
CASE REPORT
published: 02 July 2019

doi: 10.3389/fneur.2019.00717

Frontiers in Neurology | www.frontiersin.org 1 July 2019 | Volume 10 | Article 717

Edited by:

Mariella Pazzaglia,

Sapienza University of Rome, Italy

Reviewed by:

Christian Hyde,

Deakin University, Australia

Jun Ueda,

Georgia Institute of Technology,

United States

*Correspondence:

Satoshi Nobusako

s.nobusako@kio.ac.jp

Specialty section:

This article was submitted to

Neurorehabilitation,

a section of the journal

Frontiers in Neurology

Received: 16 April 2019

Accepted: 17 June 2019

Published: 02 July 2019

Citation:

Nobusako S, Osumi M, Matsuo A,

Furukawa E, Maeda T, Shimada S,

Nakai A and Morioka S (2019)

Subthreshold Vibrotactile Noise

Stimulation Immediately Improves

Manual Dexterity in a Child With

Developmental Coordination Disorder:

A Single-Case Study.

Front. Neurol. 10:717.

doi: 10.3389/fneur.2019.00717

Subthreshold Vibrotactile Noise
Stimulation Immediately Improves
Manual Dexterity in a Child With
Developmental Coordination
Disorder: A Single-Case Study

Satoshi Nobusako 1,2*, Michihiro Osumi 1,2, Atsushi Matsuo 1,2,3, Emi Furukawa 1,

Takaki Maeda 4, Sotaro Shimada 5, Akio Nakai 6 and Shu Morioka 1,2,3

1Neurorehabilitation Research Center, Kio University, Koryo, Japan, 2Graduate School of Health Science, Kio University,

Koryo, Japan, 3Department of Physical Therapy, Faculty of Health Sciences, Kio University, Koryo, Japan, 4Department of

Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan, 5Department of Electronics and Bioinformatics School of

Science and Technology, Meiji University, Kawasaki, Japan, 6Graduate School of Clinical Education & The Center for the

Study of Child Development, Institute for Education, Mukogawa Women’s University, Nishinomiya, Japan

Developmental coordination disorder (DCD) is the most common childhood movement

disorder. It is characterized by clumsiness of fine and gross motor skills in developing

children. Children with DCD have low ability to effectively use tactile information

for movements, instead relying on visual information. In addition, children with

DCD have deficits in visuo-motor temporal integration, which is important in motor

control. These traits subsequently lead to clumsiness of movements. Conversely,

however, imperceptible vibrotactile noise stimulation (at 60%-intensity of the sensory

threshold) to the wrist provides stochastic resonance (SR) phenomenon to the

body, improving the sensory and motor systems. However, the effects of SR have

not yet been validated in children with DCD. Thus, we conducted a single case

study of a 10-year-old boy with a diagnosis of DCD to investigate the effect of

SR on visual dependence, visuo-motor temporal integration, and manual dexterity.

SR was provided by vibrotactile noise stimulation (at an intensity of 60% of the

sensory threshold) to the wrist. Changes in manual dexterity (during the SR on- and

off-conditions) were measured using the manual dexterity test of the Movement

Assessment Battery for Children-2nd edition. The point of subjective equality measured

by visual or tactile temporal order judgment task served as a quantitative indicator

reflecting specific sensory dependence. The delay detection threshold and steepness

of delay detection probability curve, which were measured using the delayed visual

feedback detection task, were used as quantitative indicators of visuo-motor temporal

integration. The results demonstrated alleviated visual dependence and improved

visuo-motor temporal integration during the SR on-conditions rather than the SR

off-conditions. Most importantly, manual dexterity during the SR on-conditions was
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significantly improved compared to that during the SR off-conditions. Thus, the present

results highlighted that SR could contribute to improving poor movement in children with

DCD. However, since this was a single case study, a future interventional study with a

large sample size is needed to determine the effectiveness of SR for children with DCD.

Keywords: delayed visual feedback detection task, DCD, manual dexterity, sensory-dependence, stochastic

resonance (SR), temporal order judgment (TOJ) task, vibrotactile noise stimulation, visuo-motor temporal

integration

INTRODUCTION

Developmental coordination disorder (DCD), which is
characterized by clumsiness in fine and gross motor skills,
affects ∼6% of school-aged children, making it the most
common childhood movement disorder (1–4). Children with
DCD have lower ability to effectively use tactile information
for movement, instead relying on visual information. Several
studies have shown that increased visual dependence in children
with DCD has a negative impact on the success of motor
tasks (5–12). In addition, children with DCD have deficits in
sensory-motor integration. Many previous studies have shown
that deficits in sensory-motor integration have been linked
to clumsy movements (13–23). In the current case study, we
focused on the manual dexterity of a child with DCD. Recent
research and review articles have shown that the clumsiness of
manual dexterity in individuals with DCD is associated with
the reduced activity of the premotor cortex and inferior parietal
lobe, i.e., the frontal-parietal network (24–27). Therefore, it is
suggested that the effective activation of the frontal-parietal
network may improve manual dexterity in DCD.

