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Abstract

Background—While probabilistic projection methods for projecting life expectancy exist, few 

account for covariates related to life expectancy. Generalized HIV/AIDS epidemics have a large, 

immediate negative impact on the life expectancy in a country, but this impact can be mitigated by 

widespread use of antiretroviral therapy (ART). Thus, projection methods for countries with 

generalized HIV/AIDS epidemics could be improved by accounting for HIV prevalence, the future 

course of the epidemic, and ART coverage.

Methods—We extend the current Bayesian probabilistic life expectancy projection methods of 

Raftery et al. (2013) to account for HIV prevalence and adult ART coverage in countries with 

generalized HIV/AIDS epidemics.

Results—We evaluate our method using out-of-sample validation. We find that the proposed 

method performs better than the method that does not account for HIV prevalence or ART 

coverage for projections of life expectancy in countries with a generalized epidemic, while 

projections for countries without an epidemic remain essentially unchanged.

Conclusions—In general, our projections show rapid recovery to pre-epidemic life expectancy 

levels in the presence of widespread ART coverage. After the initial life expectancy recovery, we 

project a steady rise in life expectancy until the end of the century.

Contribution—We develop a simple Bayesian hierarchical model for long-term projections of 

life expectancy while accounting for HIV/AIDS prevalence and coverage of ART. The method 

produces well-calibrated projections for countries with generalized HIV/AIDS epidemics up to 

2100 while having limited data demands.

1. Introduction

Probabilistic projections of mortality measures are important for many applications, 

including population projection and pension and healthcare planning. Until recently, most 

projections of mortality measures were deterministic, although the United Nations (UN) has 

recently started to base its official projections of mortality on probabilistic methods. Most 

projections, deterministic or probabilistic, do not incorporate cause-of-death information or 

other covariates.

Lee and Carter (1992) developed a method for projecting a mortality measure 

probabilistically. The Lee–Carter method projects age-specific mortality rates and is widely 
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used today. It requires at least three time periods of age-specific death rates, an amount of 

data that is not available in many countries. The method assumes that the logarithm of the 

age-specific death rates will increase linearly in the future, which may not be optimal for 

long-term projections (Lee and Miller 2001). Alho and Spencer (1985) developed a method 

for incorporating uncertainty in population forecasting, addressing fertility, mortality and 

migration separately. However, the authors state this method is designed to be used for 

shortterm projections. Girosi and King (2008) proposed a Bayesian method for smoothing 

age-specific death rates over both age and time. Even though this method allows for the 

incorporation of covariates, it has been shown to perform well only for countries with good 

vital registration data. Like the Lee–Carter method, the Girosi and King (2008) method 

assumes a constant rate of increase. Lutz, Sanderson, and Scherbov (1998) developed an 

expert-based method for probabilistic projections of population that incorporates subjective 

probabilistic projections for several demographic measures, including life expectancy.

Raftery et al. (2013) and Raftery, Lalic, and Gerland (2014) presented a Bayesian 

hierarchical model (BHM) for projecting male and female life expectancy probabilistically 

and jointly for all countries of the world to 2100, and the UN now uses this method for its 

official mortality projections and as an input for its official population projections (United 

Nations 2015). We extend the model in Raftery et al. (2013) to include covariate information 

about generalized HIV epidemic prevalence and coverage of antiretroviral therapy (ART) in 

each country. A country is said to have a generalized HIV/AIDS epidemic when HIV 

prevalence is greater than 1% in the general population and is not concentrated in at-risk 

subgroups. While there are many diseases that have a high impact on mortality in a given 

country, the generalized HIV epidemic is unusual in that it dramatically increases age-

specific mortality rates at prime adult ages. Its demographic impact is therefore different 

from that of other diseases, which tend primarily to affect mortality rates for very young 

and/or older ages.

Figure 1 shows the rise of the HIV epidemic and the corresponding evolution of life 

expectancy at birth in Botswana. There was a sharp lowering of life expectancy with the rise 

of the epidemic and then a rapid recovery to pre-epidemic levels following the widespread 

introduction of ART.

