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An early prediction model 
for chronic kidney disease
Jing Zhao1,4, Yuan Zhang1,2,4, Jiali Qiu1,4, Xiaodan Zhang1,4, Fengjiang Wei1, Jiayi Feng1, 
Chen Chen3, Kai Zhang3, Shuzhi Feng3* & Wei‑Dong Li1*

Based on the high incidence of chronic kidney disease (CKD) in recent years, a better early prediction 
model for identifying high‑risk individuals before end‑stage renal failure (ESRD) occurs is needed. We 
conducted a nested case–control study in 348 subjects (116 cases and 232 controls) from the “Tianjin 
Medical University Chronic Diseases Cohort”. All subjects did not have CKD at baseline, and they were 
followed up for 5 years until August 2018. Using multivariate Cox regression analysis, we found five 
nongenetic risk factors associated with CKD risks. Logistic regression was performed to select single 
nucleotide polymorphisms (SNPs) from which we obtained from GWAS analysis of the UK Biobank 
and other databases. We used a logistic regression model and natural logarithm OR value weighting 
to establish CKD genetic/nongenetic risk prediction models. In addition, the final comprehensive 
prediction model is the arithmetic sum of the two optimal models. The AUC of the prediction model 
reached 0.894, while the sensitivity was 0.827, and the specificity was 0.801. We found that age, 
diabetes, and normal high values of urea nitrogen, TGF‑β, and ADMA were independent risk factors 
for CKD. A comprehensive prediction model was also established, which may help identify individuals 
who are most likely to develop CKD early.

Chronic kidney disease (CKD), especially its complications, has posed a serious threat to public health world-
wide. The global all-age mortality rate from CKD increased by 41.5% between 1990 and  20171. A cross-sectional 
study showed that the prevalence of chronic kidney disease in China was approximately 10.8%2, which means 
that there were approximately 119.5 million CKD patients in China.

To date, certain risk factors are highly associated with chronic kidney disease, including  age3, female  sex4, 
 obesity5, and diabetes  mellitus6. Recently, several biomarkers associated with CKD were found. A few previous 
studies have shown that elevated ADMA (asymmetric dimethylarginine) levels could cause renal  damage7. 
Several studies have pointed out that ADMA is a powerful biomarker for predicting CKD  mortality8–10. It has 
also been shown that NFAL (neutrophil gelatinase-associated lipocalin) expression levels appear to correlate 
with the degree of renal dysfunction, which may help to identify patients at high risk for a more rapid decline 
in renal  function11. Furthermore, the decrease in serum CysC (cystatin C) is correlated with the decrease in 
eGFR  concentration12. It has been speculated that CysC could be used together with serum creatinine as a new 
biomarker or as a substitute for serum creatinine to better identify the occurrence of kidney disease in the gen-
eral  population13,14. TGF-β (transforming growth factor-β) is the main regulator of tubular interstitial  fibrosis15, 
and TGF-β signaling can influence a few important renal injury responses in other growth factor signaling 
 pathways16,17, ultimately affecting the onset of  CKD18. Previous studies have reported that more than 50 single 
nucleotide polymorphisms (SNPs) are associated with renal function indexes or CKD  worldwide19.

