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Abstract: Epileptogenesis is a complex and not well understood phenomenon. Here, we explore the 
hypothesis that epileptogenesis could be “hijacking” normal memory processes, and how this 
hypothesis may provide new directions for epilepsy treatment. First, we review similarities between 
the hypersynchronous circuits observed in epilepsy and memory consolidation processes involved in 
strengthening neuronal connections. Next, we describe the kindling model of seizures and its relation 
to long-term potentiation model of synaptic plasticity. We also examine how the strengthening of 
epileptic circuits is facilitated during the physiological slow wave sleep, similarly as episodic 
memories. Furthermore, we present studies showing that specific memories can directly trigger 
reflex seizures. The neuronal hypersynchrony in early stages of Alzheimer’s disease, and the use of 
anti-epileptic drugs to improve the cognitive symptoms in this disease also suggests a connection 
between memory systems and epilepsy. Given the commonalities between memory processes and 
epilepsy, we propose that therapies for memory disorders might provide new avenues for treatment 
of epileptic patients.  
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1. Introduction 

During sleep and quiet wakefulness, memory patterns are frequently replayed to consolidate 
memories. For example, patterns of neuronal activity evoked during a behavioral task are later 
spontaneously replayed when an animal is resting or sleeping [1]. It has been proposed that epileptic 
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activity is “hijacking” those memory consolidation processes, where repetitive memory replay 
generates aberrant oscillatory network activity [2]. Our recent work provided new evidence for this 
hypothesis. Using chronic neuronal recordings in epileptic rats, we found that ictal activity patterns 
were similar to neuronal patterns occurring spontaneously between seizures [3]. This observation 
suggests that ictal activity could be a “memory pattern” which gets trapped in attractor-like dynamics 
(B.L. McNaughton personal communication).  

Most seizures are spontaneous, meaning that they do not have any clearly identifiable trigger, 
and can occur at any time, including sleep [4–6]. However, in a subset of epileptic patients, 
spontaneous seizures are preceded by auras: a sensation of particular smell, lights, or certain  
thoughts [7,8], which suggest that “internal” triggers of seizures may be potentially identified. 
Moreover, about 5% of epileptic patients, have reflex seizures which are evoked by specific  
stimuli [9–12]. For example, reflex seizures in some patients may be elicited by flickering lights, 
certain sounds, or specific activities [13]. A patient may experience both “spontaneous” and “reflex” 
seizures, suggesting the same underlying mechanisms [12]. It was also reported that performing a 
specific action (for example, toothbrushing) as well as just thinking about that action can induce 
seizures [14]. Thus, there is emerging evidence that spontaneous seizures could be a form of reflex 
seizures where instead of external stimuli, the memory circuits can initiate seizures by activating 
neuronal patterns representing particular stimuli [15]. 

In this perspective we present experimental and clinical studies to illustrate the close 
relationship between epileptogenesis and memory consolidation mechanisms. We begin by 
describing the interictal events, and how they relate to memory consolidation processes. Next, we 
describe kindling model used for seizure induction, and its relation to long-term potentiation (LTP), a 
model for memory formation [16]. We also discuss how cognitive decline in Alzheimer’s disease has 
been related to the development of convulsive pathways [17]. Finally, we review how reflex seizures 
could be triggered by specific memories, and we propose how memory extinction therapies could 
provide a novel approach to reduce seizures.  The central idea of this perspective is that memory 
formation processes and epilepsy may be closely related, which could help in developing new 
therapies.  

2. Seizure related consolidation and memory related changes during sleep 

Seizure related consolidation refers to the changes that occur in the neuronal activity after a 
seizure epoch, consisting of the reactivation of brain networks associated with the pathology during 
the subsequent post-ictal period. Seizures induce highly coherent activity in selected neuronal 
populations. During subsequent sleep, connections between neurons involved in the convulsive 
episode are strengthened as compared to pre-seizure connection strength [18]. This selective 
modification of synapses participating in seizures shows similarity to the changes observed after 
learning during subsequent sleep, where connections between neurons involved in the learned task 
are also preferentially  strengthened [1,18]. Similarly, activity patterns during inter-ictal spiking (IIS) 
can be consolidated during the following sleep. [19]. The IISs recorded minutes before the seizure 
event display similarity in shape and synchrony with “reactivated” IISs during the post-seizure 
periods including the slow wave sleep period [20]. IIS propagation is seen to be promoted by sleep, 
with the non-rapid eye movement (NREM) period particularly conducive to greater spike production 
and propagation [21–23]. These studies provide evidence that seizure induced activity can be 
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consolidated in neuronal circuits using similar mechanism as employed by normal learning and 
memory functions [1]. 