To incorporate covariate information into a probabilistic projection model, we must also 

have a method for projecting the covariate of interest into the future. UNAIDS developed the 

Spectrum/EPP methodology for projecting HIV prevalence and demographic measures, 

including life expectancy at birth, while accounting for HIV prevalence and ART coverage, 

among other things (Stover, Brown, and Marston 2012; Stanecki, Garnett, and Ghys 2012; 

Futures Institute 2014). The method is quite complicated and requires fine-grained data on a 

number of demographic and health measures for each country. It is recommended for 

reconstructing the HIV epidemic, including the time of onset, in a particular country and for 

projecting the epidemic up to five years into the future. It is not designed for long-term HIV 

prevalence projections, which in turn are important for long-term population projections 

(UNAIDS 2014: 9).
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We use a version of the EPP package for projections of HIV prevalence to 2100 written in R 

(Brown et al. 2010). We develop a model for projecting life expectancy at birth while 

accounting for HIV prevalence and ART coverage that is simpler and more practical for 

long-term projections than Bayesian probabilistic methods.

2. Methodology

2.1 Data

We use estimates of past and present female life expectancy at birth from the United Nations 

World Population Prospects (WPP) 2015 Revision (United Nations 2015) for 201 countries. 

The UN produces estimates of past and present period life expectancy at birth and age-

specific mortality rates by five-year periods and five-year age groups; these are updated 

every two years. There are estimates for each country of the world for each five-year period 

from 1950 to 2015. We do not use life expectancy inputs for Cambodia and Rwanda from 

the time periods of the genocides in these countries.

To fit the model, we use UNAIDS estimates of past HIV prevalence and ART coverage for 

40 countries with generalized epidemics. We use 1,000 trajectories of HIV prevalence, using 

the same assumptions as Brown et al. (2010). Additionally, we use a single deterministic 

trajectory of ART coverage from UNAIDS in the projection stage. ART is relatively new in 

many generalized epidemic countries, with the first coverage estimates available for the time 

period 2000–2005. Data relating to coverage tends to be noisy. We code HIV prevalence as 

zero for all countries not experiencing a generalized HIV epidemic.

2.2 Review of joint probabilistic projections of male and female life expectancy

Our methodology builds on the Bayesian hierarchical model for joint probabilistic projection 

of female and male life expectancy used by the UN (Raftery et al. 2013; Raftery, Lalic, and 

Gerland 2014), which proceeds as follows: First, we estimate the Bayesian hierarchical 

model for female life expectancy using Markov chain Monte Carlo (MCMC), then we make 

probabilistic projections of female life expectancy from the present day to 2100. We then 

make projections of male expectancy based on the projected values of female life expectancy 

(Raftery, Lalic, and Gerland 2014). The model provides a way for projection for one country 

to be improved using information from other countries.

At the lowest observation level, the Bayesian hierarchical model for female life expectancy 

at birth is

Δℓc, t ≡ ℓc, t + 1 − ℓc, t = g(ℓc, t |θ
(c)) + εc, t + 1, εc, t N(0, (ω f (ℓc, t))

2), (1)

where ℓc,t is the female life expectancy at birth for country c in time period t, g(·|θ(c)) is the 

expected five-year gain in life expectancy, modeled as a double logistic function of current 

life expectancy and governed by country-specific parameters, θ(c), εc,t+1 is a random 

perturbation around the expected gain, and f(ℓc,t) is a smooth function of life expectancy. The 

double logistic function for country c is
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g(ℓc, t |θ(c)) = kc

1 + exp −
A1
Δ2

c (ℓc, t − Δ1
c − A2Δ2

c)

+ zc − kc

1 + exp −
A1
Δ4

c (ℓc, t − ∑i = 1
3 Δi

c − A2Δ4
c)

,

where θ(c) = (Δ1
c, Δ1

c, Δ1
c, Δ1

c, kc, zc), A1, A2 are constants. The parameter zc is the expected 

country-specific asymptotic five-year gain in life expectancy. The other parameters govern 

the maximum value and the pace of rise and fall of expected five-year gains in life 

expectancy.

