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Macromolecular X-ray crystallography is one of the main experimental

techniques to visualize protein–ligand interactions. The high complexity of the

ligand universe, however, has delayed the development of efficient methods for

the automated identification, fitting and validation of ligands in their electron-

density clusters. The identification and fitting are primarily based on the density

itself and do not take into account the protein environment, which is a step that

is only taken during the validation of the proposed binding mode. Here, a new

approach, based on the estimation of the major energetic terms of protein–

ligand interaction, is introduced for the automated identification of crystallo-

graphic ligands in the indicated binding site with ARP/wARP. The applicability

of the method to the validation of protein–ligand models from the Protein Data

Bank is demonstrated by the detection of models that are ‘questionable’ and the

pinpointing of unfavourable interatomic contacts.

1. Introduction

The understanding of biochemical processes relies on the

derived knowledge on how macromolecules, in their biological

context, interact with a wide range of small molecules: the

ligands. A number of tools exist that provide a means to study

these interactions, and macromolecular X-ray crystallography

(MX) is used as the main experimental technique for struc-

tural analysis. While the model-building procedure for

proteins depends on the known sequence of the macro-

molecule and the quality of the data, ligand identification and

fitting presents a number of challenges. Firstly, the universe of

small molecules that interact with proteins is vast, and the

ligands may feature different complexities, shapes and topol-

ogies (Stockwell & Thornton, 2006). Indeed, the Protein Data

Bank (PDB; Berman et al., 2000) contains more than 20 000

distinct ligands or small molecules bound to proteins and

nucleic acids (Velankar et al., 2010; Sen et al., 2014). Secondly,

ligands can be partially disordered owing to an insufficiently

high binding affinity or conformational flexibility, and this

may present a difficulty in their identification and modelling

(Liebeschuetz et al., 2012; Pozharski et al., 2013). Thirdly, there

are cases in which several ligands bind to the same binding site

at the same time, and this results in partially occupied over-

lapping networks (Ma et al., 2002). Therefore, approaches for

modelling ligands have always been in a less advanced state

than those for proteins.

The increased interest in structure-based drug design has

promoted the development of methods for the automated

building of small molecules in electron-density maps and their

software implementation. PHENIX (Adams et al., 2010), Coot

(Emsley & Cowtan, 2004; Debreczeni & Emsley, 2012) and

ARP/wARP (Langer et al., 2008) are examples of academic
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software packages that are widely used for crystallographic

ligand building. In addition, the Privateer software (Agirre et

al., 2015) has been specifically designed for the modelling and

validation of carbohydrates. All of these packages apply

different methods and approaches to accomplish the same

task: to maximize the fit of the ligand to the experimentally

derived electron density. For example, ARP/wARP methods

are based on the identification of atomic features in the

identified density cluster and their further interpretation in

terms of connectivity and conformation (Langer et al., 2012).

The PHENIX method searches for the location of rigid parts

of the ligand and then accomplishes their extension by

following the density shape (Terwilliger et al., 2006). The Coot

package proceeds by identifying the density that fits pre-

defined conformations of the ligand and then adjusts the most

suitable ligand model through its real-space fit to the density

(Emsley & Cowtan, 2004).

These methods also provide tools for the identification of

possible binding sites in cases where the search ligand is

known but the corresponding density cluster is not. In addi-

tion, it may be possible to guess the ligand identity from the

defined density cluster. For example, in ligand guessing and

identification of the binding site in ARP/wARP, a major role is

played by analysis of the density shape; a number of numerical

descriptors are calculated for a set of most common ligands in

different conformations (Carolan & Lamzin, 2014), while a

search of the density cluster is accomplished using the so-

called fragmentation tree (Langer et al., 2012). In PHENIX,

all possible binding sites for a set of ligands are identified by a

search for contiguous regions of density and the identity of the

most likely ligand is guessed using the density fit; the ligand

selected is that which has the best real-space correlation and

surface complementarity to the protein atoms surrounding the

binding site (Terwilliger et al., 2007; Adams et al., 2010). An

option to screen a cocktail of possible ligands is provided in

Coot (Debreczeni & Emsley, 2012) and ARP/wARP (Langer

et al., 2008).

