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Stroke is the second most common cause of death globally and the leading cause of death in China. The pathogenesis of cerebral
ischemia injury is complex, and oxidative stress plays an important role in the fundamental pathologic progression of cerebral
damage in ischemic stroke. Previous studies have preliminarily confirmed that oxidative stress should be a potential therapeutic
target and antioxidant as a treatment strategy for ischemic stroke. Emerging experimental studies have demonstrated that
polyphenols exert the antioxidant potential to play the neuroprotection role after ischemic stroke. This comprehensive review
summarizes antioxidant effects of some polyphenols, which have the most inhibition effects on reactive oxygen species
generation and oxidative stress after ischemic stroke.

1. Introduction

Stroke is the second most common cause of death globally
and the leading cause of death in China [1, 2]. Approximately
71% of all stroke cases are ischemic stroke, and the propor-
tion in the developed countries is estimated to be higher,
reaching up to 85% [3]. Ischemic stroke is a group of acute
cerebral vascular diseases caused by various reasons leading
to the interruption of cerebral arterial blood flow and the cor-
responding brain tissue ischemia necrosis, resulting in the
loss of neural function [4]. Ischemic stroke had a high inci-
dence and mortality rate [5, 6], which seriously affects patient
life quality and brings heavy mental and economic burden to
the family of patients. Both diagnosis and treatment of stroke
present enormous challenges. Stroke relevant biomarkers
provide an important reference for the diagnosis and prog-
nosis of stroke. An emerging study has found that irisin
was an independent prognostic marker of ischemic stroke
patients, whose decreased concentration is associated with
poor outcome of patients [7]. Oxidative stress and inflamma-
tion related biomarkers from saliva of stroke patients also
have drawn much attention of researchers [8].

Intravenous tissue plasminogen activator (tPA) throm-
bolytic therapy remains the only FDA-approved emergency
drug treatment within 4.5 hours after acute ischemic stroke
[9]. However, the increased risk of intracerebral haemor-
rhage and a short treatment time window limit tPA clinical
application wildly [10, 11]. At present, defibrillating therapy,
antiplatelet therapy, anticoagulant therapy, and neuroprotec-
tive therapy are all reported as the potential treatment of
ischemic stroke. Still, all those therapies need more clinic
evidence to confirm the efficacy. Therefore, it is of great sig-
nificance to accelerate research and drug development on
ischemic stroke to reduce the mortality rate and improve
the life quality.

The pathogenesis of cerebral ischemia injury is complex;
excitatory neurotoxicity, calcium overload, oxidative/nitrosa-
tive stress, and mitochondrial dysfunction are involved the
main mechanisms of cerebral ischemia injury [12]. Cerebral
ischemia induces cascade reactions with the overproduction
of reactive oxygen species (ROS). Inherent antioxidant
potential cannot neutralize ROS and keep the endogenous
redox balance, which will cause oxidative stress. Oxidative
stress plays an essential role in the fundamental pathologic
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progression of cerebral damage in ischemic stroke [13].
When oxidative stress occurs, ROS oxidizes lipids, proteins,
and nucleic acids to damage cerebral tissue structure and
cells [14, 15]. Oxidative stress can also cause neuronal apo-
ptosis, inflammation, and blood brain barrier impairment,
all of which will aggravate cerebral injury after ischemic
stroke [16, 17]. Previous studies have preliminarily con-
firmed that oxidative stress should be a potential therapeutic
target and antioxidant as a treatment strategy for ischemic
stroke, even though the results of clinical trials are under-
whelming [18, 19]. In recent years, polyphenols are the inter-
esting natural products (from dietary vegetables, fruits, herb
medicines, and so on) because of their beneficial effects on
human health and diseases. Emerging experimental studies
have demonstrated that polyphenols exert the antioxidant
potential to play the neuroprotection role after ischemic
stroke [20]. This comprehensive review summarizes antioxi-
dant effects of some polyphenols, such as flavonoids, pheno-
lic acids, curcuminoids, stilbenoids, and lignans, which have
the most inhibition effects on ROS generation and oxidative
stress after ischemic stroke.

2. Sources and Classes of Polyphenols

Just as its name implies, polyphenols are compounds charac-
terized by more than one phenolic hydroxyl group. However,
more views do not exclude compounds with only one pheno-
lic hydroxyl group [21]. As secondary plant metabolites,
polyphenols are mainly distributed in the bark, root, leaf,
shell, and fruit of a plant. Thus, polyphenols are ubiquitous
in daily necessities taking plants as raw materials, including
vegetables, fruits, herb medicines, tea, red wine, part of food
additives, and cosmetics.

Among various natural products, flavonoids, phenolic
acids, curcuminoids, stilbenoids, and lignans usually belong
to polyphenols. However, not all natural products from
these classifications meet the criteria for containing one or
more phenolic hydroxyl groups. For instance, most of
dibenzocyclooctene lignans from Schisandra chinensis, such
as schisandrin, schisandrin B, schisandrin C, schisantherin
A, schisandrol B, and gomisin G, have no hydroxyl group
at benzene rings [22]. Figure 1 shows the chemical struc-
tures and plant origin of some common polyphenols and
their classifications. It is worth mentioning that there are
several subclasses as well. Flavonols, flavanones, flavones,
flavan-3-ols, isoflavones, anthocyanins, dihydrochalcones,
and proanthocyanidins all belong to the classification of fla-
vonoids [23, 24]. Nevertheless, this article focuses on the
antioxidant activity of polyphenols in ischemic stroke.
Thus, Figure 1 does not distinguish compounds between
these subclasses. In addition to ubiquitous in daily life, poly-
phenols are also known for their antioxidant property,
which is also a core topic of discussion by nutritionists
and medical workers [25].

3. Flavonoid

Flavonoids are among the most common natural products
and widely present in various plants, including vegetables,

fruits, and herbs. As dietary ingredients, cohort and case-
control epidemiological studies confirmed that flavonoids
could reduce the risk of cardiovascular disease and other
chronic diseases [26]. More importantly, flavonoids are also
primary active ingredients of many herbal medicines such as
Scutellaria baicalensis and Pueraria Lobata, which showed sig-
nificant pharmacological activities. Based on modern medi-
cine studies, antioxidant activity is a relatively common
effect of these flavonoids [27]. Thus, in traditional Chinese
medicine prescription, antioxidant activity of flavonoids plays
a more or less important role in various diseases. For instance,
AngongNiuhuang Pill is widely used in the treatment of ische-
mic stroke clinically, and baicalin is proved to be a vital ingre-
dient extracted from Scutellaria baicalensis, one of the 12
kinds of traditional Chinese medicines that make up Angong
Niuhuang Pill [28]. This instance shows us the pharmaceutical
value of flavonoids as antioxidant supplementation in ische-
mic stroke. Thus, in this section, antioxidant action andmech-
anism of each flavonoid monomer in treating ischemic stroke
would be enumerated and discussed.

3.1. Baicalein and Baicalin. Baicalein is a flavone with three
hydroxy groups at positions C-5, C-6, and C-7. Baicalin is
the 7-O-glucuronide of baicalein. The same as baicalin men-
tioned in a previous paragraph, baicalein is also an essential
active ingredient from Scutellaria baicalensis [29]. Directly,
baicalein could protect middle cerebral artery occlusion
(MCAO) rats from ischemia/reperfusion (I/R) injury to some
degree [30, 31]. Neurological severity, infarct volume, brain
water content, and Evans blue leakage level proved the ther-
apeutic effects of baicalein on ischemic stroke as well [30, 31].
Additionally, many common indicators related to oxidative
stress suggested that antioxidant action of baicalein played a
significant role. Reactive oxygen species (ROS), malondialde-
hyde (MDA), and 8-hydroxy-2′-deoxyguanosine (8-OhdG)
were reduced, while the levels of NADPH, quinone
oxidoreductase-1 (NQO1), glutathione peroxidase (GSH-
Px), superoxide dismutase (SOD), glutathione (GSH), and cat-
alase (CAT) were significantly increased after baicalein treat-
ment [30]. The activation of adenosine 5′-monophosphate-
(AMP-) activated protein kinase (AMPK) and nuclear factor
E2-related factor 2 (Nrf2) signaling pathways is the crucial
mechanism for this antioxidant effect [30]. And upregulation
of mitochondrial membrane potential (MMP) might be
another mechanism that baicalein prevents neuronal cells
from oxidative stress injury [31]. Mouse hippocampal neuro-
nal cell line HT22 and toxic material iodoacetic acid were
applied to establish oxidative injury cell model, whose cell sur-
vival rate could be improved by baicalein [32].