The treatment of chronic kidney disease and renal failure is costly and rarely effective. However, less than 5% 
of patients with early CKD report awareness of their  disease20. Once CKD can be diagnosed, glomerular damage 
has reached over 50% and is usually irreversible. Effective prediction of chronic kidney disease can be immensely 
useful in this aspect. Therefore, several CKD prediction models for different populations  were21–24 introduced. 
Recently, a study developed equations for predicting CKD based on 34 multinational  cohorts25. Nevertheless, few 
models have considered both genetic and nongenetic risk factors. Although many prediction models reached high 
prediction power in a relatively large population, early prediction [at least when eGFR > 60 mL/(min·1.73  m2)] is 
essential for CKD treatment and prevention. In this study, we developed genetic, nongenetic (including biomark-
ers), and comprehensive risk score prediction models for CKD in a nested case–control study.
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Results
In this nested case–control study, 348 participants (all had eGFR ≥ 60 mL/(min·1.73  m2) at baseline) were 
included (116 cases, 232 controls, subjects who reached eGFR < 60 mL/(min·1.73  m2) during the 5-year follow-
up were considered “cases”) (Fig. 1) to build a 5-year risk prediction model for the onset of CKD. The baseline 
characteristics of the included participants in the nested case–control study are described in Table 1. The levels 
of fasting plasma glucose (FPG), total cholesterol (TC), urea nitrogen (BUN), serum creatinine (SCr), total 
protein (TP), globulin (GLB), systolic blood pressure (SBP), cystatin C (CysC), transforming growth factor-β 
(TGF-β), and asymmetric dimethylarginine (ADMA) in the CKD group were significantly higher than those 
in the controls. The age of the CKD group was significantly higher than that of the non-CKD group, and the 
incidences of type 2 diabetes and hyperuricemia were higher than those of the non-CKD group (Table 1). In 
addition, triglyceride (TG), serum uric acid (SUA) and body mass index (BMI) levels in the CKD group were 
higher than those in the non-CKD group, but the differences were not statistically significant.

Non‑genetic risk factors for CKD. A Cox proportional risk regression model showed that age, diabetes 
mellitus, a normal high value of urea, a normal high value of TGF-β, and ADMA were independent risk factors 
for CKD (Table 2; Supplementary Table S3). Kaplan–Meier survival analyses showed that the elderly, normal 
high value of urea nitrogen, normal high value of TGF-β, normal high value of ADMA, and diabetes (we defined 
age ≥ 60 years as the elderly, taking the higher quartile of other measurement data as their normal high values) 
were significantly associated with chronic kidney disease onset in our cohort (Fig. 2).

Non‑genetic risk score (NGRS) prediction model for CKD. A total of 5 predictors, including age, 
diabetes mellitus, normal high value of BUN, normal high value of TGF-β, and ADMA, were included in the 
nongenetic prediction model for CKD. Among the four models (Supplementary Material S1; Table S4; Table S5) 
that we constructed based on those 5 risk factors, the CKDNGRS4 model yielded the highest C statistic (0.889; 
95% CI 0.851–0.925) and the highest OR value (4.113; 95% CI 3.039–5.566) (Table 3; Fig. 3). The prediction 
equation was logitP = 1.84 × S1 + 1.137 × S2 + 0.84 × S3 + 0.497 × S4 + 0.603 × S5, while S1 = TGF-β normal high 
value (0: < 1.011 pg/mL; 1: ≥ 1.011 pg/mL), S2 = ADMA normal high value (0: < 0.019 μmol/L; 1: ≥ 0.019 μmol/L), 
S3 = diabetes (0:unaffected; 1:affected), S4 = BUN normal high value (0: < 5.9  mmol/L; 1: ≥ 5.9  mmol/L), 
S5 = elderly (0: < 60 years; 1: ≥ 60 years. The sensitivity of the model was 0.851, while the specificity was 0.770.

Genetic risk score (GRS) prediction model for CKD. By integrating the results of CKD-related genetic 
loci in UK Biobank subjects (Supplementary Table S1) and previous studies, 25 SNPs were analyzed for their 
correlation with CKD by logistic regression analysis (Supplementary Table S7). Seventeen SNPs were selected in 