Although differing in detail, all of these methods have in

common the maximization of a scoring function, which is

mostly dependent on the geometry and conformation of the

ligand and its fit to the density. Some interactions arising from

the binding mode are considered during the validation of an

already built ligand but not during the model-building process.

For example, phenix.ligand_identification checks the surface

complementarity with the atoms surrounding the binding site

after the identification of an unknown ligand in a density

cluster (Adams et al., 2010). ARP/wARP warns if the built

ligand has steric clashes within itself. WHAT_CHECK (Hooft

et al., 1996), WHAT_IF (Rodriguez et al., 1998) and MolProbity

(Chen et al., 2010) can identify the presence of atomic clashes

in the structure. Additionally, MolProbity uses the small-

probe contact dot surface analysis to visualize van der Waals

(VDW) and hydrogen-bond contacts and atomic clashes. This

option is also implemented in Coot (Debreczeni & Emsley,

2012).

The estimation of the energetics of ligand-binding modes

has been a general tool for ligand scoring in structure-based

drug-design and screening projects for a decade (Kitchen et

al., 2004). However, as yet no academic crystallographic

package includes such a scoring function during ligand gues-

sing, building or validation. One reason is related to the fact

that a truly accurate estimation of the energy term is difficult

to achieve.

Here, we propose a novel approach, LigEnergy, for the

evaluation of protein–ligand binding in MX, which is based

on estimation of the protein–ligand interaction energy

(Pacholczyk & Kimmel, 2011). The estimation is obtained

using a simplification of the semi-empirical force field as

implemented in AutoDock for the docking of the ligand to a

target protein (Huey et al., 2007; Morris et al., 2009). This

energy term, normalized by the number of non-H ligand

atoms, offers a single-parameter estimator of the quality of a

modelled protein–ligand complex. The method allows the fast

scanning of large databases and the identification of protein–

ligand complexes which are ‘questionable’. At the same time,

the method allows an improvement of the identification

and fitting of ligands into specified electron density with

ARP/wARP.

2. Theory and methods

2.1. Test cases

In order to develop and test LigEnergy for its application to

the validation of protein–ligand complexes, a set of structural

entries were collected from the PDB as follows. Firstly,

filtering using the PDB Advanced Search tools was performed.

The entries were selected provided that the models contained

ligands and protein components, were obtained by X-ray

crystallography at a resolution of 3.0 Å or better, and

contained the experimental data. Secondly, only representa-

tives at 50% sequence identity were considered, resulting in a

set of 17 523 PDB entries. Thirdly, for each model only the

largest noncovalently bound ligand molecule with 10–50

non-H atoms was considered. If several copies of the same

ligand or several protein chains were present (for example, in

homo-multimers), only the ligand corresponding to the first

protein chain was investigated. Overall, 4771 protein–ligand

complexes, comprising 1228 unique noncovalently bound

ligands, were collected.

The average atomic displacement parameter (ADP) and

atomic occupancy were computed for each ligand, and the

real-space correlation coefficient (RSCC) to the experimental

data was used as provided by the Uppsala Electron Density

Server (EDS; Kleywegt et al., 2004). The distributions of the

RSCC, the average occupancy of the ligand atoms and the

average ADP were then inspected (Supplementary Fig. S1).

The entries were kept if the ligand molecule was fully occu-

pied and had an average ADP below 80 Å2 and an RSCC

higher than 0.917 (the top 50% of cases). As a result, a total of

2020 protein–ligand complexes, comprising 660 unique

ligands, were used in further studies.

