ)2

2σ2 dt (9)

The standard Gaussian distribution function is just the general
distribution function evaluated with µ = 0 and σ = 1:

�(x) = �0,1(x) = 1√
2π

∫ x

−∞
e− t2

2 dt. (10)

A biological sequence s, of length m, is defined as a linear suc-
cession of symbols from a finite alphabet A , with size of |A |. All
possible sequences of length k with symbol from the alphabet A
compose a k-word set, which corresponds to a k-word frequencies
set Fk . Suppose Fk is a sample space and the frequency of each k-
word is a random variable denoted by fwk,i , the frequency of k-word
is approximately followed by the Gaussian distribution with mean
µ and variance σ 2. That is to say,

fwk,i ∼ N(µ, σ 2). (11)

Give two biological sequences X and Y , the frequencies of k-word
fwk,i in sequences X and Y follow two different Gaussian models

f X
wk,i

∼ N
(
µX , σ 2

X

)
, (12a)

f Y
wk,i

∼ N
(
µY , σ 2

Y

)
. (12b)

According to distribution function of the Gaussian distribution, we
have

�µX ,σ 2
X

(
f X
wk,i

) = P
(
x ≤ f X

wk,i

) = 1

σX
√

2π

∫ f X
wk,i

−∞
e
− (t−µX )2

2σ2
X dt, (13a)

�µY ,σ 2
Y

(
f Y
wk,i

) = P
(
x ≤ f Y

wk,i

) = 1

σY
√

2π

∫ f Y
wk,i

−∞
e
− (t−µY )2

2σ2
Y dt, (13b)

where f X
wk,i

(f Y
wk,i

) is the frequency of k-word wk,i in X(Y).

�µX ,σ 2
X
(f X

wk,i
)(�µY ,σ 2

Y
(f Y

wk,i
)) is the probability of observing frequen-

cies of wk,j (≤ f X
wk,i

(≤ f Y
wk,i

)) in sequence X(Y). Note that a
word is called highly expressed if its observed frequency is more
than its expected frequency, and called low expressed otherwise.
In this sense, the probability �µX ,σ 2

X
(f X

wk,i
)(�µY ,σ 2

Y
(f Y

wk,i
)) measures

a level of expression—low value of �µX ,σ 2
X
(f X

wk,i
)(�µY ,σ 2

Y
(f Y

wk,i
))

corresponds to low expression of word wk,i, and large value of
�µX ,σ 2

X
(f X

wk,i
)(�µY ,σ 2

Y
(f Y

wk,i
)) corresponds to high expression of the

word wk,i in sequence X(Y). We define the probability distance
between X and Y as

dNor(X, Y) =
|F|∑
i=1

∣∣�µX ,σ 2
X

(
f X
wk,i

) − �µY ,σ 2
Y

(
f Y
wk,i

)∣∣

=
|F|∑
i=1

∣∣∣∣∣ 1

σX
√

2π

∫ f X
wk,i

−∞
e
− (t−µX )2

2σ2
X dt − 1

σY
√

2π

∫ f Y
wk,i

−∞
e
− (t−µY )2

2σ2
Y dt

∣∣∣∣∣
=

|F|∑
i=1

∣∣∣∣∣�
(

f X
wk,i

− µX

σX

)
− �

(
f Y
wk,i

− µY

σY

)∣∣∣∣∣ . (14)

The dNor(X, Y) has the following properties: (i) it is a distance mea-
sure, because it satisfies positivity, symmetry and triangle inequality;
(ii) background information is incorporated into the measure; (iii) k-
words with identical frequency in two sequences may have different
expression levels.

Estimate of Parameters

Since the mean µ and variance σ 2 are priori unknown, we have
to estimate them according to the observed sequences. Here, we
estimate the parameters of Gaussian model by using the maximum
likelihood method.