At the second level of the model, the country-specific parameters θ(c) are assumed to be 

drawn from the following truncated normal-world distributions:

Δi
c |σΔi

iidNormal[0, 100](Δi, σΔi
2 ), i = 1, ⋯, 4,

kc σk
iidNormal[0, 10](k, σk

2)

zc σz
iidNormal[0, 0.653](z, σz

2) .

The truncation of the normal distribution for zc is informed by observed gains in maximum 

age at death among countries with the highest life expectancies (Wilmoth et al. 2000). At the 

third, top level of the model, hyperprior distributions are specified for the world parameters 

θ = (Δ1, Δ2, Δ3, Δ4, k, z, ω). The hyperpriors are proper and diffuse. See Raftery et al. 

(2013) for more details.

The Bayesian hierarchical model is estimated using MCMC via Metropolis–Hastings, Gibbs 

sampling, and slice sampling steps, yielding a joint posterior distribution of all the model 

parameters (Raftery et al. 2013). The smooth function f(ℓc,t), specifying how the variance of 

the perturbations depends on life expectancy, is estimated separately and is treated as known 

in the MCMC algorithm. Note that the overall variance parameter ω is not treated as known 

and is estimated by the MCMC algorithm.

Once the model has been estimated, projections of life expectancy are made based on each 

posterior sample of θ(c) and a random perturbation, εc,t+1, drawn from a N(0, (ωf(ℓc,t))2) 

distribution, where ω is drawn from the posterior distribution. After female projections of 

life expectancy are made, projections of male life expectancy, ℓc, t
m , are made by modeling 

the gap between the two (Raftery, Lalic, and Gerland 2014).

2.3 Probabilistic projections of life expectancy accounting for HIV prevalence

We expand the BHM to account for generalized HIV/AIDS epidemics by adding a co-variate 

to the observation level of the model. To define the covariate, let HIVc,t and ARTc,t be the 

HIV prevalence and ART coverage in percent of country c at time period t, respectively. 

Then the quantity HnAc,t = HIVc,t × (100 – ARTc,t) can be viewed as approximating the 

percentage of the population who are infected but do not receive ART therapy. The covariate 
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we found to best predict change in life expectancy was the change in this quantity, namely 

ΔHnAc,t–1 = HnAc,t – HnAc,t–1. Our expanded observation equation is then

Δℓc, t = g(ℓc, t |θ
(c)) + βHnAΔHnAc, t − 1 + εc, t + 1 . (2)

The parameter βHnA is constant across countries and is estimated by MCMC along with the 

other parameters of the Bayesian hierarchical model. It has a diffuse prior distribution, 

chosen to be proper (i.e., a valid probability distribution) but spread out enough that 

reasonable changes in it would have little impact on the final inference. Specifically, the 

prior distribution of βHnA that we use is N 0,0.25 ×
Var(Δℓc, t)

Var ΔHnAc, t)
= N(0,0.832) (i.e., with 

standard deviation 0.83, or variance 0.832 = 0.69), where the prior variance is determined by 

the sample variances of observed changes in life expectancy and observed changes in 

HnAc,t. The posterior distribution of βHnA is N(−0.64, 0.172) and is estimated with the other 

parameters in the MCMC via Gibbs sampling updates.

After estimation, we project female life expectancy in the same manner as outlined in 

Section 2.2. However, we make a projection based on each posterior sample of (θ(c), βHna) 

and a random perturbation. We account for uncertainty in the HIV trajectories by using 

1,000 yearly trajectories of HIV projections from EPP (Brown et al. 2010). For each country 

c and year t, we find the median, zt,c, of projected adult HIV prevalence output from EPP. 

We use a single UNAIDS deterministic projection to 2100 as a baseline reference, and we 

construct 1,000 trajectories from the single UNAIDS trajectory by using 1,000 multipliers of 

the form 
zt, c
k

zt, c
, at each time point t for k = 1, …, 1000, where zt, c

k  is prevalence at time t in 

country c in the k-simulated trajectory. Thus the UNAIDS deterministic trajectory serves as 

the median trajectory of HIV prevalence to 2100, and the EPP trajectories determine the 

uncertainty. We construct five-year averages from the yearly trajectories to be used in the 

projection stage. From these, we use a single deterministic trajectory of ART coverage to 

compute 1,000 trajectories of ΔHnAc,t for all countries. We sample from the 1,000 

trajectories of ΔHnAc,t with equal probability to be used in the projection stage.