To test the utility of LigEnergy for the automated identifi-

cation of crystallographic ligands (ligand guessing), from these
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2020 protein–ligand complexes we selected 100 structures

containing ligands that are present in the ARP/wARP ligand-

guessing database (Carolan & Lamzin, 2014).

2.2. Estimation of the protein–ligand interaction energy

The value of the free energy of binding can be used for the

scoring of protein–ligand complexes (Kitchen et al., 2004).

While several classes of scoring functions exist, semi-empirical

free-energy force-field functions provide a fast tool for the

estimation of the free energy of binding (Huey et al., 2007).

Several force-field approaches exist for a description of

biochemical systems, with the most common being AMBER

(Weiner & Kollman, 1981; Cornell et al., 1995; Duan et al.,

2003; Hornak et al., 2006), CHARMM (Brooks et al., 1983),

GROMOS (Scott et al., 1999) and OPLS (Jorgensen et al.,

1996). All these approaches use similar VDW and Coulomb

potentials for estimation of the interaction energy of non-

bonded atoms.

In macromolecular crystallographic ligand building or

validation, however, the interest is not necessarily in the

absolute value of the free energy of ligand binding to the

protein. Specifically, here we are interested in testing a

hypothesis as to whether an observed or proposed bound state

is feasible from an energetic point of view. For this, only the

energy of the protein–ligand complex in the bound state is

required.

For this, we present here a protein–ligand bound-state

energy estimator using the semi-empirical force field as

approximated and implemented in AutoDock 4 for ligand

scoring (Huey et al., 2007; Morris et al., 2009). The AutoDock

free-energy scoring function is based on the AMBER force

field and was parameterized using a large number of protein–

inhibitor complexes for which both the structure and the

inhibition constants were known (Morris et al., 2009). Here, we

use a function for the energy estimation as described in Huey

et al. (2007) and Morris et al. (1998) and compute the inter-

action energy of the protein–ligand bound state (VP�L
bound),

VP�L
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The first term corresponds to the 6–12 Lennard–Jones

potential for the dispersion/repulsion interactions, with para-

meters A and B taken from the AMBER force field (Weiner et

al., 1984). The second term presents a hydrogen-bond energy

estimated by a 10–12 potential (Morris et al., 1998). The third

term is the energy of electrostatic interactions, based on the

Coulomb potential, with the distance-dependent dielectric

constant "(rij) (Mehler & Solmajer, 1991). The parameters C

and D, the directionality of the hydrogen-bond interaction

E(t), which depends on the deviation of the angle t from ideal

bonding geometry, and the optimized weights Wvdw, WHbond,

Welec and Wsol were calculated according to Boobbyer et al.

(1989) and Huey et al. (2007). The last term is a desolvation

potential as described in Huey et al. (2007). This term includes

the volume (V) surrounding a given atom, weighted by the

solvation parameter (S) and an exponential term based on the

distance.

For the assignment of partial charges to the ligand and

protein atoms, the Marsili–Gasteiger partial charges were

calculated on the basis of electronegativity equilibration using

the ‘partial equalization of orbital electronegativities’ method

(Hinze & Jaffe, 1962; Hinze et al., 1963; Gasteiger & Marsili,

1980). For hydrogen bonding we consider here only polar H

atoms calculated at their riding position. Both the partial

charges and the locations of polar H atoms were computed

using AutoDockTools (Sanner, 1999; Morris et al., 2009).
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Figure 1
The energy of the bound state for the selected protein–ligand complexes. (a) The distribution of the energy computed; outliers with highly positive values
are not shown. The median, minimum and maximum values are indicated. (b) The energy of the bound state as a function of the number of non-H ligand
atoms. The Pearson linear correlation coefficient (�) and the smooth conditional mean (computed with ggplot2; Wickham, 2009) are shown. (c)
Distribution of the bound-state energy normalized by the number of non-H ligand atoms; outliers with highly positive values are not shown. The median,
minimum and maximum values are indicated.