Give a biological sequence, its k-word frequencies are
f (wk,1), f (wk,2), . . . , f (wk,n). Suppose f (wk,1), f (wk,2), . . . , f (wk,n)

are independent and each is normally distributed with expectation
µ and variance σ 2 > 0. These observed values of these n random
variables make up a “sample of size n from a normally distributed
population.” It is desired to estimate the “population mean” µ and
the “population standard deviation” σ , based on the observed values
of this sample. The continuous joint probability density function of
these n independent random variables is

f (x1, x2, . . . , xn, µ, σ) =
n∏

i=1

ϕµ,σ 2 (xi)

=
(

1

σ
√

2π

)n n∏
i=1

e
− 1

2

(
xi−µ

σ

)2

, (x1, x2, . . . , xn) ∈ R
n. (15)

As a function of µ and σ , the likelihood function based on the
observations f (wk,1), f (wk,2), . . . , f (wk,n) is

L(µ, σ) = C

σ n
e
−

( ∑n
i=1(f (wk,i )−µ)2

2σ2

)2

, µ ∈ R, σ > 0, (16)

with some constant C > 0.
In the method of maximum likelihood, the values of µ and σ

that maximize the likelihood function are taken as estimates of the
population parameters µ and σ . Usually in maximizing a function
of two variables, one might consider partial derivatives. But here we
will exploit the fact that the value of µ that maximizes the likelihood
function with σ fixed does not depend on σ . Therefore, we can find
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that value of µ, then substitute it for µ in the likelihood function, and
finally find the value of σ that maximizes the resulting expression.

It is evident that the likelihood function is a decreasing function
of the sum

n∑
i=1

(f (wk,i) − µ)2. (17)

So we want the value of µ that minimizes this sum. Let

f̄ = (f (wk,1) + · · · + f (wk,n))/n (18)

be the “sample mean” based on the n observations. Observe that

n∑
i=1

(f (wk,i) − µ)2 =
n∑

i=1

(f (wk,i) − f̄ + f̄ − µ)2

=
n∑

i=1

(f (wk,i) − f̄ )2 + 2(f̄ − µ)

n∑
i=1

(f (wk,i) − f̄ ) +
n∑

i=1

(f̄ − µ)2

=
n∑

i=1

(f (wk,i) − f̄ )2 + n(f̄ − µ)2. (19)

Only the last term depends on µ and it is minimized by

µ̂ = f̄ . (20)

That is the maximum-likelihood estimate of µ based on the n
observations f (wk,1), f (wk,2), . . . , f (wk,n). When we substitute that
estimate for µ into the likelihood function, we get

L(f̄ , σ) = C

σ n
e−

( ∑n
i=1(f (wk,i )−f̄ )2

2σ2

)2

, σ > 0, (21)

It is conventional to denote the “log-likelihood function,” i.e., the
logarithm of the likelihood function, by a lower-case �, and we have

�(f̄ , σ) = log C − n log σ n −
∑n

i=1(f (wk,i) − f̄ )2

2σ 2
, σ > 0,

(22)

and then

d�(f̄ , σ)

dσ
= − n

σ
+

∑n
i=1(f (wk,i) − f̄ )2

σ 3

= n

σ 3

(
σ 2 − 1

n

n∑
i=1

(f (wk,i) − f̄ )2

)
, σ > 0. (23)

Thus

σ̂ 2 = 1

n

n∑
i=1

(f (wk,i) − f̄ )2. (24)

Evaluation

The proposed method is evaluated by extensive experiments such as
similarity search, evaluation on functionally related genes, and phy-
logenetic analysis. We presently grouped our experiments into two
sets. The first one, performed via ROC (receiver operating curve)
analysis, aims at assessing the intrinsic ability of our method to
search for similar sequences from a database and discriminate func-
tionally related genes from unrelated sequences. The second one
aims at assessing how well our method is used for phylogenetic
analysis.