Baicalin exhibited a similar antioxidant effect as baicalein
to ischemic stroke, which could also be speculated by their
identical chemical structure skeleton. In baicalin research,
mitochondrial succinate dehydrogenase (SDH) was a novel
enzyme, which could stimulate excessive ROS production
and abnormal glutamine synthetase degradation in astro-
cytes of ischemic stroke rats [33]. Baicalin was able to prevent
astrocytes from oxidative stress via inhibiting SDH [33].
Additionally, baicalin could downregulate the levels of super-
oxide and peroxynitrite [34].
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3.2. EC, ECG, and EGCG. (-)-Epicatechin (EC), (-)-epicate-
chin gallate (ECG), and (-)-epigallocatechin gallate (EGCG)
are three representative polyphenols from green tea. As
shown in Figure 1, the chemical structure of EC is the most
simple, ECG is an ester derived from a (-)-epicatechin and
a gallic acid. Very similar to ECG, EGCG is another ester
with one more hydroxyl group. These tea polyphenols exert
ubiquitous antioxidant effects as tea is a standard beverage
in our daily life. Researchers also have explored their poten-
tial in treating ischemic stroke and indicated that EGCG
was a promising antioxidant supplement or ancillary drug
in stroke treatment. Several pieces of literature reported anti-
oxidative and other roles of EC and ECG as well.

EGCG exhibited significant protective effects on vari-
ous MCAO animal models. Neurologic severity score,
infarct volume, and expression of apoptosis-related pro-
teins collectively proved this effect [35–38]. ROS, MDA,
SOD, CAT, and other oxidative stress-related indicators
all revealed antioxidant activity of EGCG [35–38]. The
activation of Nrf2-antioxidant responsive element (ARE)
signaling pathway might be the main mechanism of anti-
oxidant activity of EGCG. Nrf2-ARE is a classical antiox-
idant signaling pathway, and many natural products target
it to treat nervous system diseases [22]. EGCG was
reported to upregulate Nrf2 expression, thereby mitigating
oxidative stress damage and promoting angiogenesis [35,
36]. The function and mechanism of EC in treating ische-
mic stroke were both analogous to EGCG, and the
detailed information can be found in Table 1. ECG could
protect human brain microvascular endothelial cells
(HBMECs) from oxygen-glucose deprivation/reoxygena-
tion- (OGD/R-) induced injury, while inhibition of
autophagy and promotion of angiogenesis contributed to
this protective effect [39]. Antioxidation also supported
this protective effect, and the reduction of ROS provided
direct evidence [39].

3.3. Quercetin. Quercetin is another well-known and wide-
spread flavonol with antioxidant activity. More than 100
kinds of herbs, such as Flos Sophorae Immaturus, Cacumen
biotae, and Alpinia officinarum Hance, are rich in quercetin.
Vegetables such as onion, fruits such as apple, and drinks
such as red wine were all detected to have a certain amount
of quercetin [40]. Therefore, quercetin is a noteworthy anti-
oxidant supplement in our daily life.

Quercetin protected against cerebral ischemia/reperfu-
sion injury, and antioxidant activity plays a vital role [41].
Besides, quercetin suppressed lipopolysaccharide- (LPS-)
induced adhesion molecule expression to treat atherosclero-
sis, which is a crucial induction factor of ischemic stroke.
Researchers found that quercetin was able to activate Nrf2,
thereby upregulating heme oxygenase 1 (HO-1) expression.
Intriguingly, though adhesion molecule was under the regu-
lation of HO-1, this phenomenon was antioxidant-
independent. Nevertheless, Nrf2 activation and HO-1 upreg-
ulation actually increased antioxidants and played a role in
reducing cell damage [42].

3.4. Astragaloside IV. Astragaloside IV is a principal compo-
nent of a common herb clinically used for ischemic stroke:
Radix Astragali. The pharmacological effect and mechanism
studies of astragaloside IV to ischemic stroke are numerous
and diverse [43–46]. Neurocyte protection, blood brain bar-
rier protection, intestinal microbiota regulation, and mito-
chondrial function recovery were all referred to in relevant
literature [43–46]. Meanwhile, antioxidant activity of astra-
galoside IV was correlation to all these effects.

3.5. Genistein. Genistein is a plant estrogen wildly distributed
in many legumes. As a potential compound in treating ische-
mic stroke, genistein plays a role in neuroprotection.
Researchers illuminated that genistein was able to activate
Nrf2 to upregulate several antioxidase expressions [47]. So

OH

OH

OH

OH
OH

OH

OH

OH

OHOH
OH

OH OH

OH

OH

OH

OH
OH

OH

OH
OH

OH

OH

OH

OH

OH OH
OH

OH

OH

OH
OH

OH

OH
OH

OH

OH

OH
HO

HO

HO

HO

HO
HO HO HO

HO HOHO

HO

HO HO

HO

HO

HO

OH

HO

HO

HO

HO

HO

HO

O

O

O

O

O O

O

O O
O

O

O

O

O
OO

O

O

O
O

O
O

O
O

O

O

O

O

O

O

O

O

O

O
O

Flavonoids

Phenolic acids

Apigenin

Quercetin

2,3-Dihydroxybenzoic acid Chlorogenic acid

Gallic acid

Magnolol Resveratrol Curcumin

Caffeic acid
Salvianolic acid B

Ellagic acid

Luteolin Baicalin

Epicatechin Genistein

Other polyphenols

Polyphenols

Figure 1: The chemical structures and plant origin of some common polyphenols and their classifications.

3Oxidative Medicine and Cellular Longevity



T
a
bl
e
1:
A
nt
io
xi
da
nt

ac
ti
vi
ty

of
fl
av
on

oi
ds

in
is
ch
em

ic
st
ro
ke

re
la
te
d
st
ud

ie
s.

Fl
av
on

oi
ds

C
el
l/
an
im

al
m
od

el
D
os
ag
es

an
d
m
et
ho

ds
of

ad
m
in
is
tr
at
io
n
in

an
im

al
m
od

el
s

A
nt
io
xi
da
ti
on

-r
el
at
ed

in
de
xe
s

R
ef

B
ai
ca
le
in

O
G
D

ce
ll
m
od

el
(S
H
-S
Y
5Y

)
M
C
A
O

ra
t
m
od

el
(W

is
ta
r)

In
vi
tr
o:
0.
1,
0.
25
,0
.5
,1
,2
,4
,

an
d
8
μ
M

fo
r
12

h
In

vi
vo
:2
.5
,5
,a
nd

10
m
g/
kg
,

7
ti
m
es

fo
r
3
da
ys

be
fo
re

su
rg
er
y,

in
tr
ag
as
tr
ic
ad
m
in
is
tr
at
io
n,

ta
il
ve
in

in
je
ct
io
n.

U
p:

N
Q
O
1,
N
rf
2,
G
SH

-P
x,

SO
D
,G

SH
,a
nd

C
A
T

D
ow

n:
R
O
S,
A
M
P
K
,M

D
A
,

an
d
8-
O
hd

G

[3
0]

O
G
D

ce
ll
m
od

el
(S
H
-S
Y
5Y

)
M
C
A
O

ra
t
m
od

el
(S
D
)

In
vi
tr
o:
1,
5,
10
,1
5,
an
d
20

μ
M

fo
r
12

h
In

vi
vo
:3
0
m
g/
kg
;d

ai
ly
fo
r
7
da
ys
,

in
tr
ag
as
tr
ic
ad
m
in
is
tr
at
io
n.

U
p:

M
M
P

[3
1]

Io
do

ac
et
ic
ac
id
-i
nd

uc
ed

ox
id
at
iv
e
in
ju
ry

ce
ll

m
od

el
(H

T
22
)

M
C
A
O

N
ew

Z
ea
la
nd

w
hi
te
ra
bb
it
m
od

el

In
vi
tr
o:
1,
2,
5,
an
d
10

μ
M

fo
r
20

h
In

vi
vo
:1
00

m
g/
kg
,s
ub

cu
ta
ne
ou

s
in
je
ct
io
n

U
p:

ce
ll
su
rv
iv
al

[3
2]

B
ai
ca
lin

P
ri
m
ar
y
ra
t
as
tr
oc
yt
es

an
d

co
rt
ic
al
ne
ur
on

s
M
C
A
O

ra
t
m
od

el
(S
D
)

In
vi
tr
o:
0.
1
to

10
0
μ
M

In
vi
vo
:1
00

m
g/
kg
,i
nt
ra
pe
ri
to
ne
al
in
je
ct
io
n

D
ow

n:
SD

H
an
d
R
O
S

[3
3]

O
G
D

ce
ll
m
od

el
(S
H
-S
Y
5Y

)
M
C
A
O

ra
t
m
od

el
(S
D
)

In
vi
tr
o:
0.
1,
1,
an
d
10

μ
M

fo
r
2
h

In
vi
vo
:1
0,
25
,a
nd

50
m
g/
kg
,

in
tr
av
en
ou

s
ad
m
in
is
tr
at
io
n

D
ow

n:
su
pe
ro
xi
de

an
d
pe
ro
xy
ni
tr
it
e

[3
4]