2.3. LigEnergy for the validation of bound ligands

The energy of the protein–ligand bound state, estimated

using (1), shows a linear dependence on the number of non-H

ligand atoms (Fig. 1b). Normalization of (1) by the number of

ligand atoms results in an energetic metric (V
P�L

bound) that has a

bell-shaped distribution (Fig. 1c) and corresponds to the mean

energy contribution of each atom in the ligand when it is

bound to the protein (hereafter denoted the normalized

energy).

In MX the RSCC value is used for estimation of the overall

fit of the model to the electron density. For the validation of

deposited protein–ligand structures, in addition to the

normalized energy, we also use information about the density

support. If a ligand has high-density support but unfavourable

interactions, it may either require further refinement or be

incorrect. If no density support exists, even if the energy of the

proposed bound state is favourable, then the proposed binding

mode is regarded as ‘questionable’.

2.4. LigEnergy for the guessing of bound ligands

We used the ligand-guessing method as implemented in

ARP/wARP v.7.6 to identify 40 top candidate compounds by

the comparison of the shape descriptors of ligands from the

database and that of the binding site, complemented by their

RSCC. The LigEnergy approach was subsequently used to

assist in the ranking of these 40 compounds by taking into

account the protein–ligand interaction energies. As described

below, we found that the combination of a density-fit term

(RSCC) with the normalized energy term (V
P�L

bound) is preferred

compared with the use of any of these terms alone. Therefore,

the LigEnergy scoring function for ligand guessing is

computed as a nonparametric average of the two terms,

F ¼
1

2
rankRSCC þ rank

V
P�L
bound

� �
: ð2Þ

3. Results

3.1. Energy distribution of the deposited protein–ligand
complexes

For the selected set of 2020 deposited protein–ligand

models with an RSCC for the ligand above 0.917, the distri-

bution of the computed bound-state energy has a bell-shaped

distribution with a median value of�9.22 kcal mol�1 (Fig. 1a).

While the minimum value of the energy is about

�33 kcal mol�1, there are 22 cases with a positive energy

value. Without these, there is a linear correlation of the energy

of the bound state with the number of ligand non-H atoms

(Fig. 1b), with a Pearson correlation coefficient of �0.74.

Normalization by the number of non-H atoms decorrelates the

energy of the bound state from the ligand size and results in

the normalized energy having a more symmetric bell-shaped

distribution (Fig. 1c). The median normalized energy is

�0.37 kcal mol�1 per atom. A closer inspection of the cases

showed that those with a positive energy contain interatomic

clashes. Ligand models with a value of the normalized energy

of the bound state between 0.0 and �0.1 kcal mol�1 per atom

typically form very weak contacts with the protein, and ligand

binding occurs at the protein surface. Finally, the models with

normalized energy values below �0.1 kcal mol�1 per atom do

not display any problems in the protein–ligand interface.

These results additionally confirm that the value of the RSCC

alone may not be sufficient to classify a ligand as well

modelled. In the next section some examples will be described

in more detail.

3.2. Validation of the deposited models

The values of the interaction energy calculated for the

whole data set are given in Supplementary Table S1. Five cases

out of the selected 2020 stood out owing to their extremely low

energy: �32 kcal mol�1 (Fig. 1c). These correspond to the

same ligand: inositol hexakisphosphate (IHP) or phytic acid

(PDB entries 5hdt, 3ho6, 1zy7, 3pev and 2p1m). This ligand

has 36 non-H atoms and is an important signalling molecule

that influences the permeability of ion channels, the regulation

of transcriptional response to environmental arginine in yeast,

insulin secretion from pancreatic � cells, embryotic develop-

ment etc. (reviewed by Hatch & York, 2010). It has a

normalized energy of�0.9 kcal mol�1 per atom as a result of a

high number of favourable electrostatic interactions between

its six negatively charged phosphate groups and a positively

charged protein-binding pocket (Pruitt et al., 2009).