Figure 1.  Flow chart of subjects in the nested case–control study.
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the CKD genetic prediction model, including 7 SNPs derived from the UK Biobank. A total of 14 models were 
constructed (Supplementary Table S8; Material S2). Combining the results of regression analysis and survival 
analysis (Supplementary Table S9; Table S10), we found that CKDGRS14 was the best prediction model. The 
area under the ROC curve (AUC) of the model was 0.643 (95% CI 0.578–0.709), the sensitivity of the model was 
0.794, and the specificity was 0.838. The OR value was 2.363 (95% CI 1.518–3.679) (Table 3; Fig. 3). The genetic 
risk prediction equation for CKD was logitP =  0.577  ×  rs 173 19721Gi + (− 0.183) × rs700233 + (− 0.362) × rs671Gi 
+ (0.286) × rs11864909Gi + 1.099 × rs653178Gi + 0.255 × rs3752462Gi + 0.228 × rs13146355Gi + 0.253 × rs881858
Gi + (− 0.24) × rs1153849Gi + (− 0.234) × rs3770636Gi + (0.178) × rs504915Gi + 0.149 × rs16853722Gi + 0.683 × rs
12917707Gi + (− 0.133) × rs1731274Gi.

Comprehensive prediction model for CKD. Through analysis and screening, CKDNGRS4 and 
CKDGRS14 were found to be optimal nongenetic predictive models and genetic predictive models, respectively. 
The final comprehensive predictive model is the arithmetic sum of the two models. It was logitP =  0.577  ×  rs 173 
19721Gi + (− 0.183) × rs700233 + (− 0.362) × rs671Gi + (− 0.286) × rs11864909Gi + 1.099 × rs653179Gi + 0.255 × rs
3752462Gi + 0.228 × rs13146355Gi + 0.253 × rs881858Gi + (− 0.24) × rs1153849Gi + (− 0.234) × rs3770636Gi + (− 
0.178) × rs504915Gi + 0.149 × rs16853722Gi + 0.683 × rs12917707Gi + (− 0.133) × rs1731274Gi + 1.84 × S1 + 1.13
7 × S2 + 0.84 × S3 + 0.497 × S4 + 0.603 × S5. The predictive power of the CKD comprehensive prediction model 
was higher than that of either of the nongenetic or genetic prediction models: the AUC was 0.894 (95% CI 
0.857–0.931), the OR was 3.758 (95% CI 2.827–4.997), the sensitivity was 0.827, and the specificity was 0.801 
(Table 3, Fig. 3).

Internal validation. In the nested case–control study, bootstrap five-fold cross validation was carried out 
for different prediction models of CKD onset. After the verification results were averaged, the AUC values of the 
nongenetic, genetic, and comprehensive prediction models of CKD were 0.786, 0.692, and 0.820, respectively.

Table 1.  Baseline characteristics of subjects in the nested case–control study. FPG fasting plasma glucose, 
TC total cholesterol, TG triglyceride, BUN urea nitrogen, SCr serum creatinine, SUA serum uric acid, TP 
total protein, ALB albumin, GLB globulin, ALT alanine aminotransferase, TBIL total bilirubin, DBIL direct 
bilirubin, BMI body mass index, SBP systolic blood pressure, DBP diastolic blood pressure, CysC cystatin C, 
TGF-β transforming growth factor-β, ADMA asymmetric dimethylarginine, NGAL neutrophil gelatinase-
associated lipocalin. Data are expressed as the mean SD, percentage (number), or median (interquartile range); 
t test or Mann–Whitney rank sum test was used for the continuous variables.