For the country of Liberia, the prevalence is projected to be so low in the future (close to 0) 

that the multipliers are unrealistically large. We therefore treated it slightly differently. For 

this country we calculated zt, c
k − zt, c for each time point t. We then added this distance to the 

UNAIDS trajectory to yield 1,000 trajectories with the UNAIDS trajectory as the median 

and borrowed the uncertainty from the EPP trajectories.

The methods of Raftery et al. (2013) and Raftery, Lalic, and Gerland (2014) did not use the 

generalized HIV epidemic countries in model estimations. By contrast, our estimation of the 

BHM does include these countries. The covariate values are set to zero for nonepidemic 

countries. Thus, the estimation of country-specific parameters and the projection of life 

expectancy for nonepidemic countries change negligibly; we are effectively fitting the model 
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in (1) for these countries. For epidemic countries, the model in (2) allows us to adjust for the 

effects of HIV on life expectancy in the linear term and to interpret g(·|θ(c)) as the expected 

five-year gain in life expectancy in the absence of the epidemic. Even though high HIV 

prevalence takes a big toll on a country's life expectancy at birth in the absence of ART, ART 

extends an infected person's life substantially. Several epidemiological case studies show 

that HIV-positive individuals have nearly normal life expectancy when treated with ART 

(Mills et al. 2011; Johnson et al. 2013). In a country where ART coverage is high, a 

generalized HIV epidemic affects life expectancy like a chronic disease would (Deeks, 

Lewin, and Havlir 2013).

Similarly to Raftery et al. (2013), the distribution of the random perturbations in the 

projection stage is εc,t+1 ∼ N(0, (ω × f(ℓc,t,i)2), where ω is a model parameter, f(ℓc,t,i) is a 

smooth function, and i is an indicator of generalized HIV epidemic. To estimate f(ℓc,t,i), we 

fit the model in (2) using the same function f(ℓc,t) as used by Raftery et al. (2013). Then, 

using mean posterior estimates of g(ℓc,t|θ(c)), we projected life expectancy forward from 

1950–1955 to the 2010–2015 period using only the mean model in (2) with no random 

perturbations. We then calculated absolute residuals for these projections. We fit LOWESS 

curves to the absolute residuals for nonepidemic countries and for epidemic countries 

separately. A LOWESS curve fits a smooth curve to points using weighted least squares in 

estimation.

These curves can be seen in Figure 2. The black dots represent the absolute residuals from 

HIV countries, and the red LOWESS curve is fit to these points. The gray dots represent the 

absolute residuals from nonepidemic countries, and the blue curve is fit to these points. Here 

one can see that the countries experiencing a generalized epidemic have more variability 

than the nonepidemic countries. This variability is propagated into the future for epidemic 

countries. For nonepidemic countries, f(ℓc,t,i=nonHIV) is the blue curve in Figure 2. For 

epidemic countries f(ℓc,t,i=HIV) is the maximum of the blue and red curves up to the highest 

observed life expectancy for an HIV country to date, namely 78.1. For projected female life 

expectancies above 78.1 years, we use the blue curve plus a constant that is equal to the 

vertical difference between the red and blue curves at 78.1 years.

2.4 Model validation

We performed predictive out-of-sample validation to assess our model. First, we fit the 

model in (2) using data from 1950–1955 up to 2000–2005 and projected female life 

expectancy for the time periods 2005–2010 and 2010–2015. We also fit the model in (2) 

using data from 1950–1955 up to 2005–2010 and projected female life expectancy for the 

time period 2010–2015.