The majority of the selected protein–ligand models (1925

structures or 95%) show a negative normalized energy below

�0.1 kcal mol�1 per atom. There are 95 complexes that have

normalized energies between �0.1 and 0 kcal mol�1 per atom.

These may contain an interatomic clash, have weak binding or
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Figure 2
An example of weak protein–ligand interaction: a tandem winged-helix
domain of RNA polymerase I subunit A49 in complex with a fragment of
polyethylene glycol PEG 4000 (PE4).



correspond to a nonspecific protein–ligand interaction (Lepre

et al., 2004). Indeed, it is known that substances added for

protein crystallization such as buffers, cryoprotectants or

polymers may bind to the protein surface with possibly little

relevance to protein function.

In 29 of the above mentioned 95 complexes, we detected

no or very weak VDW, electrostatic and/or hydrogen-bond

interactions; therefore, their normalized protein–ligand

energy is equal to 0 kcal mol�1. These 29 complexes contain

the polymers hexaethylene glycol (PG4), pentaethylene glycol

(1PE) and a fragment of polyethylene glycol PEG 400 (PE4),

triethylene glycol (PGE), the buffers CASP, MES, EPE and

CIT, etc. An example of such weak interaction with a polymer

molecule used during crystallization is presented in Fig. 2

(PDB entry 3nfi).

22 test cases show a positive normalized energy value. Their

detailed inspection revealed the presence of a number of

severe clashes between the protein and ligand atoms. One

example is the complex between guanosine 50-diphosphate

and full-length Thermus thermophilus apo IF2 (PDB entry

4kjz), which has the highest normalized energy among all

analysed structures: 4071 kcal mol�1 per atom. There are very

close contacts between the atoms Lys181A NZ and the ligand

O40 (1.0 Å) and C10 (1.3 Å) atoms, between Val82A O and the

ligand O1B atom (1.6 Å) etc. The estimated MolProbity score

for this structure is also high, 250. We note that some struc-

tures (for example, the protein–ligand complex with PDB

code 3ihj with a normalized protein–ligand interaction energy

of 1500 kcal mol�1) contain interatomic contacts that are

seemingly too short. However, detailed inspection revealed

that in the case of PDB entry 3ihj these contacts are indeed the

covalent bonds, which are not clearly annotated in the PDB

file.

3.3. Automated identification of crystallographic ligands
assisted by the use of LigEnergy

We examined the use of the protein–ligand interaction

energy as an additional parameter for the improvement of

ligand-guessing protocols during the automated identification

of ligands using sparse-density representations with ARP/

wARP (Carolan & Lamzin, 2014). The method compares the

shape descriptors of the ligands from a database with those of

the binding site and uses the values of RSCC for the selected

ligands as the scoring function. While the method generally

works well, mistakes in pointing to the correct ligand for a

given binding site do appear, particularly when the electron

density is poor. We suggest that for the final stages of ligand

ranking additional parameters would help to identify the most

likely binding partner with a higher degree of confidence.

Here, we considered 100 cases from the selected set of

protein–ligand complexes, with the aim of examining whether

the LigEnergy approach would help in guessing the deposited

ligand (Supplementary Table S2). In 50 cases the ligand-

guessing method gave an adequate grid representation of the

density and for 32 structures it correctly identified the ligand

in the first place in the ranking. With the help of LigEnergy

(2), all cases with the adequate grid were built correctly (50)

and the correct ligand was always identified as the top one

(Supplementary Table S2). Below, we present three of these
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Figure 3
Ligand guessing without (yellow skeleton) and with (blue skeleton) the use of the estimated energy as an additional parameter for (a) the hypoxanthine-
guanine-xanthine phosphoribosyltransferase [PDB entry 1hgx; 2mFo�mFc map contoured at a 2.5� level above the mean (0.833 e Å�3) in black mesh],
(b) the Bud32–Cgi121 protein complex [PDB entry 4ww7; 2mFo � mFc map contoured at a 2.5� level above the mean (0.709 e Å�3) in black mesh] and
(c) the putative 50-methylthioadenosine/S-adenosylhomocysteine nucleosidase from B. burgdorferi B31 [PDB entry 4l0m; 2mFo�mFc map contoured at
a 2.5� level above the mean (0.831 e Å�3) in black mesh]. Dashed black lines indicate favourable contacts; dashed red lines show interatomic clashes.



cases where LigEnergy helps to identify the deposited ligand

in more detail.