Total (n = 348) CKD group (n = 116) Non-CKD group (n = 232) P value

Men (%) 260 (74.7%) 84 (70%) 176 (77.2%) < 0.001

Age (years) 63.27 ± 10.09 63.96 ± 7.74 63.33 ± 7.14 0.947

eGFR 82.85 ± 15.72 88.42 ± 14.74 72.40 ± 11.79 0.007

FPG (mmol/L) 5.11 ± 1.04 5.28 ± 1.13 5.02 ± 0.98 < 0.001

TC (mmol/L) 5.04 ± 0.88 5.22 ± 0.85 4.95 ± 0.89 0.006

TG (mmol/L) 1.75 ± 1.34 1.81 ± 1.65 1.72 ± 1.15 0.508

BUN (mmol/L) 5.45 ± 1.11 5.94 ± 1.11 5.20 ± 1.03 < 0.001

SCr (μmmol/L) 83.11 ± 14.32 89.82 ± 14.39 79.58 ± 12.99 0.009

SUA (μmmol/L) 335.6 ± 76.33 344.9 ± 81.27 330.8 ± 73.40 0.100

TP (g/L) 75.41 ± 4.30 75.94 ± 5.17 75.13 ± 3.74 0.005

ALB (g/L) 45.74 ± 2.62 45.57 ± 2.69 45.84 ± 2.59 0.938

GLB (g/L) 29.68 ± 3.41 30.38 ± 3.97 29.32 ± 3.01 0.003

ALT (IU/L) 25.93 ± 3.30 24.44 ± 10.39 26.71 ± 8.60 0.030

TBIL (μmol/L) 14.38 ± 4.63 13.52 ± 4.12 14.83 ± 4.83 0.013

DBIL (μmol/L) 2.30 ± 1.25 2.50 ± 1.35 2.19 ± 1.19 0.037

BMI (kg/m2) 24.63 ± 3.16 25.07 ± 3.54 24.39 ± 2.91 0.057

SBP (mmHg) 138.8 ± 19.72 147.7 ± 19.65 134.2 ± 18.14 < 0.001

DBP (mmHg) 77.42 ± 12.45 77.10 ± 12.76 77.59 ± 12.31 0.729

Hypertension (%) 64 (18.4%) 21 (17.5%) 43 (18.9%) 0.669

Type II diabetes (%) 19 (5.5%) 10 (8.3%) 9 (3.9%) < 0.001

Hyperuricemia (%) 52 (14.9%) 23 (19.2%) 29 (12.7%) 0.038

CysC (mg/L) 1.079 ± 0.64 1.32 ± 0.99 0.95 ± 0.76 < 0.001

TGF-β (pg/mL) 13.23 ± 5.18 17.70 ± 3.22 10.88 ± 4.41 < 0.001

ADMA (μmol/L) 101.1 ± 64.80 118.6 ± 46.47 91.89 ± 70.99 0.004

NGAL (µg/L) 16.55 ± 7.31 14.88 ± 7.72 17.43 ± 6.95 0.087
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Discussion
Early prediction of CKD is challenging. Decades of research have shown that diabetic nephropathy, primary 
glomerulonephritis, hypertension, interstitial nephritis, and polycystic kidney can all induce CKD. The aware-
ness of CKD is notoriously low; once CKD has developed, treatment is usually limited until the last remedies 
of dialysis and renal transplantations are needed for ESRD. The eGFR is a sensitive indicator of renal function; 
however, it is not an early predictor of CKD. Although many biomarkers have been tested for CKD, reappraisal 
in prospective cohort studies with large sample sizes is needed. Seeking an early, sensitive, easy to perform and 
cost-effective prediction model.

We carried out a nested case–control study for CKD prediction out of the “Tianjin Medical University Chronic 
Disease Cohort”26,27, with strong pertinence, facilitated prediction of the 5-year probability of chronic kidney 
disease onset in this area. The average age of the subjects was 63 years; thus, those individuals were more likely 
to develop CKD than younger subjects.

We combined traditional laboratory indicators, multiple biomarkers related to renal function, and SNP loci 
to develop CKD prediction models. In the NGRS model, we not only included some indicators that were used 
in other studies, such as diabetes and  age25,28,29, but several biomarkers, especially TGF-β and ADMA, were also 
employed as early CKD predictors in the model.

Although hundreds of associations were found among CKD and susceptibility genes, large sample-sized 
GWAS also yielded very significant results, and genetic factors only provided a little improvement of the pre-
diction model. Given a certain SNP, the genetic relative risk (GRR) could be high; however, its contribution to 
CKD risks in the general population was limited. All 17 SNPs employed in our study were from GWASs out of 
the UK Biobank and other large cohorts; however, the AUC of the genetic risk model (GRS) was only 0.643 and 
had only given a marginal improvement in the AUC in the comprehensive model (from 0.889 to 0.894). A study 
in Japan showed that genetic predictors do not contribute significantly to the improvement of the prediction 
efficiency of the comprehensive prediction  model29. Although certain SNPs had very significant associations 
with CKD in large sample-sized GWASs (i.e., high genetic relative risk, GRR), their contribution to phenotype 
variance might be limited.