T
ra
ns
ie
nt

gl
ob
al
is
ch
em

ia
M
on

go
lia
n
ge
rb
il
m
od

el
50
,1
00
,a
nd

20
0
m
g/
kg
;d

ai
ly
fo
r
7
da
ys
,

in
tr
ap
er
it
on

ea
li
nj
ec
ti
on

U
p:

SO
D
,G

SH
,

an
d
G
SH

-P
x

D
ow

n:
M
D
A

[7
7]

E
C

H
2O

2
an
d
te
rt
-b
ut
yl

hy
dr
op

er
ox
id
e-
si
m
ul
at
ed

m
ic
e
em

br
yo
ni
c
co
rt
ic
al

ne
ur
on

al
ce
lls

M
C
A
O

m
ou

se
m
od

el
(C
57
B
L/
6)

In
vi
tr
o:
0.
1,
1,
10
,a
nd

10
0
μ
M

fo
r
6
h

In
vi
vo
:2
.5
,5
,1
5,
an
d
30

m
g/
kg
,

in
tr
ag
as
tr
ic
ad
m
in
is
tr
at
io
n

U
p:

H
O
-1

an
d
nu

cl
ea
r
N
rf
2

D
ow

n:
cy
to
pl
as
m
ic
N
rf
2

[7
8]

O
G
D
ce
ll
m
od

el
(p
ri
m
ar
y
m
ic
e
co
rt
ic
al
ne
ur
on

s)
M
C
A
O

m
ou

se
m
od

el
(C
57
B
L/
6)

In
vi
tr
o:
50

an
d
10
0
μ
M

In
vi
vo
:5
,1
0,
an
d
15

m
g/
kg
,

in
tr
ag
as
tr
ic
ad
m
in
is
tr
at
io
n

U
p:

H
O
-1
,F

T
L,

an
d
B
V
R

[7
9]

E
C
G

O
G
D
ce
ll
m
od

el
(H

B
M
E
C
s)

0.
5,
1,
2,
an
d
4
μ
M

U
p:

SO
D

D
ow

n:
R
O
S
an
d
M
D
A

[3
9]

4 Oxidative Medicine and Cellular Longevity



T
a
bl
e
1:
C
on

ti
nu

ed
.

Fl
av
on

oi
ds

C
el
l/
an
im

al
m
od

el
D
os
ag
es

an
d
m
et
ho

ds
of

ad
m
in
is
tr
at
io
n
in

an
im

al
m
od

el
s

A
nt
io
xi
da
ti
on

-r
el
at
ed

in
de
xe
s

R
ef

E
G
C
G

M
C
A
O

ra
t
m
od

el
(S
D
)

20
m
g/
kg
,i
nt
ra
pe
ri
to
ne
al
in
je
ct
io
n.

U
p:

G
SH

-P
x
an
d
SO

D
D
ow

n:
N
O

an
d
M
D
A

[3
7]

M
C
A
O

m
ou

se
m
od

el
(C
57
B
L/
6)

50
m
g/
kg
,i
nt
ra
pe
ri
to
ne
al
in
je
ct
io
n.

U
p:

N
rf
2
an
d
SO

D
1

D
ow

n:
G
R
P
78
,C

H
O
P
,

an
d
C
as
pa
se

12
[3
5]

D
im

et
hy
la
rg
in
in
e-
in
du

ce
d

H
B
M
E
C
s
in
ju
ry

20
,4
0,
60
,8
0,
an
d
10
0
μ
M

fo
r
24

h
D
ow

n:
R
O
S
an
d
M
D
A

[8
0]

M
C
A
O

ra
t
m
od

el
(S
D
)

40
m
g/
kg
;d

ai
ly
fo
r
3
da
ys
,

in
tr
ap
er
it
on

ea
li
nj
ec
ti
on

.

U
p:

G
SH

,N
rf
2,
H
O
-1
,

G
C
LC

,a
nd

G
C
LM

D
ow

n:
R
O
S

[3
6]

M
C
A
O

ra
t
m
od

el
(S
D
)

10
m
g/
kg
;o
ne

ti
m
e
fo
r
1
h
be
fo
re

su
rg
er
y

an
d
da
ily

fo
r
D
ay

4
to

D
ay

7
af
te
r

su
rg
er
y,
in
tr
ag
as
tr
ic
ad
m
in
is
tr
at
io
n

U
p:

G
SH

an
d
SO

D
D
ow

n:
N
O

an
d
M
D
A

[3
8]

G
lu
ta
m
at
e-
in
du

ce
d
ox
id
at
iv
e

in
ju
ry

ce
ll
m
od

el
(H

T
-2
2)

1,
10
,5
0,
an
d
10
0
10
0
μ
M

fo
r
10

h
U
p:

H
O
-1

D
ow

n:
R
O
S

[8
1]

Q
ue
rc
et
in

O
G
D
ce
ll
m
od

el
(h
ip
po

ca
m
pa
ls
lic
es

an
d

ne
ur
on

/g
lia

cu
ltu

re
s)

M
C
A
O

ra
t
m
od

el
(S
D
)

In
vi
tr
o:
10

μ
M

In
vi
vo
:2
0
m
g/
kg
;d

ai
ly
fo
r
21

da
ys

be
fo
re

su
rg
er
y,
in
tr
ag
as
tr
ic
ad
m
in
is
tr
at
io
n

U
p:

H
O
-1

D
ow

n:
M
D
A

[4
1]

M
C
A
O

ra
t
m
od

el
(S
D
)

10
m
g/
kg

30
m
in
s
be
fo
re

su
rg
er
y,

in
tr
ap
er
it
on

ea
li
nj
ec
ti
on

O
xi
da
ti
ve

st
re
ss
-r
el
at
ed

pr
ot
ei
ns

[8
2]

M
C
A
O

ge
rb
il
m
od

el
20

m
g/
kg

30
;d

ai
ly
fo
r
21

da
ys

be
fo
re

su
rg
er
y,
in
tr
ag
as
tr
ic
ad
m
in
is
tr
at
io
n.

U
p:

SO
D
1,
SO

D
2,
C
A
T
,

an
d
G
SH

-P
x

[8
3]

M
C
A
O

ra
t
m
od

el
(S
D
)

30
m
g/
kg

30
;d

ai
ly
fo
r
14

da
ys
,

in
tr
ap
er
it
on

ea
li
nj
ec
ti
on

.
U
p:

G
SH

,G
SH

-P
x,
an
d
G
R
x

D
ow

n:
lip

id
pe
ro
xi
da
ti
on

le
ve
l

[8
4]

M
C
A
O

ra
t
m
od

el
(S
D
)

30
m
g/
kg

30
m
in
s
be
fo
re

su
rg
er
y,

0,
24
,4
8,
an
d
72

h
af
te
r
su
rg
er
y,

in
tr
ap
er
it
on

ea
li
nj
ec
ti
on

U
p:

G
SH

,G
R
,G

SH
-P
x,

G
ST

,S
O
D
,a
nd

C
A
T

[8
5]

5Oxidative Medicine and Cellular Longevity



T
a
bl
e
1:
C
on

ti
nu

ed
.

Fl
av
on

oi
ds

C
el
l/
an
im

al
m
od

el
D
os
ag
es

an
d
m
et
ho

ds
of

ad
m
in
is
tr
at
io
n
in

an
im

al
m
od

el
s

A
nt
io
xi
da
ti
on

-r
el
at
ed

in
de
xe
s

R
ef

A
st
ra
ga
lo
si
de

IV

O
G
D

ce
ll
m
od

el
(S
H
-S
Y
5Y

)
M
C
A
O

ra
t
m
od

el
(S
D
)

In
vi
tr
o:
10
,3
0,
an
d
60

μ
g/
m
L

In
vi
vo
:2
0
m
g/
kg
,i
nt
ra
pe
ri
to
ne
al
in
je
ct
io
n

U
p:

SO
D

D
ow

n:
R
O
S
an
d
M
D
A

[8
6]

O
G
D
ce
ll
m
od

el
(n
eu
ro
ns
)

6.
25
,1
2.
5,
an
d
25

μ
m
ol
/L

3
h
be
fo
re

O
G
D

an
d
24

h
af
te
r
O
G
D

U
p:

m
it
oc
ho

nd
ri
al
po

te
nt
ia
l,
A
T
P

D
ow

n:
R
O
S

[4
6]

T
IA

m
ou

se
m
od

el
(C
57
B
L/
6L

)
50

m
g/
kg

tw
o
ti
m
es

ev
er
y
da
y
fo
r

12
w
ee
ks
,i
nt
ra
ga
st
ri
c
ad
m
in
is
tr
at
io
n

U
p:

T
-A

O
C
,S
O
D
,G

SH
D
ow

n:
N
O
X
2/
4,
R
O
S,
an
d
M
D
A

[4
5]