Evaluation Method

The method that will be used here to evaluate performance of the
presented method is based on the analysis of ROC curves. ROC
goes back to signal detection and classification problems and is now
widely used.37 This approach is employed in binary classification of
continuous data, usually categorized as positive (1) or negative (0)
cases. The classification accuracy can be measured by plotting, for
different threshold values, the number of true positives (TP), also
named sensitivity or coverage versus false positives (FP), or (1-
specificity), encountered for each threshold, properly normalized
[eq. (25)].

sensitivity = True Positives

Positives
= TP

TP + FN
,

specificity = True Negatives

Negatives
= TN

TN + FP
,

1 − specificity = FP

TN + FP
. (25)

A ROC curve is simply the plot of sensitivity versus (1-
specificity) for different threshold values. The area under a ROC
curve (AUC) is a widely employed parameter to quantify the quality
of a classificator because it is a threshold independent performance
measure and is closely related to the Wilcoxon signed-rank test.38

For a perfect classifier, the AUC is 1 and for a random classifier the
AUC is 0.5. For additional results and comprehensive discussion on
AUC measure, see ref. 39.

Similarity Search

The proposed method is used to search for similar sequences of a
query sequence from a database of 39 library sequences, of which 20
sequences are known to be similar in biological function to the query
sequence, and the remaining 19 sequences are known as being not
similar in biological function to the query sequence. This data set has
been studied in refs. 12,30 and 40. These 39 sequences were selected
from mammals, viruses, plants, etc., of which lengths vary from 322
to 14121 bases. The query sequence is HSLIPAS (Human mRNA

Journal of Computational Chemistry DOI 10.1002/jcc
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Figure 3. ROC curves for similarity search dataset. Similarity measure names are presented with word
length as suffix. A random classifier would generate equal proportions of FP and TP classifications, which
corresponds to the ROC diagonal (dashed line).

for lipoprotein lipase), which has 1612 bases. These sequences are
described in the Supporting Information.

The 20 sequences, which are known as being similar in bio-
logical function to HSLIPAS, are as follows: OOLPLIP (Oestrus
ovis mRNA for lipoprotein lipase, 1656 bp), SSLPLRNA(pig back
fat Sus scrofa cDNAsimilar to S. scrofa LPL mRNA for lipopro-
tein lipase, 2963 bp), RATLLIPA (Rattus norvegicus lipoprotein
lipase mRNA, complete cds, 3617 bp), MUSLIPLIP (Mus muscu-
lus lipoprotein lipase gene, partial cds, 3806 bp), GPILPPL (guinea
pig lipoprotein lipase mRNA, complete cds, 1744 bp), GGLPL
(chicken mRNA for adipose lipoprotein lipase, 2328 bp), HSHTGL
(human mRNA for hepatic triglyceride lipase, 1603 bp), HUMLIPH
(human hepatic lipase mRNA, complete cds, 1550 bp), HUM-
LIPH06 (human hepatic lipase gene, exon 6, 322 bp), RATHLP (rat
hepatic lipase mRNA, 1639 bp), RABTRIL [Oryctolagus cunicu-
lus (clone TGL-5K) triglyceride lipase mRNA, complete cds, 1444
bp], ECPL (Equus caballus mRNA for pancreatic lipase, 1443 bp),
DOGPLIP (canine lipase mRNA, complete cds, 1493 bp), DMY-
OLK [Drosophila gene for yolk protein I (vitellogenin), 1723 bp],
BOVLDLR [bovine low-density lipoprotein (LDL) receptor mRNA,
879 bp], HSBMHSP (Homo sapiens mRNA for basement membrane
heparan sulfate proteoglycan, 13,790 bp), HUMAPOAICI (human
apolipoprotein A-I and C-III genes, complete cds, 8966 bp), RAB-
VLDLR (O. cuniculus mRNA for very LDL receptor, complete
cds, 3209 bp), HSLDL100 (human mRNA for apolipoprotein B-
100, 14,121 bp), and HUMAPOBF (human apolipoprotein B-100
mRNA, complete cds, 10,089 bp).