Several biomarkers were tested and included in our prediction model. The plasma TGF-β level, alone with 
ADMA, provided better prediction value than the more direct glomerular filtration indicator cystatin C. In our 
previous study, we found that TGF-β pathway genes were highly expressed in the kidneys of very early stage 
diabetic nephropathy renal biopsies, long before renal fibrosis and decreased filtration occurred. Indeed, screen-
ing early biomarkers before decreasing eGFR may give CKD predictions several years earlier, although early 
treatment could be another obstacle to overcome.

This study has a few limitations. First, the research on CKD-related biomarkers was carried out in a nested 
case–control study that selected from a cohort of chronic diseases, and the sample size was relatively small; 
therefore, the results from the study may have had certain deviations. Second, our risk prediction model only 
focused on the onset of chronic kidney disease but did not assess the progression of chronic kidney disease to 

Table 2.  Non-genetic multivariate Cox regression analyses and non-genetic risk models (NGRS). TGF-β 
transforming growth factor-β, ADMA asymmetric dimethylarginine, BUN urea nitrogen, NGRS non-genetic 
risk score, HR hazard ratio, CI confidence interval. a Defined as the serum concentration of TGF-β ≥ 1.011 pg/
mL. b Defined as the serum concentration of ADMA ≥ 0.019 μmol/L. c Defined as the serum concentration of 
BUN ≥ 5.9 mmol/L. d Defined as the age of the participants ≥ 60 years.

Variables β SE χ2 HR 95% CI P-value NGRS model OR (model) 95% CI (model) P-value (model)

Women 0.216 0.207 1.094 1.241 0.828–1.861 0.296

Normal high value of TGF-βa 0.945 0.195 3.553 2.572 1.756–3.766 < 0.001

1. Normal high value 
of TGF-β, Normal high 
value of ADMA

3.634 2.723–4.850 < 0.001

Normal high value of  ADMAb 1.222 0.244 4.999 3.394 2.102–5.479 < 0.001

2. Normal high value 
of TGF-β, Normal 
high value of ADMA, 
Diabetes

3.703 2.775–4.942 < 0.001

Diabetes 0.742 0.272 7.450 2.100 1.233–3.578 0.006

3. Normal high value 
of TGF-β, Normal high 
value of ADMA, Diabe-
tes, Normal high value 
of BUN

3.917 2.910–5.273 < 0.001

Normal high value of  BUNc 0.693 0.197 12.335 2.00 1.359–2.946 < 0.001

4. Normal high value 
of TGF-β, Normal high 
value of ADMA, Diabe-
tes, Normal high value of 
BUN, The elderly

4.113 3.039–5.566 < 0.001

The  elderlyd 1.055 0.256 16.940 2.872 1.738–4.746 < 0.001
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renal failure or other complications. Third, participants who made up the “Tianjin Medical University Chronic 
Disease Cohort” were mostly teachers and government employees who worked in urban areas. This group of 
people were more self-disciplined and paid more attention to health. Whether our prediction model could be 
applied to other groups of people needs more external validation. Our future studies will detect more renal 
function-related biomarkers in larger cohorts to validate and improve the prediction model for CKD.

Recently, numerous predictive models have been established and came into use in the clinic for decision-
making. Among them, there exist several models estimating the risk of prevalent and incident  CKD22,28–31. How-
ever, due to differences in race, lifestyle, and geographic environment, it is still necessary to develop an effective 
predictive model for chronic kidney disease in different ethnic groups, which can help to identify people with 
higher CKD risks earlier, thus improving health care by allocating resources to those individuals who benefit 
most from it while preventing the potential abuse of health care resources by individuals who are at low risk.