The first case comprises the guanosine 50-monophosphate

(5GP) ligand bound to the hypoxanthine-guanine-xanthine

phosphoribosyltransferase (PDB entry 1hgx; Somoza et al.,

1996). The existing ligand-guessing protocol identified a

thymidine 30,50-diphosphate (THP) molecule as the most

likely binder in the electron-density cluster present at the

binding site. However, the ligand with the best interaction

energy (�0.32 kcal mol�1 per atom) was indeed 5GP, the

deposited ligand, which forms favourable hydrogen bonds

with protein chains (Fig. 3a and Supplementary Table S2). The

incorrectly identified THP ligand forms a clash between its C

atom and the Lys134A N atom.

Another case is the complex between adenosine mono-

phosphate (AMP) and the binary complex of the Bud32 and

Cgi121 proteins (PDB entry 4ww7; Zhang et al., 2015). The

ligand-guessing protocol identified adenosine triphosphate

(ATP) as the most likely binder for this complex (Fig. 3b).

However, a closer inspection of the built model shows that

ATP has a poor electron-density fit for its two phosphate

groups, resulting in contacts with the protein Lys52 residue

that are too short. Using LigEnergy (2), ATP was no longer at

the top of the ranking (Supplementary Table S2), while AMP

was instead identified as the best ligand, with a good value

for the normalized energy (�0.28 kcal mol�1 per atom). The

complex between AMP and the Bud32 and Cgi121 proteins is

additionally stabilized by four hydrogen bonds between ligand

atoms and Leu109, Glu107, Lys52 and Asp182 (Fig. 3b).

Finally, the third test case is guessing the ligand in the

difference density of the complex between an adenine (ADE)

molecule and a putative 50-methylthioadenosine/S-adenosyl-

homocysteine nucleosidase from Borrelia burgdorferi B31

(PDB entry 4l0m). The existing ligand-guessing protocol

suggested 2-[bis(2-hydroxyethyl)amino]-2-(hydroxymethyl)-

propane-1,3-diol ligand (BTB) as the compound with the

highest shape similarity to the selected protein binding site

and the highest RSCC (Fig. 3c). Using the LigEnergy

approach, ADE, the correct ligand, was instead identified as

the most likely binder (Fig. 3c), with a normalized energy of

�0.44 kcal mol�1 per atom. The ADE ligand forms three

hydrogen bonds: between the N1 atom of the ligand and the

main-chain atom of Val159, between the ligand N6 atom

and Asp204 OD2, and between the ligand N7 atom and

Asp204 OD1, while the modelled BTB ligand has clashes with

the aromatic ring of the Phe158 side-chain atoms and the

Gly81 main-chain atoms (Fig. 3c).

The presented examples demonstrate that the estimated

protein–ligand interaction energy can indeed serve as an

additional scoring parameter for the identification of the most

likely ligand for a selected density region in a given protein

structure.