Moreover, in childhood epilepsy the presence of IISs disturbs the spatiotemporal coupling 
mechanisms associated with sleep related memory consolidation [24]. The interplay of IIS with slow 
wave sleep (SWS) was suggested to affect the spindle-ripple interaction responsible for normal 
information transfer associated with memory [25–30]. The interaction of hippocampal IIS with 
cortical spindles during NREM sleep has been associated with impaired memory consolidation [31]. 
Studies have shown that IISs disrupt memory and cognition in both animal models [32] and epileptic 
patients [33]. Recent studies indicate that this is possibly due to intrahippocampal IISs disrupting 
memory consolidation during sleep involving the hippocampal and cortical circuits [34,35]. Those 
results suggest that IISs could be “hijacking” and disturbing normal memory processes [36,37]. 

3. High frequency oscillations (HFOs) 

An important part of the memory consolidation process is sharp wave-ripple (SWR) activity. 
SWRs are recorded from the hippocampus as large amplitude negative deflections with occasional 
co-occurrence of short duration fast oscillations called ripples (110–200 Hz) typically during sleep or 
rest [38]. SWRs reactivate the same sequential neuronal patterns, which were involved before in 
learning during wakefulness [1]. In epilepsy, brain networks generate pathological HFOs, which are 
similar to SWRs. Pathological HFOs are around 80 to 500 Hz in frequency and can be further 
divided into slower 50–250 Hz and fast 250–500 Hz oscillations [39,40]. The fast oscillations usually 
originate in the epileptogenic area [39,40]. The pathological HFOs are also associated with memory 
impairments [41] and were shown to disrupt the cognitive functionality of the hippocampus, 
especially when it is part of the epileptic circuit [42]. Although, pathological HFOs may involve 
distinct subnetworks of neurons as compared to SWRs [43], there is a strong overlap between the 
mechanisms underlying SWRs and pathological HFOs [44]. This leads to the suggestion that normal 
physiological processes which are involved in SWR can be “reused” to generate epileptic  
HFOs [2,45]. 

4. Neuronal plasticity mechanisms in epilepsy and in memory processes 

4.1. Kindling and long-term potentiation (LTP) 

Kindling is a mechanism by which specific brain regions are sensitized by an external 
stimulation to generate electrographic epileptiform discharges leading to behavioral seizures [46]. 
The stimulation, which could be electrical, chemical, optogenetic, or sensory (for example, tactile or 
auditory) [46–50], recruit neurons to become part of the “kindled” circuit. The behavioral seizures 
occur later when the kindled activity spreads to the motor cortex [51]. This progression of seizures in 
the animal, from initially just electrographic activity to bilateral tonic-clonic activity with loss of 
balance, was categorized into five behavioral stages by Ronald J. Racine [52]. The neural changes 
induced by kindling are usually long lasting [53,54]. The resemblance of kindling to chronic focal 
epilepsy in human patients has resulted in using it as a common epilepsy model in animals [55–58].  

At the molecular level, the N-methyl-D-aspartate (NMDA) receptors, which are involved in 
synaptic plasticity underlying normal memory processes, also play an important role in producing 
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seizure activity due to kindling. In particular, kindling increases the expression of NMDA receptors 
in the dentate granule cells, favoring the formation of excitatory circuits that is associated with the 
increased susceptibility to seizures [59]. As a result of those changes in NMDA receptors, granule 
cells produce long duration synaptic currents, leading to a burst spiking mode [60,61]. This increased 
activity then propagates into the CA3 area of the hippocampus from the dentate gyrus contributing to 
the developing epileptic circuits [60].  

The lasting synaptic changes leading to convulsive behavior are akin to the physiological 
mechanisms forming memory engrams [53], which is mediated by LTP [62]. LTP increases the 
synaptic strength that can last for years [63,64] serving as a basis for memory at the cellular  
level [65,66]. The LTP can be experimentally induced by repetitive, high frequency stimulation of 
afferent connections [67], most widely studied in the Schaffer collaterals and the perforant  
pathway [68]. At the synaptic level, LTP is typically mediated by NMDA receptors [69], similarly as 
described above in the kindling model.  