LP
S
st
im

ul
at
ed

bE
nd

.3
ce
lls

an
d
C
57
B
L/
6
m
ic
e

In
vi
tr
o:
25
,5
0
an
d
10
0
μ
M

In
vi
vo
:1
2.
5,
25
,a
nd

50
m
g/
kg

da
ily

fo
r

7
da
ys
,i
nt
ra
pe
ri
to
ne
al
in
je
ct
io
n

U
p:

N
rf
2,
H
O
-1
,a
nd

N
Q
O
1

D
ow

n:
R
O
S

[4
4]

O
G
D
ce
ll
m
od

el
(m

ur
in
e
co
rt
ic
al
ne
ur
on

s)
1,
10
,2
5,
an
d
50

μ
M

U
p:

H
O
-1
,N

Q
O
1,
an
d
SR

X
N
1

D
ow

n:
R
O
S

[8
7]

M
C
A
O

m
ou

se
m
od

el
(C
57
/B
6)

20
an
d
40

m
g/
kg

0,
24
,a
nd

48
h
af
te
r

su
rg
er
y,
in
tr
ap
er
it
on

ea
li
nj
ec
ti
on

U
p:

G
SH

-P
x
an
d
SO

D
D
ow

n:
M
D
A

[4
3]

G
en
is
te
in

M
C
A
O

ra
t
m
od

el
(S
D
)

10
m
g/
kg

da
ily

fo
r
7
da
ys

be
fo
re

su
rg
er
y,
in
tr
ap
er
it
on

ea
li
nj
ec
ti
on

U
p:

N
rf
2
an
d
N
Q
O
1

D
ow

n:
R
O
S

[4
7]

M
C
A
O

ra
t
m
od

el
(S
D
)

10
m
g/
kg

5
m
in
s
af
te
r
su
rg
er
y,

in
tr
ap
er
it
on

ea
li
nj
ec
ti
on

U
p:

SO
D
an
d
N
rf
1

D
ow

n:
M
D
A

[8
8]

H
2O

2-
st
im

ul
at
ed

pr
im

ar
y
ne
ur
on

s
0.
01
,0
.1
,a
nd

1
m
M

D
ow

n:
R
O
S

[4
8]

M
C
A
O

m
ou

se
m
od

el
(C
57
/B
L6

J)
2.
5,
5,
an
d
10

m
g/
kg

da
ily

fo
r

14
da
ys

be
fo
re

su
rg
er
y,

in
tr
ag
as
tr
ic
ad
m
in
is
tr
at
io
n

U
p:

SO
D
an
d
G
SH

-P
x

D
ow

n:
M
D
A
an
d
R
O
S

[4
9]

R
ut
in

R
et
in
oi
c
ac
id
-i
nd

uc
ed

IM
R
32

ce
ll
di
ff
er
en
ti
at
io
n

0.
1
μ
M
,1
0
μ
M
,a
nd

10
0
μ
M

D
ow

n:
R
O
S

[5
1]

H
es
pe
ri
di
n

M
C
A
O

m
ou

se
m
od

el
(C
57
B
L/
6J
)

10
0
m
g/
kg

da
ily

fo
r
10

da
ys
,

in
tr
ap
er
it
on

ea
li
nj
ec
ti
on

U
p:

G
SH

,C
A
T
,S
O
D
,

an
d
G
SH

-P
x

D
ow

n:
T
B
A
R
S

[5
2]

M
C
A
O

ra
t
m
od

el
(W

is
ta
r)

50
m
g/
kg

da
ily

fo
r
15

da
ys

be
fo
re

su
rg
er
y,
in
tr
ag
as
tr
ic

ad
m
in
is
tr
at
io
n.

U
p:

G
SH

,C
A
T
,S
O
D
,

G
R
,a
nd

G
SH

-P
x

D
ow

n:
T
B
A
R
S

[5
3]

N
eo
he
sp
er
id
in

M
C
A
O

ra
t
m
od

el
(S
D
)

40
m
g/
kg

da
ily

fo
r
21

da
ys

be
fo
re

su
rg
er
y,
in
tr
ap
er
it
on

ea
li
nj
ec
ti
on

.

U
p:

T
-A

O
C
,G

SH
,S
O
D
,

C
A
T
,G

SH
-P
x,
G
R
,

P
O
D
,N

rf
2,
an
d
H
O
-1

D
ow

n:
M
D
A
,R

O
S,
an
d
M
P
O

[5
4]

6 Oxidative Medicine and Cellular Longevity



T
a
bl
e
1:
C
on

ti
nu

ed
.

Fl
av
on

oi
ds

C
el
l/
an
im

al
m
od

el
D
os
ag
es

an
d
m
et
ho

ds
of

ad
m
in
is
tr
at
io
n
in

an
im

al
m
od

el
s

A
nt
io
xi
da
ti
on

-r
el
at
ed

in
de
xe
s

R
ef

A
pi
ge
ni
n

O
G
D
ce
ll
m
od

el
(P
C
12
)

1,
10
,a
nd

20
μ
M

fo
r
6
h

U
p:

N
rf
2,
SO

D
,

G
SH

-P
x,
C
A
T
,M

M
P

D
ow

n:
R
O
S

[5
9]

C
oC

l 2
-i
nd

uc
ed

P
C
12

M
C
A
O

ra
t
m
od

el

In
vi
tr
o:
1-
20
0
μ
g/
m
L
fo
r
1
h

In
vi
vo
:2
5
m
g/
kg

da
ily

fo
r
7
da
ys
,

in
tr
ap
er
it
on

ea
li
nj
ec
ti
on

U
p:

M
M
P

D
ow

n:
R
O
S

[6
0]

Is
oq

ue
rc
et
in

O
G
D
ce
ll
m
od

el
(p
ri
m
ar
y
hi
pp

oc
am

pa
ln

eu
ro
ns
)

M
C
A
O

ra
t
m
od

el
(S
D
)

In
vi
tr
o:
20
,4
0,
an
d
80

μ
g/
m
L

In
vi
vo
:5
,1
0,
an
d
20

m
g/
kg

da
ily

fo
r

3
da
ys
,i
nt
ra
ga
st
ri
c
ad
m
in
is
tr
at
io
n

U
p:

SO
D

D
ow

n:
M
D
A

[6
2]

O
G
D
ce
ll
m
od

el
(p
ri
m
ar
y
hi
pp

oc
am

pa
ln

eu
ro
ns
)

M
C
A
O

ra
t
m
od

el
(S
D
)

In
vi
tr
o:
25
,5
0,
an
d
10
0
μ
g/
m
L

In
vi
vo
:5
0
m
g/
kg

da
ily

fo
r
7
da
ys
,

in
tr
av
en
ou

s
ad
m
in
is
tr
at
io
n

U
p:

SO
D
an
d
N
rf
2

D
ow

n:
R
O
S

[6
3]

M
C
A
O

ra
t
m
od

el
(S
D
)

5,
10
,a
nd

20
m
g/
kg

da
ily

fo
r
3
da
ys
,

in
tr
ag
as
tr
ic
ad
m
in
is
tr
at
io
n

U
p:

SO
D
an
d
C
A
T

D
ow

n:
R
O
S
an
d
M
D
A

[8
9]

Is
or
ha
m
ne
ti
n

M
C
A
O

m
ou

se
m
od

el
(I
C
R
)

0.
5
an
d
5
m
g/
kg
,0

an
d
24

ho
ur
s
af
te
r

re
pe
rf
us
io
n,

in
tr
ap
er
it
on

ea
li
nj
ec
ti
on

U
p:

N
rf
2
an
d
H
O
-1

D
ow

n:
R
O
S
an
d
M
D
A

[9
0]

M
et
hy
lg
ly
ox
al
pl
us

O
G
D

ce
ll
m
od

el
(H

B
M
E
C
s)

10
to

10
0
μ
M

U
p:

G
SH

D
ow

n:
R
O
S

[6
4]

P
hl
or
et
in

M
C
A
O

ra
t
m
od

el
(S
D
)

20
,4
0,
an
d
80

m
g/
kg

da
ily

fo
r

14
da
ys

be
fo
re

su
rg
er
y,

in
tr
ap
er
it
on

ea
li
nj
ec
ti
on

U
p:

N
rf
2,
SO

D
,G

SH
,

an
d
G
SH

-P
x

D
ow

n:
M
D
A

[6
5]

B
io
ch
an
in

A
M
C
A
O

ra
t
m
od

el
(S
D
)

10
,2
0,
an
d
40

m
g/
kg

da
ily

fo
r

14
da
ys

be
fo
re

su
rg
er
y,

in
tr
ap
er
it
on

ea
li
nj
ec
ti
on

U
p:

SO
D
,G

SH
-P
x,

N
rf
2,
an
d
H
O
-1

D
ow

n:
M
D
A

[6
6]

T
an
ge
re
ti
n

O
G
D
ce
ll
m
od

el
(H

B
M
E
C
s)

2.
5,
5,
10
,a
nd

20
μ
M

U
p:

SO
D

D
ow

n:
R
O
S,
M
D
A
,i
N
O
S,
an
d
N
O

[5
5]

M
or
in

M
C
A
O

ra
t
m
od

el
(W

is
ta
r)

30
m
g/
kg
,i
nt
ra
pe
ri
to
ne
al
in
je
ct
io
n

D
ow

n:
R
O
S
an
d
M
D
A

[6
7]

B
re
vi
sc
ap
in
e

M
C
A
O

ra
t
m
od

el
(S
D
)

20
,5
0,
an
d
10
0
m
g/
kg

da
ily

fo
r

7
da
ys

be
fo
re

su
rg
er
y,

in
tr
ap
er
it
on

ea
li
nj
ec
ti
on

U
p:

SO
D
,G

SH
,a
nd

C
A
T

D
ow

n:
M
D
A

[6
8]

H
is
pi
du

lin
M
C
A
O

ra
t
m
od

el
(W

is
ta
r)

50
m
g/
kg

da
ily

fo
r
7
da
ys
,

in
tr
ap
er
it
on

ea
li
nj
ec
ti
on

U
p:

N
rf
2,
SO

D
,G

SH
-P
x,

an
d
C
A
T

D
ow

n:
M
D
A
,R

O
S

[6
9]

7Oxidative Medicine and Cellular Longevity



T
a
bl
e
1:
C
on

ti
nu

ed
.