Table 1 presents our results. The first column designates the set of countries for which the 

metrics have been calculated. Note that although the calibration of predictive intervals is 

designed to be nominal for all countries, we include the subset of HIV countries for more 

detail. The second and third columns reflect the period of data used to train and validate the 

model, respectively. The fourth column contains the number of countries for which the 

subsequent calibration metrics are calculated.
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There were 12 countries for which no new data became available between the publication of 

the 2012 UN estimates in WPP 2012 (United Nations 2013) and the 2015 UN estimates in 

WPP 2015 (United Nations 2015). Hence, the WPP 2015 life expectancy estimate for the 

time period 2010–2015 is actually the projection of life expectancy for this period from the 

WPP 2012. As such, there is no observed life expectancy for these countries for the time 

period 2010–2015, and so we excluded these countries in this time period from the 

validation exercise. In the fifth column, covariates refers to the model in (1), and ΔHnA 
refers to the model in (2).

The last three columns contain our metrics. The mean absolute error (MAE) is calculated as

1
n ∑

c ∈ 𝒞
∑

t ∈ 𝒯
|ℓc, t − ℓc, t|, (3)

where ℓ̂c,t is the median projection of female life expectancy for country c in time period t. In 

(3),  is the set of countries involved in calculating the MAE (either the HIV countries or all 

countries),  is the set of five-year time periods involved as shown in the third column, and 

n is the number of country–time period combinations as shown in the fourth column. The 

last two columns show the proportion of countries whose 80% and 95% posterior predictive 

intervals contain the observed life expectancy in the validation period of interest.

In all the out-of-sample scenarios, we saw substantial improvements in coverage for HIV 

countries after accounting for HIV prevalence and ART coverage. We broke down the two-

period out-of-sample exercise into the two projection periods to get more detailed 

information about the HIV countries. In 2005–2010, the model with no covariates missed 15 

out of 40 HIV countries at the 95% level. When we accounted for HIV prevalence and ART 

coverage, the number of HIV countries missed went down by over half, to only 7 at the 95% 

level. For 2010–2015, the model with no covariates missed 14 out of 29 HIV countries at the 

95% level, while accounting for HIV prevalence and ART coverage reduced this to only two 

HIV countries in the time period 2010–2015. In the leave-two-time-periods-out validation 

exercise, we saw a decrease in MAE for the HIV countries in every case, while the MAE 

remained unchanged for the non-HIV countries. For the non-HIV countries, the addition of 

the covariate in the model in (2) changed coverage negligibly.

When fitting the model using data from 1950–1955 up to 2005–2010 and projecting female 

life expectancy for 2010–2015, we also saw improvements. Our coverage was much closer 

to the target nominal proportion for HIV countries after accounting for HIV prevalence and 

ART coverage. We missed 11 HIV countries out of 29 in the model with no covariates but 

only one HIV country after accounting for the HIV epidemic. The MAE also decreased 

when accounting for HIV prevalence and ART coverage.

Predictive validation results for male life expectancy are shown in Table 2 in Appendix B, 

and the conclusions are broadly similar.
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The current method used by the UN to project life expectancy in the presence of the HIV 

epidemic is the Spectrum/EPP package (Futures Institute 2014; Stanecki, Garnett, and Ghys 

2012; Stover, Brown, and Marston 2012). However, Spectrum is a complicated method with 

heavy data demands and is intended only for short-term projections up to five years into the 

future. Therefore, an important question is whether our simpler method can produce short-

term projections similar to those of the more complex Spectrum method.

To answer this, we fit our model (2) using WPP 2012 estimates of female life expectancy 

from 1950–1955 up to 2005–2010 (United Nations 2013). Then we projected female life 

expectancy to 2010–2015. We compared the projections from our simpler model designed to 

make long-term projections to the WPP 2012 projection for 2010–2015 made using 

Spectrum. In the left panel of Figure 3, we see that the five-year projections from our 

simpler method are similar to the projections from the more complicated Spectrum. In fact, 

the correlation between the projections from our proposed model and those published in 

WPP 2012 is 0.89.

The right panel of Figure 3 shows the absolute deviation from the WPP 2015 estimate of 

female life expectancy in 2010–2015 for the projections published in WPP 2012 on the x 

axis and for our projections on the y axis. The WPP 2012 projections have a mean absolute 

error of 2.70 years using the WPP 2015 estimate for comparison. The projections produced 

with the model in (2) have a mean absolute error of 2.17 years.