4.2. Low frequency electrical stimulation (LFS) and long-term depression (LTD) 

As opposed to high frequency electrical stimulation used in kindling, low frequency electrical 
brain stimulation has been shown to reduce epileptic seizures in animal models [70–72]. In an in 
vitro study, LFS of Schaffer collaterals has been shown to reduce the epileptiform activity in a 
gradual and persistent fashion [73]. Likewise, in a study in young rat pups, 1 Hz LFS was shown to 
reduce after-discharges as well as behavioral seizures [74]. The main mechanism by which the LFS 
reduces the response of the stimulated pathways is LTD [75,76]. LTD is the opposing process to LTP, 
and it is implicated in the clearing of old memory traces [77,78]. Similarly, as kindling and LTP, the 
LFS and LTD is NMDA depended, as it can be blocked by a NMDA receptor antagonist [73]. Thus, 
cellular plasticity mechanisms involved in memory formation/disintegration (LTP/LTD) are also 
playing a crucial part in processes inducing/reversing epileptic activity (kindling/LFS).  

5. Memory impairments and their relation to seizures 

Alzheimer’s disease which causes severe memory impairments, was also shown to be 
accompanied by similar network abnormalities and interneuron dysfunction as in epileptic  
circuits [79,80]. Alzheimer’s disease leads to a hypersynchronous activity which was suggested to 
accelerate the progression of dementia [81]. Hypersynchronous activity, similar to ictal activity, was 
observed in both animal models of Alzheimer’s disease and in clinical studies [82–84]. For instance, 
imaging studies using fMRI showed hyperactivity in the hippocampus, which was also accompanied 
by cognitive impairments affecting pattern separation [85]. Alzheimer’s patients were also reported 
to have silent hippocampal seizures and epileptiform spikes during sleep [86]. Memory impairments 
and increase in the incidence of epilepsy and seizures is also commonly observed in normally aging 
animals, including humans (≥ 60 years old) [87–91]. Importantly, antiepileptic drugs were shown to 
offer new therapeutic potential for memory impairments in elderly animals and humans [92,93], 
which provides strong support for common underlying neuronal circuit changes in epilepsy and in 
memory impairments.  
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6. Reflex epilepsy—seizures triggered by memories 

Reflex epilepsy refers to any syndromic disorder where the seizures are triggered by a specific 
stimulus, activity, or memory [94]. Wieser’s theory of critical mass states that in reflex seizures, a 
sensory stimulus may trigger a critical amount of cortical tissue which leads to increased activation 
of epileptogenic neurons causing a seizure [95,96]. Thus, the specific sensory stimulus may lead to 
over-activation in specific brain regions which can induce seizures in susceptible patients [97]. 
Consistently with this theory, it was reported that in patients with generalized seizures, there are 
regions of hyper-excitability overlapping with regions responsible for encoding sensory stimuli and 
complex cognitive tasks [98]. Interestingly, even spontaneous ‘thoughts’ could activate the critical 
mass of epileptogenic neurons, which could provide an explanation of how reflex seizures could be 
triggered by a memory recall. For example, it was reported that memory from childhood was 
triggering seizures in a 69-year-old woman [99]. In another example, specific memories of music led 
to convulsive episodes [100–102]. This shows that memories have an ability to activate the epileptic 
pathways, similarly to sensory stimuli.   

Even in a normal brain, the same neuronal population can be activated by external stimuli as 
well as by internally generated spontaneous neuronal activity. For example, patterns of neuronal 
population activity which are triggered by sound or tactile stimuli, could be also observed during 
spontaneous activity in awake, resting animals [103,104].  

Thus, although reflex seizures are only reported in a small percentage of epilepsy patients, they 
could involve the same mechanisms as spontaneous seizures. For instance, a typical feature during a 
reflex seizure is the presence of widely synchronized slow waves during the seizures [105]. Similarly, 
in epileptic patients with spontaneous (non-reflex) seizures, increased slow wave activity was 
observed as compared to healthy controls [106–108]. This suggests common mechanisms underlying 
spontaneous and reflex seizure. Therefore, we propose that spontaneous seizures could be seen as a 
special case of reflex seizures, where internally generated activity like memory patterns can initiate 
seizures similarly to stimulus driven processes.  

7. Treatment of epileptic disorder by targeting memory reactivation processes?  

In the sections above, we provided arguments that epileptic circuits could be formed in a similar 
way as memory traces, by strengthening selected pathways. Therefore, extinctions treatments used to 
reduce traumatic memories may also be applicable to weaken aberrant connections involved in 
seizures [109]. Below we will discuss such methods, which may provide new directions in 
developing treatments for epileptic patients. 