Methods
Study design and population. This research was designed as a nested case–control study involving 348 
participants from the “Tianjin Medical University Chronic Diseases Cohort”. The cohort was established in 2006, 
with an initial number of 2068 people for an annual physical examination. By the end of 2018, a total of 21,750 
people had been recruited to the cohort, with the longest follow-up period of 13 years. We collected demo-
graphic markers, laboratory markers, and genotyping results for 110 loci (including 380 cases with genome-
wide genotyping data). We screened patients who met the following criteria: (i) with a follow-up period of at 
least 5 years; (ii) no CKD at the first physical examination; (iii) blood samples and other important information 
among whom 1804 were eligible; 116 were selected as the case group; and 232 were selected as the control group 
with sex and age ± 3 years matching; therefore, a total of 348 subjects were included. All subjects denied family 
history of inherited diseases and nephrotoxic drug usage.

This study was reviewed and approved by the Ethics Committee of Tianjin Medical University, and all par-
ticipants signed informed consent forms.

Diagnostic criteria. The diagnostic criteria for CKD were eGFR < 60 mL/(min·1.73   m2) or positive pro-
teinuria (≥ 1 +). The glomerular filtration rate is estimated using the simplified Chinese MDRD  equation32. 
The determination of diabetes mellitus (DM) is based on the diagnostic criteria of diabetes published by the 
World Health Organization (WHO) in 1999: fasting plasma glucose ≥ 7.0 mmol/L and/or 2 h postprandial glu-
cose ≥ 11 mmol/L. Obesity was defined as a body mass index (BMI) ≥ 28 kg/m2 according to the recommenda-
tion of the “Guidelines for the Prevention and Control of Overweight and Obesity among Chinese Adults”33 by 
the Ministry of Health. Hypertension was defined as systolic blood pressure (SBP) ≥ 140 mmHg and/or diastolic 
blood pressure (DBP) ≥ 90 mmHg or a self-reported history of physician-diagnosed hypertension. The diag-

Figure 2.  Kaplan–Meier survival curve of CKD cumulative incidence in 348 subjects of the nested case–
control study. (a) Elderly individuals; (b) normal high value of urea nitrogen (BUN); (c) normal high value of 
transforming growth factor-β (TGF-β); (d) normal high value of asymmetric dimethylarginine (ADMA); (e) 
diabetes.
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nostic criteria for hyperuricemia (HUA)34 were blood uric acid level ≥ 420 μmol/L in men and ≥ 360 μmol/L in 
women.

Measurements of biomarkers. After twelve hours of fasting, participants’ venous blood samples were 
collected into nonanticoagulant blood collection tubes at 7:30–9:00 am, incubated at room temperature for half 
an hour and then centrifuged at 3000 rpm at 4 °C for 10 min to separate serum. The serum was stored at − 80 °C 
before analysis. Levels of fasting plasma glucose, serum creatinine, urea nitrogen, serum uric acid, total choles-
terol, triglyceride, alanine aminotransferase, total protein, albumin, globulin, total bilirubin, and direct biliru-
bin were determined using a Hitachi automatic biochemical analyzer. Cystatin C (CysC), transforming growth 
factor beta (TGF-β), asymmetric dimethylarginine (ADMA) and neutrophil gelatinase-associated lipocalin 
(NGAL) were measured by ELISA kits (Shanghai Huyu Biotechnology Co., LTD).

Selection of CKD‑related nongenetic/genetic risk factors. We incorporated 21 potential risk factors, 
including several biomarkers, into the univariate Cox proportional hazard model (Supplementary Table S3), and 
then significant factors were taken as explanatory variables and incorporated into the multivariate Cox propor-
tional hazard regression model. Finally, we obtained five nongenetic risk factors (Table 2; Fig. 2).