Fl
av
on

oi
ds

C
el
l/
an
im

al
m
od

el
D
os
ag
es

an
d
m
et
ho

ds
of

ad
m
in
is
tr
at
io
n
in

an
im

al
m
od

el
s

A
nt
io
xi
da
ti
on

-r
el
at
ed

in
de
xe
s

R
ef

M
yr
ic
et
in

M
C
A
O

ra
t
m
od

el
(S
D
)

1,
5,
an
d
25

m
g/
kg

da
ily

fo
r

7
da
ys

be
fo
re

su
rg
er
y,

in
tr
ag
as
tr
ic
ad
m
in
is
tr
at
io
n

U
p:

SO
D
an
d
G
SH

D
ow

n:
M
D
A

[9
1]

O
G
D

ce
ll
m
od

el
(S
H
-S
Y
5Y

)
M
C
A
O

ra
t
m
od

el
(S
D
)

In
vi
tr
o:
0.
1,
0.
33
,1
,3
.3
an
d
10

nM
In

vi
vo
:5
,1
0,
an
d
20

m
g/
kg

2
h

be
fo
re

su
rg
er
y
an
d
24

h,
48

h
af
te
r

su
rg
er
y,
in
tr
ag
as
tr
ic
ad
m
in
is
tr
at
io
n

U
p:

N
rf
2,
H
O
-1
,S
O
D
,C

A
T
,

m
it
oc
ho

nd
ri
al
A
T
P
,a
nd

M
M
P

D
ow

n:
R
O
S,
M
D
A
,

m
it
oc
ho

nd
ri
al
R
O
S,
an
d

m
it
oc
ho

nd
ri
al
M
D
A

[7
0]

X
an
th
oa
ng
el
ol

M
C
A
O

ra
t
m
od

el
(S
D
)

50
an
d
10
0
m
g/
kg

da
ily

fo
r
3
da
ys
,

in
tr
ap
er
it
on

ea
li
nj
ec
ti
on

U
p:

N
rf
2,
C
A
T
,S
O
D

an
d
G
SH

-P
x

D
ow

n:
M
D
A

[7
1]

K
ae
m
pf
er
ol

M
C
A
O

ra
t
m
od

el
(S
D
)

1.
75
,3
.4
9,
an
d
6.
99

m
M

da
ily

fo
r

7
da
ys

be
fo
re

su
rg
er
y,
in
tr
ag
as
tr
ic

ad
m
in
is
tr
at
io
n

U
p:

N
rf
2,
SO

D
an
d
G
SH

D
ow

n:
M
D
A

[7
2]

N
ar
in
ge
ni
n

O
G
D
ce
ll
m
od

el
(c
or
ti
ca
ln

eu
ro
ns
)

M
C
A
O

ra
t
m
od

el
(S
D
)

In
vi
tr
o:
20
,4
0
an
d
80

μ
M

In
vi
vo
:8
0
μ
M
,i
nt
ra
pe
ri
to
ne
al
in
je
ct
io
n

U
p:

SO
D
an
d
N
rf
2

D
ow

n:
M
D
A
an
d
R
O
S

[5
7]

C
hr
ys
in

M
C
A
O

m
ou

se
m
od

el
(C
57
/B
L6

)
30

m
g/
kg
,i
nt
ra
pe
ri
to
ne
al
in
je
ct
io
n

U
p:

SO
D

D
ow

n:
M
D
A

[9
2]

M
C
A
O

ra
t
m
od

el
(W

is
ta
r)

10
,3
0,
an
d
10
0
m
g/
kg

da
ily

fo
r

21
da
ys

be
fo
re

su
rg
er
y,

in
tr
ag
as
tr
ic
ad
m
in
is
tr
at
io
n

U
p:

G
SH

-P
x

D
ow

n:
M
D
A
,N

O
[9
3]

Ic
ar
iin

A
ng
io
te
ns
in

II
-
(A

ng
II
-)

in
du

ce
d
hy
pe
rt
en
si
on

ra
t
m
od

el

10
m
g/
kg

da
ily

fo
r
28

da
ys
,

in
tr
ag
as
tr
ic
ad
m
in
is
tr
at
io
n

D
ow

n:
R
O
S

[7
3]

Ic
ar
is
id
e
II

O
G
D
ce
ll
m
od

el
(P
C
12
)

12
.5
,2
5,
an
d
50

μ
M

U
p:

M
M
P
,N

rf
2,

N
Q
O
1,
an
d
H
O
-1

D
ow

n:
R
O
S
an
d
K
ea
p1

[7
4]

N
ob
ile
ti
n

M
C
A
O

ra
t
m
od

el
(S
D
)

10
an
d
25

m
g/
kg

da
ily

fo
r
3
da
ys

be
fo
re

su
rg
er
y,
in
tr
ap
er
it
on

ea
li
nj
ec
ti
on

U
p:

N
rf
2,
H
O
-1
,

G
SH

,a
nd

SO
D
1

D
ow

n:
M
D
A

[5
8]

X
an
th
oh

um
ol

O
G
D
ce
ll
m
od

el
(p
ri
m
ar
y
ne
ur
on

s)
M
C
A
O

ra
t
m
od

el
(S
D
)

0.
5
μ
g/
m
L

0.
4
m
g/
kg

10
m
in
s
be
fo
re

su
rg
er
y,

in
tr
ap
er
it
on

ea
li
nj
ec
ti
on

U
p:

C
A
T
,S
O
D
,a
nd

N
rf
2

D
ow

n:
R
O
S,
M
D
A
,4
-H

N
E
,

8-
O
hd

G
,a
nd

G
SS
SG

/G
SH

[9
4]

8 Oxidative Medicine and Cellular Longevity



the ROS level could be decreased by genistein, and its stimula-
tion to nuclear factor kappa-B (NF-κB), c-Jun N-terminal
kinase (JNK), and extracellular regulated protein kinases
(ERK) signaling pathways could be alleviated [48, 49]. As a
result, nerve injury caused by inflammation and apoptosis
would be partially mitigated. Stroke-prone spontaneously
hypertensive rat models also suggested the antioxidant activity
of genistein. Aortic endothelial cells from these rats have been
detected to have a lower level of nicotinamide adenine dinu-
cleotide phosphate (NADPH) after genistein treatment. And
the authors declared that downregulation of p22phox and
angiotensin II type 1 receptor expression resulted from genis-
tein played an antioxidative role at the transcription level [50].

3.6. Other Flavonoids. Besides the flavonoids enumerated
above, many flavonoids were reported to exert antioxidant
function and show definite potential as supplementations in
ischemic stroke (see Table 1).

Rutin is a flavonoid glycoside formed by quercetin and a
disaccharide. In the differentiation process of human neuro-
blastoma cells (IMR32) induced by retinoic acid, rutin could
decrease ROS level [51].

Hesperidin is a flavonoid found in citrus fruits, which
could observably improve the content of antioxidase, such
as CAT, SOD, and GSH, in rats or mouse ischemic stroke
models. Cerebral injury and abnormal behavior were miti-
gated as well [52, 53]. Neohesperidin has the same molecular
weight and very similar chemical structure as hesperidin and
is also abundant in citrus fruits. Neohesperidin activated the
Akt/Nrf2/HO-1 signaling pathway to inhibit oxidative stress
and protect MCAO-induced brain damage [54]. Another fla-
vonoid from citrus fruits, tangeretin, with five methoxy
groups and no oxhydryl on its flavone skeleton, prevented
HBMECs from OGD-induced injury via inhibiting the JNK
signaling pathway. And oxidative stress injury was attenu-
ated as well [55]. As a matter of fact, the crosstalk between
JNK and Nrf2 signaling pathways plays a role in oxidative
damage of stroke [56]. Naringenin, abundant in citrus fruits,
exerted antiapoptotic and antioxidant effects in both the
OGD/R cell model and MCAO rat model. Nrf2 gene silence
or overexpression impacted these two effects, which proved
the pivotal role of Nrf2 for naringenin treating ischemic
stroke [57]. Another flavonoid from citrus fruits, nobiletin,
showed potential in treating ischemic stroke for its anti-
inflammatory and antioxidant activities [58].