The other 19 sequences known as being not similar in biological
function to HSLIPAS are as follows: A1MVRNA2 [alfalfa mosaic
virus (A1M4) RNA 2, 2593 bp], AAHAV33A [Acanthocheilonema
viteae pepsin-inhibitorlike- protein (Av33) mRNA sequence, 1048
bp], AA2CG (adeno-associated virus 2, complete genome, 4675

bp), ACVPBD64 (artificial cloning vector plasmid BD64, 4780 bp),
AL3HP (bacteriophage alpha-3 H protein gene, complete cds, 1786
bp), AAABDA [Aedes aegypti abd-A gene for abdominal-A protein
homolog (partial), 1759 bp], BACBDGALA [Bacillus circulans beta-
d-galactosidase (bgaA) gene, complete cds, 2555 bp], BBCA (Bos
taurus mRNA for cyclin A, 1512 bp), BCP1 (bacteriophage Chp1
genome DNA, complete sequence, 4877 bp) and CHIBATPB (sweet
potato chloroplast F1-ATPase beta and epsilon-subunit genes, 2007
bp), A7NIFH (Anabaena 7120 nifH gene, complete CDS, 1271 bp),
AA16S (Amycolatopsis azurea 16S rRNA, 1300 bp), ABGACT2
(Absidia glauca actin mRNA, complete cds, 1309 bp), ACTI-
BETLC (Actinomadura R39 DNA for beta-lactamase gene, 1902
bp), AMTUGSNRNA (Ambystoma mexicanum AmU1 snRNA gene,
complete sequence, 1027 bp), ARAST18B (cloning vector pAST
18b for Caenorhabditis elegans, 3052 bp), GCALIP2 (Geotrichum
candidum mRNA for lipase II precursor, partial cds, 1767 bp),
AGGGLINE (Ateles geoffroyi gamma-globin gene and L1 LINE
element, 7360 bp), and HUMCAN (H. sapiens CaN19 mRNA
sequence, 427 bp).

ROC curves are computed to evaluate and compare the per-
formance of our measure with other measures. The evaluated
measures are as follows: the similarity measures based on Clustal W,
Euclidean distance (eu),28 Mahalanobis distance (md),29 standard
Euclidean distance (sd),29 Kullback-Leibler discrepancy (kld),30

Cosine distance (cos),31 D2z,32 D2,34 D3
34 and our measure dNor.

All measures based on k-word frequencies run with k from 2 to 5.
For each measures, separate tests are done with each combination
of parameter values, and the best combination is chosen to repre-
sent that score in the performance. The ROC curves obtained for the
similarity search are presented in Figure 3.

The AUC value is typically used as a measure of overall dis-
crimination accuracy. Table 1 provides the areas under ROC curves
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Table 1. Comparison of AUCs Obtained from All the Similarity Measures
with Word Length as Suffix.

Asymptotic 95% confidence

Methods Area
TStd.
Error

Asymptotic
Sig. Lower bound Upper bound

Clustal W 0.922 0.048 0.000 0.827 1.017
cos.2 0.900 0.053 0.000 0.796 1.004
ed.3 0.897 0.058 0.000 0.785 1.010
kld.4 0.900 0.051 0.000 0.800 1.000
D2z.5 0.929 0.040 0.000 0.851 1.007
md.3 0.916 0.050 0.000 0.819 1.013
sd.4 0.705 0.089 0.028 0.531 0.879
D2.4 0.874 0.058 0.000 0.760 0.987
D3.3 0.889 0.054 0.000 0.783 0.996
dNor.4 0.953 0.030 0.000 0.894 1.011

(AUC) obtained from all the measures. Figure 3 and Table 1 show
that dNor.4 performs better than other alignment-based or alignment-
free measures on similarity search. Its area under ROC curve is
0.953 with the small standard error 0.030 for this estimate. Clustal
W outperforms other alignment-free measures such as cos.3, ed.3,
kld.4, md.3, sd.4, D2.4, and D3.3. Among the similarity measures
based on k-word distributions, D2z.5 is clearly more efficient than
other measures. The main surprise of this analysis is that when we
explore the distribution information of k-word frequencies in our
way, dNor.4 performs better than other similarity measures based
on k-word frequencies. The inspection of the ROC curves them-
selves (Fig. 3) further illustrates this comparison between similarity
measures.