4. Discussion and conclusions

We have presented a novel approach, LigEnergy, which can be

used as an additional tool for evaluation of the quality of built

protein–ligand complexes and for the validation of deposited

models. Among 2020 selected protein–ligand complexes, we

classified 95 structures (less than 5%) as ‘questionable’. Of

these, 22 structures have highly positive energy resulting from

severe atomic clashes between ligand and protein atoms. The

other 73 complexes (3.6% of the total) have only a marginally

negative energy caused by occasional clashes or complexes

with nonspecific weak ligand binding. For such structures a

more thorough examination of ligand binding may be advised,

as it may suggest an improvement of the model. The presence

of a problematic region in a protein–ligand complex may

potentially lead to an incorrect interpretation of protein–

ligand interactions, and this in turn may have impact on the

field of drug discovery and drug design when the determined

structures are used as templates (Davis et al., 2008). Some

existing approaches (for example, Word et al., 1999; Chen et

al., 2010) that allow the visualization of protein–ligand

contacts may not provide a sufficiently quantitative evalua-

tion.

LigEnergy uses a normalized protein–ligand interaction

energy, and such normalization in essence decorrelates the

estimated energy and the ligand size, thus extending their

applicability and interpretation for the validation of protein–

ligand complexes. The more negative the normalized energy is,

the more efficient the protein–ligand interaction is. This way,

the normalized energy may be seen to be analogous to the

ligand efficiency: the ratio between the free energy of binding

(including its entropic term) and the number of non-H ligand

atoms. Indeed, it has been shown that the free energy of

binding correlates with the number of non-H atoms in the

ligand (Kuntz et al., 1999). In the same work, it was suggested

that the average energy per non-H atom can be used to help

find the maximum binding affinity of ligands. The ligand effi-

ciency has been used in drug discovery to assist the identifi-

cation of the optimal combination of physicochemical and

pharmacological properties (Hopkins et al., 2004, 2014). This

metric is a measure of how well the ligand uses its atoms to

interact with its targets, and allows the comparison of different

ligands corrected for their size.

LigEnergy uses the interaction energy to offer a single-

parameter estimate of the quality of protein–ligand models

that may allow the fast scanning of large databases and may

point to ‘questionable’ structures. The estimation of the

protein–ligand interaction energy can be efficiently applied to

the assessment of proposed protein–ligand models in addition

to the RSCC and other quality indicators. The proposed

measure is highly informative, and its value may provide a

simple and rapid means of evaluating protein–ligand inter-

actions and designating them as favourable or unfavourable.

At the same time, detailed examination of all pairwise atomic

interactions may indicate potentially problematic regions.

The presented method uses a numerical approximation, as

implemented in Morris et al. (2009), to estimate the VDW,

hydrogen-bond, electrostatic and desolvation energy terms of

protein–ligand interactions. The interaction energy is strongly

dependent on the interatomic distances and changes sharply

at short distance values. At the same time, the models are
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derived from experimental techniques such as crystallography,

NMR or electron microscopy, with a certain coordinate error,

even in the presence of distance restraints. Such coordinate

error is dependent on the quality and the amount of experi-

mental data, but is not uniformly distributed throughout the

model. It additionally depends on the local density and ligand

occupancy. Use of the coordinate error for a more accurate

estimation of the interaction energy could be a possible

direction for future research. We also note that the LigEnergy

approach in its present state does not take into account

protein–ligand interactions through crystallographic water

molecules or interactions of a ligand with another ligand or an

ion. The consideration of such through-water or through-ion

interactions could be another advance in the future.

The LigEnergy method has the potential to improve the

ligand-guessing protocol during the automated identification

of ligands. For the presented test cases we found that taking

into account the energy of protein–ligand interaction is

appropriate in a combined nonparametric use with other

measures such as the RSCC. At the same time, improvement

of the ligand-guessing procedure in a sparse-grid interpreta-

tion of electron density is a separate task for further research.

This study also highlights an important concern within the

structural biology community that more attention should be

devoted to the analysis of protein–ligand contacts and the

interpretation of electron density before the structural model

is submitted to the PDB (Adams et al., 2016). The LigEnergy

approach, in which we intend to provide the assignment of

partial charges and the addition of H atoms using local

geometry (Word et al., 1999), will be implemented in ARP/

wARP and will become available to the community.
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