Apigenin is a trihydroxyflavone widely distributed in cel-
ery and other vegetables. As a common compound with anti-
oxidant activity, apigenin was also adopted to treat ischemic
stroke as an attempt. The antioxidant function of apigenin
contributed to its neuroprotective effect, and increased
MMP might be a notable phenomenon [59, 60]. An apigenin
flavone glycoside, vitexin, exerts stroke-treating effect pri-
marily through reversing autophagy dysfunction. In the pro-
cess of experiment, oxidative damage indexes also suggested
the antioxidation of vitexin [61].

Isoquercetin is derived from quercetin with a β-D-glucosyl
residue attached at position 3. Isoquercetin activated Nrf2 to
exert an antioxidant effect, while toll-like receptor 4 (TLR4),
NF-κB, and mitogen-activated protein kinase (MAPK) signal-

ing pathways participated in neuroprotection as well [62]. It is
worth mentioning that Nrf2 gene transcription and protein
expression were both upregulated [63]. Isorhamnetin played
a role in diabetic stroke. In methylglyoxal plus OGD-
induced cell model (HBMECs), isorhamnetin exhibited anti-
oxidative, anti-inflammatory, and antiapoptotic effects [64].

Phloretin is a dihydrochalcone that belongs to flavonoid,
which could protect rats from ischemia/reperfusion (I/R)
injury via Nrf2 activation [65]. A phytoestrogen biochanin
A shows a similar effect as phloretin [66]. Morin, a pentahy-
droxyflavone commonly used as a natural dyestuff, could
reduce ROS, inhibit lipid peroxidation (LPO), and protect
blood brain barrier integrity [67]. Breviscapine, also termed
scutellarin, was widely used in the clinic to exert anticoagula-
tion and vasodilation effects. In the rat MCAOmodel, brevis-
capine could improve cognitive competence and protect the
nervous system. Antioxidant and anti-inflammatory effects
of breviscapine played a pivotal role [68].

Hispidulin is analogous to baicalin in chemical structure,
with a methoxy group at position 6 instead of oxhydryl. Hispi-
dulin activated Nrf2 in I/R rats through regulation of AMPK/-
glycogen synthase kinase-3β (GSK3β) signaling. Nrf2 gene
knockdown decreased the neuroprotective effect of hispidulin,
and AMPK inhibitor downregulated expression of Nrf2 [69].
Myricetin is a flavone extracted from the leaves of Myrica
rubra, which could treat ischemic stroke via improving antiox-
idase expression and mitochondrial function. Mitochondrial
ATP and MMP increased while ROS and MDA in mitochon-
dria decreased after myricetin treatment. And researchers dis-
covered that activating Nrf2 was the critical mechanism [70].
Xanthoangelol is an important ingredient of propolis, which
triggered Nrf2 to treat ischemic stroke [71].

Kaempferol protected rats from I/R injury, p-Akt, p-
GSK3β, Nrf2, p-NF-κB, and oxidative stress, and
inflammation-related proteins were detected, and the levels of
those protein expressions were regulated by kaempferol [72].
Two flavonoids extracted from herb Herba epimedium, icariin
and icariside II, were able to scavenge ROS, respectively. Icariin
activated the Nrf2/sirtuin-3 (SIRT-3) signaling pathway, while
icariside II inhibited NADPH oxidase activity [73, 74]. A quer-
cetin and an α-L-rhamnosyl moiety formed quercitrin, which
reduced ischemic stroke injury via inhibiting platelet activation
in arterial thrombosis. Antioxidation of quercitrin was observed
as well, and inhibition of TNF receptor-associated factor 4
(TNAF4)/p47phox/Hic5 axis was the reason [75].

Sanggenon C could protect rats from MCAO injury
through inhibition of ras homolog gene family. The member
A/rho-associated protein kinase (RhoA/ROCK) signaling
pathway benefited the anti-inflammatory and antioxidant
properties of sanggenon C. The reduced efficacy of sanggenon
C after RhoA overexpression illustrated this [76]. Addition-
ally, xanthohumol, luteoloside, pinocembrin, scutellarin, sili-
binin, chrysin, and other flavonoids were all reported to
exhibited antioxidant activity in treating ischemic stroke [21].

4. Phenolic Acid

Phenolic acids are secondary metabolic products of plants
and therefore widely exist in herbs, vegetables, and fruits.
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Structurally, phenolic acids have one benzene ring and one or
more than one phenolic hydroxyl group. In comparison to
flavonoids, study progress about phenolic acids was relatively
later and slower. Nevertheless, some phenolic acids, such as
salvianolic acid B (from famous herb medicine Salvia miltior-
rhiza) and chlorogenic acid (from Lonicera japonica),
aroused great interests of researchers [95–97]. In general,
phenolic acids have shown potential in antioxidation, antitu-
mour, and antibiosis. We have highlighted the correlation
between oxidative stress injury and ischemic stroke. Thus,
as we expected, some phenolic acids played an antioxidative
role in treating ischemic stroke.

4.1. Ferulic Acid.Natural ferulic acid often binds to polysaccha-
rides or proteins to form the skeleton of plant cell wall [98].
Thus, many plants, such as Ferula asafoetida, Angelica sinensis,
and onion, contain abundant ferulic acid. As a proverbial free-
radical scavenger, ferulic acid was widely used in the food
industry (antioxidant) and cosmetic industry (antiageing)
[99]. In ischemic stroke, ferulic acid could decrease the content
of LPO product 4-hydroxynonenal (4-HNE) and DNA oxida-
tive damage marker 8-OhdG [100]. The researchers declared
that reducing the expression of intercellular cell adhesion
molecule-1 (ICAM-1) mRNA mitigated oxidative damage.
With ICAM-1 inhibition, the number of microglia/macro-
phages decreased and thereby showed considerable anti-
inflammatory action. Ultimately, inflammation-induced oxida-
tive stress and apoptosis were ameliorated [100]. Another liter-
ature reported peroxiredoxin-2 and thioredoxin, as antioxidant
protein, have a strong neuroprotective effect. Ferulic acid sig-
nificantly improved the protein expression of peroxiredoxin-
2 and thioredoxin detected by proteomics in the brain of
MCAO rats [101].

4.2. Gallic Acid. Gallic acid is another phenolic acid applied
in a vast range of foods and cosmetics. Gallic acid is a trihy-
droxybenzoic acid with three hydroxy groups located at posi-
tions 3, 4, and 5. In Na2S2O4-induced hypoxia/reoxygenation
SH-SY5Y cells, MMP, mitochondrial ROS, ATP level, oxygen
consumption, and mitochondrial permeability transition
pore viability all suggested that gallic acid exhibited a power-
ful effect in restoring mitochondrial dysfunction. And this
effect was naturally beneficial to maintain cellular redox bal-
ance [102]. Another literature reported the function of gallic
acid in treating post-stroke depression. The strong correla-
tion between behavioral parameters and antioxidant enzyme
levels such as SOD and GSH before and after gallic acid treat-
ment proved the critical role of antioxidation. Additionally, a
gallic acid derivative, methyl-3-O-methyl gallate, showed
better antioxidant and antidepressant effects than gallic acid
[103]. This result reminded us gallic acid might be a lead
compound in the pursuit of a more efficient antioxidant to
treat ischemic stroke. High concentrations of particulate
matter might increase risk of ischemic stroke. To dusty par-
ticulate matter exposed stroke rats, gallic acid also exerted
observably antioxidant effect [104].

4.3. Salvianolic Acid B. In China, Composite Salvia Miltior-
rhiza Injection is a marketed drug approved by National

Medical Products Administration for cerebrovascular acci-
dent prevention and treatment. Salvianolic acid B is one of
the most important ingredients of Composite Salvia Miltior-
rhiza Injection [105]. A metabolomics study suggested salvia-
nolic acid B has antioxidant function because of content
changes of oxidative stress-related biomarkers [95].
Researchers also discovered that salvianolic acid B could sup-
press activation of astrocytes and microglia and downregu-
late the ROS level in MCAO mice [96].