During memory reactivation, patterns of neuronal activity from a previous learning experience 
are replayed during subsequent sleep or rest period [110]. Reactivation of memories makes them 
susceptible to modification [111,112]. Thus, by targeting specific memories during the 
reconsolidation processes it is possible to weaken those memory traces [113]. For example, 
reactivated fear memories coupled with protein synthesis inhibitors injected into the amygdala led to 
amnesia related to a fear inducing stimulus [111]. Similarly, beta-adrenergic receptor blocker 
propranolol has been shown to be effective in ameliorating post-traumatic stress disorder (PTSD) 
related memories [114,115]. Propranolol was shown to also interfere with memory reconsolidation 
processes when administered after exposure to stressful stimuli in animals [116] and in humans [117]. 
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This is possibly due to the blockade of noradrenergic activity in the amygdala during the 
reconsolidation process which is responsible for the encoding of emotionally enhanced memories 
associated with PTSD [118,119]. Thus, this type of exposure therapy has been proven to be a 
valuable option for fear memory extinction [120].  

Targeting similar mechanisms may also be worth exploring in animal models of epilepsy. 
Exposure therapy coupled with protein synthesis inhibitors could be the most directly applied to 
reduce reflex seizures. For instance, Blundell et al. [121], showed that injecting rapamycin after 
exposure to conditional fear stimuli blocked traumatic memory reconsolidation and decreased the 
emotional strength of an established traumatic memory. This suggests that epileptic animals could be 
briefly exposed to a place or task in which they were conditioned to develop reflex seizures, and 
right after exposure, they could be intraperitoneally injected with rapamycin, which inhibits protein 
synthesis needed for the memory reconsolidation process. This treatment could be applied once daily 
over a period of few days. We propose that such treatment could result in reduction of seizures.  

The same principles could be probably also applicable to spontaneous seizures. As described in 
previous sections, connections in epileptic circuits are selectively strengthened in the post-seizure 
period, by using likely the same mechanisms as memory consolidation processes [18]. Thus, 
administrating protein synthesis inhibitors right after seizure could block those processes, resulting in 
weakening connections involved in the epileptic activity. However, the possibility of treating 
epilepsy with protein synthesis inhibitors should be taken with extreme caution as more animal 
experiments are needed to establish the safety and efficiency of such approaches.  

8. Conclusion 

In only about two-thirds of patients, seizures can be controlled with medication [122]. This 
underlines the need for exploring novel options for epilepsy treatment. In this perspective, we present 
a close relation between memory formation and epileptogenesis. We propose that treatments used to 
reduce traumatic memories could also provide new options to explore for curtailing seizures. 

We described that brain activity in epilepsy is similar to what is observed in the physiological 
processes associated with memory formation. Activity patterns such as fast ripples are associated 
with the recurrent neuronal excitation in epilepsy [123] and are involved in memory formation. 
Moreover, the seizure associated cell ensembles are reactivated during slow wave sleep in a similar 
fashion as memory patterns after learning of a new task [20]. There is also evidence to suggest that 
seizure associated with neuronal reactivation and consolidation may lead to a relocation of the 
epileptogenic focus from the hippocampus to the neocortex in a manner reminiscent of the transfer of 
memory traces from the hippocampus to the cortex [18]. This suggests that epilepsy may involve the 
recruitment of the normal physiological memory processes to form epileptic circuits. 

Memory extinction therapies have shown promise for disorders like PTSD, in which traumatic 
memories are specifically reactivated and their subsequent reconsolidation is blocked [124]. 
Specifically, the neuronal activity is replayed but instead of strengthening, involved synapses are 
weakened. Thus, the use of targeted memory reactivation to weaken the neuronal circuitry associated 
with memories or stimuli triggering reflex seizures could lead to a decrease in the ictal  
episodes [99,125]. Similarly, administrating memory reconsolidation blockers after a spontaneous 
seizure may weaken epileptic networks. In future, we plan to combine electrophysiology with 
behavioral experiments and modeling [126–130] to explore those ideas. In summary, we propose that 
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memory extinction treatments should be explored in animal models of epilepsy as it could offer a 
promising avenue for helping epileptic patients, especially considering that non-invasive extinctions 
therapies have been proved to be safe in humans. 
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