Evaluation on Functionally Related Genes

The proposed Gaussian model of k-word frequencies is further
tested to evaluate if functionally or evolutionarily related gene
pairs are scored better than unrelated pairs of random sequences.
To assess the performance on functionally related genes, we con-
struct data sets as follows. We selected three sets of genes, each
involved in a particular pathway: nitrogen metabolism (NIT fam-
ily, 31 genes), phosphate utilization (PHO family, 13 genes), and
methionine biosynthesis (MET family, 20 genes). They are well
studied in ref. 41. We retrieved the 800 bp sequence upstream the
start codon of each gene as “positive” sets. As “negative” sets, we
generated random sequences with lengths matching the sequence in
“positive” sets.

Each pair of sequences in the positive set is compared, and so is
each pair in the negative set. The evaluation procedure is based on a
binary classification of each sequence pair, where 1 corresponds to
the pairs from positive set, 0 corresponds to the pairs from negative
set. Let n be the number of sequences in the positive set, all the
pairs constitute a vector of length 2

(n
2

)
, which is used as prediction.

Also, we can get a vector of length 2
(n

2

)
consisting of 1 and 0 as

class labels. A perfect measure would completely separate negative
from positive set. Of course, this does not happen in practice, and
the classes are interspersed. The ROC curves permit to assess the
level of accuracy of this separation without choosing any distance

threshold for the separation point. In particular, the AUC will give
us a unique number of the relative accuracy of each measure.

The similarity measures evaluated here are as follows: the sim-
ilarity measures based on alignment, Euclidean distance (eu),28

Mahalanobis distance (md),29 standard Euclidean distance(sd),29

Kullback Leibler discrepancy(kld),30 Cosine distance (cos),31

D2z,32 D2,34 D3,34 and our measure dNor, where the similarity
measures based on alignment are Needleman-Wunsch (global align-
ment) or Smith-Waterman (local alignment) raw scores, with no
correction for statistical significance, using linear gap penalties or
affine gap penalties, with a gap penalty of 2. All measures based
on k-word distributions run with k from 2 to 5. For each measures,
separate tests are done with each combination of parameter values,
and the best combination is chosen to represent that score in the
performance. ROC curves are computed to evaluate and compare
the performances of our measures and other measures. The ROC
curves obtained for NIT, Met, and PHO are presented in Figures 4
and 5.

Table 2 summarizes the AUCs obtained from all the measures
for three data sets. In the MET experiment, dNor.4 performs better
than other alignment-based and word-based measures, with the area
under ROC curve 1.000. The next best measure is kld.2, and the other
measures lag behind. In the NIT experiment, dNor.5 measure is bet-
ter than all other measures, and its area under ROC curve is 1.000.
In the MUSCLE experiment, dNor.3 outperforms other methods,
with the area under ROC curve 1.000. It is followed by kld.5. From
the three experiments, we can see that dNor, exploring the distri-
bution of k-word frequencies, performs better than other measures.
The inspection of the ROC curves themselves (Figs. 4 and 5) further
illustrates these comparisons among similarity measures. The highly
significant results of our method demonstrate that the dNor measure
is successful at detecting the functional similarity of genes from
the random sequences. Since the different genes are only function-
ally related and not orthologous, the gene search algorithm requires
a method that can discern functional similarity among candidate
genes based on their sequence similarity. From Table 2, we can note
that the alignment-based methods lag behind some alignment-free
methods.

Construction of Phylogenetic Tree of Coronaviruses

Since the outbreak of atypical pneumonia referred to as severe acute
respiratory syndrome (SARS), more attentions42–45 have been paid
to the relationships between the SARS-CoVs and the other coro-
naviruses, which would be helpful to discover drugs and develop
vaccines against the virus. Generally, coronaviruses can be divided
into three groups according to serotypes. Group I and group II con-
tain mammalian viruses, while group II coronaviruses contain a
hemagglutinin esterase gene homologous to that of Influenza C
virus.46 Group III contains only avian.