4.4. Other Phenolic Acids. Chlorogenic acid is a depside
formed by caffeic acid and quinic acid. Literatures about anti-
bacterial, antiviral, and antioxidant effects of chlorogenic
acid are numerous [106]. Researchers also made an effort to
study the function of chlorogenic acid in ischemic stroke.
One literature reported that chlorogenic acid dose-
dependently improved learning and memory ability and alle-
viated brain damage of I/R rats. Proteins in the Nrf2 signaling
pathway, including Nrf2, HO-1, and NQO1, were all detected
at a higher level after administering chlorogenic acid. The
authors also used Nrf2 inhibitor ML385 to further prove
the effect of chlorogenic acid in activating the Nrf2 signaling
pathway [97].

Caffeic acid could cross blood brain barrier and has mul-
tiple biological activities including antioxidation [107]. Caf-
feic acid could ameliorate neurological dysfunction and
decrease infarct volume after focal cerebral ischemia in rats
by downregulating expression of 5-lipoxygenase, an enzyme
catalyzing lipid oxidation [108, 109]. In the process of arachi-
donic acid producing leukotrienes, 5-lipoxygenase exerted
key catalysis, which exacerbated nerve damage of cerebral
ischemia rats [108].

Compared to other phenolic acids, ellagic acid has a char-
acteristic organic heterotetracyclic structure. Antioxidant
and antiproliferative effects of ellagic acid are the most con-
cerned. As an active ingredient in cranberries, strawberries,
pomegranates, and other common fruits, the role of ellagic
acid in ischemic stroke is also worth investigating [110]. As
expected, ellagic acid showed a beneficial effect on MCAO
rats through regulating the expression of zonula occludens-
1 (up), aquaporin 4, and matrix metalloproteinase 9 (down).
The high level of some representative antioxidant enzymes
also clarified antioxidation of ellagic acid [111].

Rosmarinic acid could also upregulate Nrf2 to exert anti-
oxidant and neuroprotective functions. Zinc protoporphyrin
IX, an HO-1 inhibitor, suppressed the antioxidant and antia-
poptotic effects of rosmarinic acid. And researchers discov-
ered that phosphoinositide 3-kinase (PI3K)/Akt was an
upstream regulator of Nrf2 and PI3K inhibitor LY294002
decreased Nrf2 and HO-1 expression. To sum up, rosmarinic
acid protected against ischemic stroke; PI3K/Akt signaling
pathway activation and following up-regulation of Nrf2 and
HO-1 were the involved mechanism [112].

5. Curcuminoid

Curcumin, demethoxycurcumin, tetrahydrocurcumin, hexa-
hydrocurcumin, and bisdemethoxycurcumin belong to cur-
cuminoid family. Curcumin was extracted from Curcuma
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longa at the earliest. Curcumin had extensive and strong
pharmacological effects, such as anti-inflammation, antioxi-
dation, and antitumour [113, 114]. In recent years, more
and more evidence showed that curcumin had pretty high
potential in treating cardiovascular and cerebrovascular dis-
eases [115]. And kind of literature reported the effects of cur-
cumin against ischemic stroke.

Thiyagarajan and Sharma firstly reported that the
antioxidation-mediated neuroprotective effect was why cur-
cumin protected rats from I/R injury in 2004. Concretely,
dose-dependent reduction of cerebral infarct volume and
cerebral edema volume proved the effect of curcumin against
ischemic stroke. Peroxynitrite formation inhibition and pro-
tein tyrosine nitration reduction in the cytosolic suggested
the antioxidative role of curcumin [116]. Another literature
in 2010 made a similar study and mainly focused on Caspase
3, B-cell lymphoma-2 (Bcl-2), and other apoptosis-related
proteins. MDA was downregulated as an oxidative stress
index as well [117].

Molecular mechanism of antioxidant activity of curcu-
min in ischemic stroke was complicated. AMPK/uncoupling
protein 2 (UCP2) signaling pathway was referred to as UCP2
which was able to limit excess ROS. Researchers found that
curcumin could upregulate p-AMPK and UCP2, by which
cerebrovascular and endothelial cell dysfunction could be
attenuated. AMPK inhibitor, UCP2 inhibitor, and UCP2
gene knockout all suggested significance of this pathway to
antioxidation of curcumin [118, 119]. The effect of curcumin
on AMPK was also related to endoplasmic reticulum stress
and associated thioredoxin-interacting protein/NACHT,
LRR, and PYD domain-containing protein 3
(TXNIP/NLRP3) inflammasome activation. And endoplas-
mic reticulum stress in this paper resulted from a high ROS
level [120]. Akt/Nrf2 was also involved in the antioxidant
property of curcumin. Impacting on Akt phosphorylation
was regarded as the critical factor of antioxidant and neuro-
protective effects of curcumin [121]. Another report
highlighted the role of peroxiredoxin 6 and specific protein1
(SP1) after ischemic stroke. The peroxiredoxin 6 gene silence
or SP1 antagonism would severely weaken the therapeutical
effect of curcumin. In normal conditions, the number of per-
oxiredoxin 6-positive neuronal cells and protein expression
of peroxiredoxin 6 were both increased after curcumin
administration [122]. Additionally, enhancement of apurini-
c/apyrimidinic endonuclease 1 in level and activity by curcu-
min also benefited its oxidation resistance and therapeutic
effect [123].

Tetrahydrocurcumin is a derivant of curcumin, with
double bonds be reduced to single bonds. Researchers found
that tetrahydrocurcumin also plays a role in ischemic stroke,
and recovering mitochondrial dysfunction of cerebral vascu-
lar cells might be a key factor [124, 125]. Other than common
indexes such as neurological score, brain edema, cerebral
infarction, and blood flow, the authors also found that tetra-
hydrocurcumin reduced permeability of blood brain barrier
and recovered abnormal homocysteine metabolism via alter-
ing several related enzymes [124]. More importantly, tetra-
hydrocurcumin alleviated mitochondrial oxidative stress
and inhibited mitochondrial dysfunction induced by oxida-

tive stress. Levels of thioredoxin-2, SOD2, p47phox, and
gp91phox all proved the effect of tetrahydrocurcumin [124].

Hexahydrocurcumin, as one of the major metabolites of
curcumin, significantly reduced the neurological deficit scores
and the infarct volume in cerebral I/R injury rats. Treatment
with hexahydrocurcumin significantly attenuated oxidative
stress and inflammation, with decreased levels of MDA and
NO and increased levels of the antioxidative enzymes and
superoxide dismutase (SOD) activity in I/R rats [126]. A com-
parative study demonstrated that pretreated with polymeric
N-isopropylacrylamide (PNIPAM) nanoformulation of cur-
cumin, demethoxycurcumin, and bisdemethoxycurcumin
intranasal delivery significantly improved neurological defi-
cits, locomotor activity, and grip strength by decreasing the
level of LPO and increasing the activities of antioxidant
enzymes (GSH-Px, glutathione reductase, SOD, and CAT) in
MCAO rats. These results suggest that PNIPAM-loaded cur-
cumin nanoparticles may also be a potential neuroprotective
agent against various conditions where cellular damage is a
consequence of oxidative stress [127].

6. Stilbenoid

Resveratrol is a classic biologically active natural product,
also a well-known and widely used antioxidant. Many litera-
tures described stilbenoid as a nonflavonoid polyphenol. And
more precisely, it was classified as a stilbenoid, which took
stilbene or its polymeride as a skeleton structure. Resveratrol
has both cis and trans structures, and trans structures are the
abundant existing form in plants.

For patients who had a stroke within one year, oral 100-
200mg resveratrol daily for one year reduced or limited ris-
ing of blood pressure, blood glucose, blood lipid, and body
mass index, which suggested resveratrol positively affected
the prognosis of stroke patients [128]. As an antioxidant, res-
veratrol was applied to treat ischemic stroke in an experi-
mental study as well. Sinha et al. firstly indicated that
resveratrol protected MCAO rats via inhibition of oxidative
stress [129]. Numerous relevant cell models and animal
models were then adopted and proved the antioxidative role
of resveratrol during ischemic stroke. H2O2-induced oxida-
tive stress injury in hippocampal slice was alleviated by res-
veratrol, with an improved level of GST [130]. Similarly, in
OGD-injured PC12 cells, bilateral common carotid artery
(BCCA) occlusion induced cerebral infarction rats and dia-
betic rats with ischemic stroke; resveratrol exhibited antioxi-
dant activity as well [131–133]. Enriched environment is
beneficial to the recovery of brain injury and neurological
dysfunction after ischemic stroke. In enriched environment,
the therapeutic effect of resveratrol was improved, and the
antioxidation could still be observed [134]. Hermann et al.
divided the administration modes of resveratrol into prophy-
lactic delivery, acute delivery, and postacute delivery, corre-
sponding to administrating daily for 7 days until surgery,
administrating immediately after reperfusion and 24h after
reperfusion, and administrating daily for 28 days after sur-
gery, respectively. The result suggested that the first two
administration modes were conducive to exert an antioxi-
dant effect, while in administration after surgery group,
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thiobarbituric acid reactive substances (TBARS) formation
and HO-1 level showed no significant difference with the
control group [135].