The large outlier in the right panel of Figure 3 is the country of Botswana: it corresponds to 

the largest deviation seen in the left panel of Figure 3. Botswana has the highest HIV 

prevalence in the world, at 24.3% in 2010–2015 and has seen a recent scale-up of ART 

coverage. The boost in ART coverage yielded a rapid recovery in life expectancy of nearly 

20 years from the WPP 2012 estimate for the 2005–2010 time period. Our model captures 

this large jump in life expectancy. In summary, our model produces similar projections to the 

current methodology designed for short-term projections, but using a much simpler model 

with smaller data requirements.

3. Case studies

We now give specific results for five countries that illustrate specific aspects of the method. 

Results for all countries considered here as having generalized epidemics are given for 

female life expectancy in Appendix A and for male life expectancy in Appendix B.

3.1 Medium epidemic: Nigeria

Nigeria, located in West Africa, is the most populous country on the continent. It had an 

HIV prevalence of 3.6% in 2010–2015. Figure 4 shows a comparison between projections of 

life expectancy under the model (1) with no covariates in blue and the model (2) with the 

HIV covariate in red.

The median projections of female life expectancy are higher than those projected when not 

accounting for the HIV/AIDS epidemic, and accounting for the epidemic leads to more 

uncertainty about the future trajectory of female life expectancy in Nigeria.
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3.2 Medium epidemic: Kenya

Kenya in East Africa has a medium-sized epidemic with HIV prevalence at 5.7% in 2010–

2015. Figure 5 shows that Kenya has already recovered to pre-epidemic life expectancy 

levels. After accounting for HIV prevalence and ART coverage, we project a slightly higher 

median female life expectancy to 2100 with more uncertainty at all time periods.

3.3 Widespread epidemic: South Africa

South Africa has the largest HIV/AIDS epidemic in the world in absolute numbers. The 

estimated average prevalence in the 2010–2015 time period was 17.5% (United Nations 

2015). Figure 6 shows a comparison between projections of life expectancy under the model 

in (1) in blue and the model in (2) in red. Figure 6 reflects the clear impact of ART coverage 

on recovery in life expectancy under a large epidemic. After accounting for HIV prevalence 

and ART coverage, we project an initial recovery to pre-epidemic life expectancy levels with 

a steady rise through the end of the century. When not accounting for the HIV epidemic and, 

particularly, ART coverage, the model projects median end-of-century life expectancy only 

slightly higher than South Africa's life expectancy before the HIV/AIDS epidemic. Thus, not 

accounting for HIV and ART in the model leads to projections that are contrary to the 

epidemiological literature referenced in Section 2.3, showing that life expectancy recovers 

quickly after a scale-up of ART coverage.

As mentioned in Section 2.4, there are a number of countries for which the UN did not have 

up-to-date life expectancy data at the time of publication of the WPP 2015, including South 

Africa. The UN estimates the female life expectancy for the period 2010–2015 as 59.1 years 

(United Nations 2015). Statistics South Africa has published mid-year estimates of life 

expectancy for each calendar year (Statistics South Africa 2010, 2011, 2013, 2014, 2015), 

and averaging these gives an estimate for the five-year period 2010–2015 of 60.7 years. 

When we fit our model with data up to 2005–2010 and project forward five years to 2010–

2015, our 95% interval for 2010–2015 is (56.6, 65.1). When we fit our model with data only 

up to 2000–2005 and project forward ten years to 2010–2015, our 95% interval for 2010–

2015 is (51.6, 63.7). In both cases, our interval captures the outcome, whether measured by 

the UN or Statistics South Africa, and in particular the rapid increase in life expectancy due 

to the widespread rollout of ART.

3.4 Widespread epidemic: Botswana

HIV prevalence rose early and quickly in Botswana, and the ART scale-up was also quick. 

This led to a rapid recovery in life expectancy in the 2005–2010 time period. After 

accounting for the epidemic and ART, we project a slightly slower rise in median life 

expectancy with more certainty than the model that does not account for the epidemic. This 

is in agreement with the epidemiological literature cited in Section 2.3 suggesting that HIV/

AIDS will affect life expectancy as a chronic disease would after ART has become 

pervasive.