After obtaining part of the data access of the UK-Biobank database, we used PLINK to perform genome-wide 
association analysis (GWAS) for renal function-related indicators, including eGFR, SCr, and CysC. The results 
of the GWAS are shown in the Manhattan plot (Supplementary Fig. S1). Combined with the results of previous 
studies, a total of 10 SNP loci on 10 genes were screened (Supplementary Table S1). Meanwhile, after integrating 
information from GWAS databases, the UCSC Genomic bioinformatics Database, and GWAS results for kidney 
function-related phenotypes in Asia or  China35–37, SNP loci with both high genotype relative risk (GRR) and 
genome-wide polygenetic score (GPS) for CKD were selected. Finally, we selected a total of 27 SNP loci from 24 
genes to construct a genetic risk model for CKD (Supplementary Table S2). The 27 SNPs selected in this study 
were genotyped in 348 nested case–control subjects using a matrix-assisted laser desorption ionization time-of-
flight mass spectrometry (MALDI-TOF–MS) platform. Hardy–Weinberg equilibrium (HWE) was checked for 
all 27 SNPs, and we deleted 2 SNPs that failed HWE; therefore, genotyping data for 25 SNPs were documented.

Developing prediction models. In this study, genetic risk score (GRS) models and nongenetic risk score 
(NGRS) models were built from the weights of natural logarithms (β) of different risk factors’ OR values. The 
combined effects of each nongenetic or genetic factor were calculated in a weighted way, and the optimal com-
bination method was selected to develop the prediction model of CKD. The GRS equation was established based 
on the different contributions of each candidate SNP site to the pathogenesis of CKD. Each SNP site was consid-
ered a potential risk factor for CKD. Different weights for the contribution to the onset of CKD were determined 
by different OR (or β) values from logistic regression analysis to establish several combinations and screen for 
the optimal combination. Using a weighted genetic risk score (ωGRS), ωGRS = 

∑

i

1 βiGi (βi is the weight of the 
ith SNP,  Gi is the number of alleles at the ith SNP, and assigns a value of 0, 1, 2). The weight is the natural loga-
rithm of the odds ratio (OR) of SNPs and could be an estimated effect (β coefficient). For each individual, ωGRS 
is the sum of the number of risk alleles weighted by the OR (β) value of each SNP site in logistic regression. See 
Formula (1) for details.

Models

Logistic regression analysis ROC curve

OR 95%CI P-value AUC 95%CI P-value

NGRS4a 4.113 3.039–5.566 < 0.001 0.889 0.851–0.925 < 0.001

GRS14b 2.363 1.518–3.679 < 0.001 0.643 0.578–0.709 < 0.001

Comprehensive  modelc 3.758 2.827–4.997 < 0.001 0.894 0.857–0.931 < 0.001

Table 3.  Logistic regression analysis and prediction power comparison of nongenetic (NGRS), 
genetic (GRS), and comprehensive models for CKD. ROC receiver operating characteristic, OR odds 
ratio, CI confidence interval, AUC  area under curve, NGRS4 nongenetic risk score model 4, GRS14 
genetic risk score model 14. a NGRS4 = 1.84 × S1 + 1.137 × S2 + 0.84 × S3 + 0.497 × S4 + 0.603 × S5  (Si 
represents the state of the ith nongenetic risk factor; if the individual has the risk factor, the value is 
1; if not, the value is 0. S1 = TGF-β normal high value (0: < 1.011 pg/mL; 1:1.011 pg/mL), S 2 = ADMA 
normal high value (0: < 0.019 μmol/L; 1: ≥ 0.019 μmol/L), S 3 = diabetes (0:unaffected; 1:affected), S 
4 = BUN normal high value (0: < 5.9 mmol/L; 1: ≥ 5.9 mmol/L), S 5 = elderly (0: < 60 years; 1: ≥ 60 years). 
b GRS14 = 0.577 × rs17319721Gi + (− 0.183) × rs700233Gi + (− 0.362) × rs671Gi + (− 0.286) × rs11864909Gi  
+ 1.099 × rs653178Gi + 0.255 × rs3752462Gi + 0.228 × rs13146355Gi + 0.253 × rs881858Gi  
+ (− 0.24) × rs1153849Gi + (− 0.234) × rs3770636Gi + (− 0.178) × rs504915Gi + 0.149 × rs16853722Gi  
+ 0.683 × rs12917707Gi + (− 0.133) × rs1731274Gi (Gi is the number of alleles at the ith SNP, assigning a  
value of 0, 1, 2). c Comprehensive model = NGRS4 + GRS14.
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In the above formula, to fix the weight in advance, we used the value of log-converted single-risk alleles 
in studies with large sample sizes and high reliability (e.g., meta-analysis) as the weight in the actual model 
construction.