The antioxidation mechanism for resveratrol mainly
includes restoring mitochondrial function, activating
sirtuin-1 (SIRT-1) and Nrf2. The significance of mitochon-
dria to maintain redox homeostasis was mentioned above.
In the oxygen and nutrient-deficient environments, exces-
sive ROS production by the mitochondria would lead to
mitochondrial lipid peroxidation and mitochondrial mem-
brane depolarization. Thus, a vicious cycle of mitochondrial
damage and oxidative stress would ultimately aggravate
ischemic stroke [136]. Genomic analysis was applied in
the neuronal-astrocytic coculture model to detect the gene
expression differences before and after resveratrol precondi-
tioning. TCA cycle, oxidative phosphorylation, and pyru-
vate uptake-related genes were upregulated. ATP level,
glycolysis, and mitochondrial respiration efficiency were
observed to be increased by resveratrol as well. All this evi-
dence collectively illuminated the protection of resveratrol
from oxygen and nutrient-deficient induced mitochondrial
dysfunction [137, 138].

SIRT-1 is a deacetylase that regulated various biological
functions of substrate proteins by deacetylation. Cell metab-
olism and apoptosis were involved in the regulating effect of
SIRT-1 [139]. Concretely and correlatively, mitochondrial
biosynthesis and fatty acid oxidation regulated by SIRT-1
were concerned in this paper [140]. Resveratrol activated
SIRT-1, thereby protecting endothelium of the cerebrovascu-
lature from oxidative stress injury, and ultimately exhibited a
curative effect on ischemic stroke. SIRT-1 inhibitor signifi-
cantly blocked these functions of resveratrol [141]. In terms
of mechanism, activated SIRT-1 could increase the expres-
sion of downstream protein peroxisome proliferator-
activated receptor γ coactivator-1α (PGC1α) and target genes
UCP2 and SOD2 [142]. Resveratrol could also activate Nrf2
and upregulate the expression of downstream proteins,
including HO-1 and NQO1, which was verified by multiple
research groups based on the OGD cell model and MCAO
animal model [143–145].

7. Other Polyphenols

Lignan is a kind of phytoestrogen formed by two phenyl-
propanoid derivatives [22]. Magnolol belongs to the lignan
family and exhibits antioxidant property during ischemic
stroke. As shown in Figure 1, magnolol is a typical poly-
phenol and abundant in herb medicine Magnolia officina-
lis. Magnolol showed a certain degree of competence in
scavenging free radicals. As for lipid peroxidation inhibi-
tion in brain tissue, magnolol exhibited strong ability,
and the IC50 value of dPPH radical scavenging assay
was lower than β-estradiol, α-tocopherol, and ascorbic
acid. MDA and 4-HNE level, nitrate/nitrite, and myeloper-
oxidase (MPO) activity all verified this. A direct neuropro-
tective effect was reflected in neonatal rat hippocampal
slice cultures, and magnolol could mitigate the damage
induced by OGD [146].

8. Conclusion and Prospect

8.1. Molecular Mechanisms of Polyphenols as Antioxidant
Supplementations. Based on the introduction and Table 1,
up to now, reported works observed antioxidation of poly-
phenols via detection of ROS, antioxidation-related enzymes
such as SOD, CAT, GSH, and GSH-Px and oxidative stress
byproducts such as MDA, 4-HNE, and 8-OhdG. As for
molecular mechanisms, Nrf2-ARE was a recognized signal-
ing pathway under regulation of polyphenols, including fla-
vonoids, phenolic acids, curcuminoids, and stilbenoids.
Specifically, curcumin-activated AMPK/UCP2 signaling
pathway and resveratrol-activated SIRT-1 are both beneficial
to antioxidation. The regulation effects on these three path-
ways were all repetitively verified by specific inhibitors or
gene knockout.

Figure 2 exhibits the correlation of ROS and Nrf2-ARE
signaling pathway. Under condition of redox equilibrium,
Nrf2 usually locates in the cytoplasm and is limited by an
upstream regulator Keap1, an E3 ubiquitin ligase complex.
Keap1 catalyzes ubiquitin modification of Nrf2 cooperatively
with Cullin-3 (Cul3) and subsequently degraded by the 26 s
proteasome. Under oxidative stress, high ROS-induced elec-
trophile metabolites would modify nonenzymatic covalent
highly reactive cysteine residues in Keap1. Ultimately, Nrf2
would be released by Keap1 and exert its biological function.
As a transcription factor, Nrf2 transfers to the nucleus and
forms a dipolymer with small musculoaponeurotic fibrosar-
coma (sMaf), which would bind to ARE and promotes
expression of a series of antioxidation-related enzymes such
as HO-1 and Nqo1. And cytoplasm Nrf2 plays a role via
phosphorylation, nuclear localization, and ARE binding
[147–149]. In the literatures about polyphenols treating
ischemic stroke, Nrf2 transcriptional, expression, and phos-
phorylation level were all reported to be upregulated, which
illuminated the role of Nrf2 in the antioxidation of
polyphenols.

The high level of ROS not only stimulates Keap-Nrf2 but
also activates inflammation and apoptosis-related signaling
pathways. Figure 2 also shows the crosstalk between ROS
and NF-κB, a significant inflammatory regulator, which is
held in a resting state through association with inhibitor of
κB (IκB) proteins [150]. On the one hand, some enzymes,
such as gp91 phox, inducible nitric oxide synthase (iNOS),
and cyclooxygenase-2 (COX-2) that regulated by NF-κB, also
play a role in promoting ROS. On the other hand, ROS could
trigger the activation of the IκB kinase complex, leading to
phosphorylation, ubiquitination, and degradation of IκB pro-
teins, which could release anti-inflammatory factors and
induce inflammation [151, 152]. Actually, in many experi-
ments, NF-κB was observed to be activated, and various
inflammatory factors such as interleukin-1β (IL-1β),
interleukin-6 (IL6), interleukin-8 (IL8), and tumour necrosis
factor α (TNF-α) were increased [152]. Thus, downregula-
tion ROS effect of polyphenols was an important reason for
inflammation mitigation in stroke patients.

Elevated ROS in mitochondria would initiate the apopto-
tic process. Concretely, as shown in Figure 2, the high level of
BCL2-associated X (Bax) and the low level of Bcl-2 along
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with loss of MMP, leading to apoptosome formation and
thereby downstream caspase cascade, ultimately induced
apoptosis [153]. And the level changes of Bax, Bcl-2, MMP,
and Caspase 3 were all detected in stroke cell or animal
models after polyphenols administration.

8.2. Superiorities of Polyphenols as Antioxidant
Supplementations. Until now, there is no efficacious drug
for ischemic stroke treatment besides tPA thrombolytic ther-
apy. Many potential compounds were abandoned after phase
II or III clinical trials because of inadequate efficacy, over-
strong side effects, or other reasons. Among these failed com-
pounds, inhibition of free radical production, free radical
scavenging, free radical degradation, and mitochondrial tar-
geted antioxidation were all taken as antioxidant strategies
[154]. The temporary failure of antioxidants was disappoint-
ing. Nevertheless, stroke mortality showed a downward
trend, and effective prevention and rehabilitation might be
a significant reason [155]. During prevention and rehabilita-
tion of ischemic stroke, healthy diet and exercise played a
nonnegligible role. As described above, as a class of natural
products, polyphenols were abundant in fruits, vegetables,
and drinks, which exhibited the critical advantage of poly-
phenols: convenient ingestion and subtle influence.

Not only exerting antioxidative function in daily life diet,
some polyphenols were also applied in clinical settings for a
long time. Taking baicalin for instance, its source herb Scutel-
laria baicalensis has been used as ischemic stroke medication
in China. Other polyphenols from herb medicine might like-
wise play a role in ischemic stroke. Inherited clinical experi-
ence ensured the efficacy and safety of these polyphenols to
a certain degree, which was another advantage of polyphe-
nols. Nevertheless, for more extensive and more interna-
tional application of herb medicine, much more effort was
needed to precisely clarify the therapeutic mechanism, side

effect, toxicity, drug metabolism, and many other aspects of
these polyphenols as drugs.

Multiple actions and multiple targets of herb medicine
have been widely recognized [156]. Though this article
focused on antioxidation of polyphenols, their other pharma-
cologic actions such as anti-inflammation, antiapoptosis, and
angiogenesis promotion were also nonnegligible. Actually, in
most literatures reported, the therapeutical effects of poly-
phenols in ischemic stroke, inflammatory factors, and
apoptosis-related proteins were observed altering as well.
Though, as introduced above, excess ROS was involved in
inflammation and apoptosis, some polyphenols could protect
the brain from these harmful factors via oxidative stress-
independent mechanisms [21]. Without a doubt, some
potential therapeutic mechanisms of polyphenols in treating
ischemic stroke still were waiting to be discovered. Above all,
antioxidation cooperatively functioned with other relevant
effects and mitigated symptoms of ischemic stroke.
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