Based on the Gaussian model of k-word frequencies, we next
consider to infer the phylogenetic relationships of coronaviruses
with the complete coronavirus genomes. The 24 complete coron-
avirus genomes used in this article were downloaded from GenBank,
of which 12 are SARS-CoVs and 12 are from other groups of coro-
naviruses. The name, accession number, abbreviation, and genome
length for the 24 genomes are listed in Table 3. Given a set
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Figure 4. ROC curves for data sets Met and NIT. ROC(a) curves for data MET and ROC(b) curves for
data NIT. Similarity measure names are presented with word length as suffix. A random classifier would
generate equal proportions of FP and TP classifications, which corresponds to the ROC diagonal (dashed
line).

Figure 5. ROC curves for data sets PHO. Similarity measure names are presented with word length as suffix.
A random classifier would generate equal proportions of FP and TP classifications, which corresponds to
the ROC diagonal (dashed line).
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Table 2. Comparison of AUCs Obtained from All the Similarity Measures
with Word Length as Suffix.

Method MET Method NIT Method PHO

NW-linear 0.549 NW-linear 0.531 NW-linear 0.568
NW-affine 0.551 NW-affine 0.545 NW-affine 0.586
SW-linear 0.823 SW-linear 0.805 SW-linear 0.868
SW-affine 0.823 SW-affine 0.805 SW-affine 0.868
cos.2 0.817 cos.5 0.816 cos.5 0.888
eu.2 0.881 eu.5 0.879 eu.3 0.849
kld.2 0.991 kld.5 0.988 kld.5 0.972
D2z.2 0.812 D2z.3 0.854 D2z.5 0.847
md.3 0.959 md.4 0.922 md.5 0.902
sd.3 0.954 sd.4 0.915 sd.3 0.896
D2.2 0.838 D2.5 0.785 D2.5 0.849
D3.2 0.838 D3.5 0.785 D3.5 0.849
dNor.4 1.000 dNor.5 1.000 dNor.3 1.000

of biological sequences, their phylogenetic tree can be obtained
through the following main operations: firstly, we construct the
Gaussian model for biological sequences; secondly, we calculate
their similarity degree by using our measure dNor. Thirdly, by arrang-
ing all the similarity degree into a matrix, we obtain a pair-wise
distance matrix. Finally, we put the pair-wise distance matrix into
the neighbor-joining program in the PHYLIP package.47 We obtain
the phylogenetic relationships drawn by MEGA program (9). In
Figure 6, we present the unrooted phylogenetic tree belonging to 24
species.

Figure 6 shows that our results are quite consistent with the
accepted taxonomy and authoritative ones42–45 in the following
four aspects. First, all SARS-CoVs are grouped in a separate
branch, which appear different from the other three groups of coro-
naviruses. Secondly, BCOV, BCOVL, BCOVM, BCOVQ, MHV,
MHV2, MHVM, and MHVP are grouped into a branch, which is
consonant with that they belong to group II. Thirdly, HCoV-229E,
TGEV, and PEDV are closely related to each other, which is consis-
tent with the fact that they belong to group I.28 Finally, IBV forms a
distinct branch within the genus Coronavirus, because it belongs to
group III. Grigoriev43 found that the mutational patterns in SARS-
CoV genome were strikingly different from the other coronaviruses
in terms of mutation rates. Phylogenetic analysis based on codon
usage pattern suggested that SARS-CoV was diverged far from all
the three known groups of coronavirus.44 Rota et al.42 found out that
the overall level of similarity between SARS-CoVs and the other
coronaviruses is low. Our tree also reconfirms that SARS-CoVs are
not closely related to any previously isolated coronaviruses and form
a new group, which indicates that the SARS-CoVs have undergone
an independent evolution path after the divergence from the other
coronaviruses.

Whole genome-based phylogenetic analysis is appealing
because single gene sequences generally do not possess enough
information to construct an evolutionary history of organisms. Now
phylogenetic analysis based on sequence alignments is well devel-
oped. However, it can hardly be applied to complete genomes,
because the computational load of multiple alignment increases
with the increasing length of sequence. Being different from the
sequence alignment method, the current method is more simple and
yields results reasonably.

Table 3. The Accession Number, Abbreviation, Name, and Length for Each of the 24 Coronavirus Genomes.