Godwin and Raftery Page 9

Demogr Res. Author manuscript; available in PMC 2018 November 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.5 No epidemic: Germany

Germany is an example of a country that does not have a generalized epidemic. As can be 

seen in Figure 8, projections of life expectancy under the model in (1) and the model in (2) 

differ negligibly in both median and uncertainty.

4. Discussion

We have developed a probabilistic method for projecting life expectancy while accounting 

for generalized HIV/AIDS prevalence and ART coverage. Our method has relatively modest 

data requirements. Through predictive validation we have shown that our method improves 

upon life expectancy projections for countries with generalized HIV/AIDS epidemics using 

the method in Raftery et al. (2013), while leaving projections for nonepidemic countries 

essentially unchanged. Our projections improve in terms of both the mean absolute error of 

point predictions and the calibration of predictive intervals. Our method produces similar 

short-term projections to the UNAIDS Spectrum/EPP package, with a simpler model that 

requires much less data. Moreover, the method can produce long-term projections out to 

2100.

Our model reflects the literature consensus mentioned in Section 2.3 that HIV prevalence 

will have large impacts on life expectancy only in the absence of ART. Once ART covers a 

large proportion of the infected population, there is a one-time gain in life expectancy 

towards pre-epidemic levels, and the effects will be modest afterwards.

Our method can be combined with population projection methods to make probabilistic 

population projections which account for the HIV/AIDS epidemic. Sharrow et al. (2016) 

convert our probabilistic projections of life expectancy to age- and sex-specific mortality 

rates using model life tables for countries with an HIV/AIDS epidemic (Sharrow, Clark, and 

Raftery 2014). Probabilistic projections of population size are then made using the cohort–

component method (Raftery, Alkema, and Gerland 2014; Ševčíková and Raftery 2016).

One limitation of our method is the quality of the ART coverage data and projections. As 

ART coverage is relatively new and hard to measure, the data we have is noisy. 

Improvements in ART data quality would likely result in improvements in projections for 

the generalized HIV epidemic countries. Given high-quality data, our method could also be 

extended to account for other covariates that explain changes in life expectancy. The data 

would need to be available for every country used in model fitting back to 1950. 

Methodology for projecting the covariates would also be required.
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Appendix A: Female life expectancy and adult HIV prevalence projections

In the left panel of every row below are projections of life expectancy using our model (2) 

for all countries we treat as generalized epidemic countries. The right panel shows our 

observed trajectories of HIV prevalence and our projections of HIV prevalence made using a 

single trajectory of HIV prevalence for each country allowing the EPP projections to give 

uncertainty. The format of these figures is the same as that of Figures 4–7 in Section 3.
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Appendix B: Male life expectancy and adult HIV prevalence projections

Table 2
Out-of-sample validation results for male life 
expectancy projected using the gap model in Raftery, 
Lalic, and Gerland 2014

Countries Training period Test period n Model MAE
Coverage

80% 95%

HIV

1950–2005 2005–2015 69
No covariates 3.74 0.36 0.51

ΔHnA 2.49 0.75 0.84

1950–2005 2005–2010 40 No covariates 2.69 0.40 0.55
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Countries Training period Test period n Model MAE
Coverage