The building principle of the nongenetic risk score model is the same as that of the GRS. That is, according 
to the different contributions of the identified CKD-related nongenetic risk factors (e.g., normal high value of 
TGF-β, the elderly) to the incidence of CKD, different OR (or β) values of logistic regression analysis are used to 
determine different weights for the onset of CKD, establish different combinations and select the optimal com-
bination. The weighted nongenetic risk score (ωNGRS) was used, ωNGRS = 

∑

i

1 βiSi (βi is the weight of the ith 
corresponding nongenetic risk factor in the risk of developing CKD, and  Si is the ith corresponding nongenetic 
risk factor), and the weight β takes the natural logarithm of the OR value obtained by logistic regression analysis 
of different risk factors. For every individual, ωNGRS is the sum of risk factors weighted by the OR (β) value of 
different nongenetic risk factors in logistic regression. See Formula (2) for details.

In the above formula, S represents the set vector of a group of nongenetic risk factors  (Si represents the state 
of the ith nongenetic risk factor; if the individual has the risk factor, the value is 1; if not, the value is 0). The β 
value used in this study was the β value of each nongenetic risk factor in logistic regression analysis.

The construction of the comprehensive risk scoring model integrates the optimal GRS model and the NGRS 
model, which is the sum of the two models. See formula (3) for details.

Prediction model evaluation. The evaluation of the constructed GRS model, NGRS model and com-
prehensive predictive model adopted the receiver operating characteristic curve (ROC) area under the curve 
(AUC) method. MedCalc software was used to determine the optimal cut-off point of the ROC curve and the 

(1)

GRS =

i
∑

1

βiGi

LogitP = α+ β(GRS)

= α+ β

i
∑

1

βiGi

(2)

NGRS =

i
∑

1

βiSi

LogitP = α+ β(NGRS)

= α+ β

i
∑

1

βiSi

(3)

LogitP = α+ β(GRS+NGRS)

= α+ β

(

i
∑

1

βiGi +

i
∑

1

βiSi

)

Figure 3.  ROC curves of the nongenetic (NGRS4), genetic (GRS14), and comprehensive models for CKD 
prediction. NGRS4: The No. 4 nongenetic risk score model; GRS14: The No. 14 nongenetic risk score model.



8

Vol:.(1234567890)

Scientific Reports |         (2022) 12:2765  | https://doi.org/10.1038/s41598-022-06665-y

www.nature.com/scientificreports/

sensitivity and specificity at the optimal cut-off point. Finally, the evaluation of the prediction effectiveness of 
the constructed CKD prediction model is realized. The constructed GRS model, NGRS model and comprehen-
sive prediction model were internally validated in a nesting case–control study using bootstrap five-fold cross-
validation. All data analyses were performed using SPSS 21.0 software. Statistical significance was determined 
with a threshold P value of < 0.05.

All methods were performed in accordance with the relevant guidelines and regulations.

Conclusion
Age, diabetes, normal high values of creatinine, TGF-β, and ADMA are independent indicators for CKD inci-
dence. A comprehensive prediction model was established, although genetic factors that analyzed in our study 
yielded limited prediction values for CKD incidence. Early and appropriate intervention can be exerted to avoid 
getting worse and even irreversible.
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