No. Accession Group Abbreviation Genome Length (nt)

1 NC_002645 I HCoV-229E Human coronavirus 229E 27,317
2 NC_002306 I TGEV Transmissible gastroenteritis virus 28,586
3 NC_003436 I PEDV Porcine epidemic diarrhea virus 28,033
4 U00735 II BCOVM Bovine coronavirus strain Mebus 31,032
5 AF391542 II BCOVL Bovine coronavirus isolate BCoV-LUN 31,028
6 AF220295 II BCOVQ Bovine coronavirus strain Quebec 31,100
7 NC_003045 II BCOV Bovine coronavirus 31,028
8 AF208067 II MHVM Murine hepatitis virus strain ML-10 31,233
9 AF201929 II MHV2 Murine hepatitis virus strain 2 31,276

10 AF208066 II MHVP Murine hepatitis virus strain Penn 97-1 31,112
11 NC_001846 II MHV Murine hepatitis virus 31,357
12 NC_001451 III IBV Avian infectious bronchitis virus 27,608
13 AY278488 – BJ01 SARS coronavirus BJ01 29,725
14 AY278741 – Urbani SARS coronavirus Urbani 29,727
15 AY278491 – HKU-39849 SARS coronavirus HKU-39849 29,742
16 AY278554 – CUHK-W1 SARS coronavirus CUHK-W1 29,736
17 AY282752 – CUHK-Su10 SARS coronavirus CUHK-Su10 29,736
18 AY283794 – SIN2500 SARS coronavirus Sin2500 29,711
19 AY283795 – SIN2677 SARS coronavirus Sin2677 29,705
20 AY283796 – SIN2679 SARS coronavirus Sin2679 29,711
21 AY283797 – SIN2748 SARS coronavirus Sin2748 29,706
22 AY283798 – SIN2774 SARS coronavirus Sin2774 29,711
23 AY291451 – TW1 SARS coronavirus TW1 29,729
24 NC_004718 – TOR2 SARS coronavirus 29,751

Journal of Computational Chemistry DOI 10.1002/jcc



360 Dai et al. • Vol. 31, No. 2 • Journal of Computational Chemistry

Figure 6. The unrooted consensus species tree for 24 coronavirus by
our distance dNor at k = 6 using whole genomes.

Conclusion

Sequence comparison is rapidly becoming an essential tool for
bioinformatics applications. It has been used to support other types
of analyses, from searching a database with a query DNA sequence
to the phylogenetic tree construction. Despite the prevalence of
alignment-based methods, it is noteworthy that alignment-based
method is computationally intensive and consequently unpractical
for querying large data sets, which forces the use of some heuristics
to reduce the running times, as exemplified by BLAST. Alignment-
free comparison method is therefore of great value as it reduces the
technical constraints of alignments.

A novel alignment-free method for sequence comparison is pro-
posed in this work. We assume that the frequencies of a given k-word
in a biological sequence follows the Gaussian distribution. The sim-
ilarity between two sequences can be evaluated by the difference
between their corresponding Gaussian models. In contrast to the tra-
ditional word-based methods based on frequencies of fixed k-words,
our method takes distribution information of k-word frequencies
into account. In other words, our method has the ability to adjust the
background information for similarity measure using k-word fre-
quencies. The test of our methods are to perform similarity search
and evaluate the functionally related genes. To evaluate this method,
we compare it with alignment-based or word-based methods. The
comparison demonstrates that our method, intending to explore k-
word frequency distribution information, gives more competitive
results (Tables 1 and 2). In addition, the reasonable results of phy-
logenetic tree construction illustrate the validity of our method for
phylogenetic analysis.

In summary, this work presented a new and effective compu-
tational framework for sequence comparison. It can be used as

another useful tool in addition to existing alignment-based and
alignment-free methods for the research community of bioinformat-
ics. The results also indicated that it is a necessity for alignment-free
methods to extract more information in order to have a good com-
parison performance. This understanding can then be used to guide
development of more powerful sequence comparison method for
potential improvement on evolutionary study, structure and function
prediction.
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