80% 95%

ΔHnA 2.41 0.73 0.80

1950–2005 2010–2015 29
No covariates 5.19 0.31 0.45

ΔHnA 2.60 0.79 0.90

1950–2010 2010–2015 29
No covariates 3.22 0.38 0.55

ΔHnA 1.81 0.76 0.86

All

1950–2005 2005–2015 390
No covariates 1.46 0.79 0.88

ΔHnA 1.23 0.86 0.94

1950–2005 2005–2010 201
No covariates 1.11 0.80 0.89

ΔHnA 1.05 0.87 0.94

1950–2005 2010–2015 189
No covariates 1.83 0.77 0.88

ΔHnA 1.43 0.86 0.95

1950–2010 2010–2015 189
No covariates 1.20 0.76 0.86

ΔHnA 0.99 0.82 0.90

Note: The first column represents the set of countries used in the subsequent calibration calculations. The second column 
represents the time period of data used to fit the model, and the third column represents the time periods used in validation. 
The fourth column represents the number of countries used in validation. In the fifth column, “No Covariates” represents 
the model in (1) and “ΔHnA” represents the model in (2). The sixth column contains the MAE as defined in Section 2.4. 
The seventh and eighth columns contain coverage metrics for the 80% and 95% predictive intervals respectively.
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Figure 1. Life expectancy at birth (black), HIV prevalence (red) and ART coverage (blue) for 
Botswana from 1950-1955 to 2005-2015
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Figure 2. Estimating the variance in the model
Note: The black dots represent absolute residuals for epidemic countries; the grey dots 

represent absolute residuals for nonepidemic countries. The blue line is the LOWESS fit to 

the nonepidemic residuals. The red line is the LOWESS fit to the epidemic residuals.
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Figure 3. Comparison between short-term projections in WPP 2012 using Spectrum, and our 
simpler method
Note: Left: On the x-axis are projections of female life expectancy in 2010–2015 produced 

using Spectrum and published in WPP 2012. On the y-axis are projections of female life 

expectancy in 2010–2015 produced by fitting the model in (2) with WPP2012 data up to 

2005–2010. The projections are mostly similar and remain close to the y = x line. Right: 

This figure shows the absolute deviations of WPP 2012 female life expectancy projections 

for 2010–2015 from the WPP 2015 estimates on the x-axis, and the absolute deviations of 

projections using (2) from the WPP 2015 estimates on the y-axis. Overall they are similar, 

with one extreme improvement using (2) for the country of Botswana.
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Figure 4. Projections of female life expectancy in Nigeria (left) and the single trajectory of past 
estimates of HIV (right)
Note: The left panel shows projections of female life expectancy in Nigeria under the model 

in equation (1) in blue and equation (2) in red. The solid lines represent medians, and the 

dashed lines are the 95% intervals. After accounting for HIV prevalence and ART coverage, 

we see slightly more uncertainty about the future life expectancy in Nigeria and slightly 

higher median projections. The right panel shows the single trajectory of past estimates of 

HIV we use in model fitting in black and probabilistic trajectories of HIV prevalence from 

EPP we use in our projections.
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Figure 5. Projection of female life expectancy in Kenya (left) and the single trajectory of past 
estimates and future trajectories of HIV (right)
Note: The left panel shows projection of female life expectancy in Kenya under the model in 

equation (1) in blue and equation (2) in red. The solid lines represent medians, and the 

dashed lines are the 95% intervals. After accounting for HIV prevalence and ART coverage, 

we see a higher median projection of life expectancy with more uncertainty. The right panel 

shows the single trajectory of past estimates and future trajectories of HIV.

Godwin and Raftery Page 37

Demogr Res. Author manuscript; available in PMC 2018 November 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Projection of female life expectancy in South Africa (left) and the single trajectory of 
past estimates of HIV (right)
Note: The left panel shows projection of female life expectancy in South Africa under the 

model in equation (1) in blue and equation (2) in red. The solid lines represent medians, and 

the dashed lines are the 95% intervals. After accounting for HIV prevalence and ART 

coverage, we see an initial recovery of life expectancy to pre-epidemic levels followed by a 

steady rise through the end of the century. The right panel shows the single trajectory of past 

estimates of HIV we use in model fitting in black. In red we have the median, 80% interval, 

and 90% interval of probabilistic trajectories of HIV prevalence from EPP we use in our 

projections.
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Figure 7. Projection of female life expectancy in Botswana (left) and a dampened, slow-rising 
median projection of life expectancy (right)
Note: The left panel shows projection of female life expectancy in Botswana under the 

model in equation (1) in blue and equation (2) in red. The solid lines represent medians, and 

the dashed lines are the 95% intervals. After accounting for HIV prevalence and ART 

coverage, we see a dampened, slow-rising median projection of life expectancy with less 

uncertainty.
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Figure 8. Projection of female life expectancy in Germany
Note: This figure shows projection of female life expectancy in Germany under the model in 

equation (1) in black and equation (2) in red. The medians are identical, and the predictive 

intervals differ negligibly.
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