On the other hand, sensory subthreshold mechanical noise
stimulation to the body is known to improve the sensory-motor
system. This improvement is related to stochastic resonance
(SR), a phenomenon described as a “noise benefit” to various
sensory and motor systems (28). SR application has been shown
to improve the sensitivity of the visual (29), auditory (30),
vestibular (31), and tactile (32–36) sensory systems. In addition,
previous studies have demonstrated the immediate improvement
in posture balance, walking, and hand movements following the
application of SR (32, 34, 35, 37–41). These improvements were
observed not only in healthy participants but also in older adults
and patients with diabetes, stroke, and Parkinson’s disease, and
children with cerebral palsy (32–34, 38–40, 42, 43).

Vibrotactile noise stimulation to the wrist at an intensity
of 60% of the sensory threshold generates SR phenomena
in the hand, which in turn improve the tactile sensitivity
of the fingertips and manual dexterity (34, 36, 40, 41). This
improvement is thought to be caused by SR acting on the
peripheral and central nervous systems. Vibrotactile noise
stimulation can also enhance sensory sensitivity by directly
stimulating peripheral sensory receptors (35). In addition,
vibrotactile noise stimulation increases cortical and spinal
neuronal activity (44–46). Importantly, this increase is not
only limited to the sensorimotor cortex but also extends to
the premotor and posterior parietal cortices (46, 47), which
are important for tactile sensitivity (46), visuo-motor temporal

integration (48), and manual dexterity (24–27). Further, studies
have shown that vibrotactile noise increases the synchronization
of neuronal firing between the spinal cord and sensorimotor
cortex and between different brain areas (44, 45, 49–51).
This increased neural synchronization can facilitate neural
communication for perception between spinal and cortical levels
(49, 52). Therefore, the application of SR to children with DCD
may improve the clumsiness of movements; however, this has not
yet been verified.

In the current case study, we hypothesized that the application
of vibrotactile noise stimulation to the wrist with an intensity of
60% of the sensory threshold in children with DCD could reduce
visual dependence by enhancing tactile sensitivity, promoting
visuo-motor temporal integration, and improving poor manual
dexterity. To verify this hypothesis, we applied SR to a 10-year-
old boy with DCD and measured changes in manual dexterity,
sensory dependence, and visuo-motor temporal integration.

MATERIALS AND METHODS

Case
A 10-year-old boy was examined by a neuro-pediatrician
specialist 1 year before the current study and was diagnosed
with DCD according to the Diagnostic and Statistical Manual of
Mental Disorders 5th edition (DSM-5) (1). The boy had no other
diagnosis of a general medical condition (e.g., cerebral palsy,
hemiplegia, and muscular dystrophy), other developmental
disorder (e.g., autism spectrum disorder, attention deficit
hyperactivity disorder, and learning disorder), or intellectual
disability. The experimental procedures were approved by the
local ethics committee of the Graduate School and Faculty of
Health Sciences at Kio University (approval number: 15–33).
There were no foreseeable risks to the patient. No personal
identification information was collected. We explained the study
to the patient and his parents. The patient and his parents
provided written informed consent for participation in this study
and publication of this study. The procedures complied with the
ethical standards of the 1964 Declaration of Helsinki regarding
the treatment of human participants in research.

The boy’s motor function and depression tendency were
evaluated using the Movement Assessment Battery for Children-
2nd edition (M-ABC-2) (53) andDepression Self-Rating Scale for
Children (DSRS-C) (54), respectively, 1 day before carrying out
the current study (Table 1).

The patient’s parents also completed the Japanese version
of the Developmental Coordination Disorder Questionnaire
(DCDQ) (55), Social Communication Questionnaire (SCQ)
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TABLE 1 | Results of tests conducted on the day before the current study.

Sex Male

Age (years) 10

Preferred hand Right

M-ABC-2 Manual dexterity

component score

32

Manual dexterity

standard score

11

Manual dexterity

percentile

63

Aiming & catching

component score

12

Aiming & catching

standard score

5

Aiming & catching

percentile

5

Balance

component score

16

Balance

standard score

5

Balance

percentile

5

Total test score 60

Standard score 6

Percentile rank 9

DCDQ Control during movement 14

Fine motor and Handwriting 8

General coordination 7

Total score 29

SCQ 9

ADHD-RS Inattention Score 11

Percentile 88

Hyperactivity-Impulsivity Score 5

Percentile 84

Total Score 16

Percentile 87

DSRS-C 3

Temporal order judgment task

(Sensory dependence)

PSE (ms) −24.77

Delayed visual feedback

detection task (Visuo-motor

temporal integration)

DDT (ms) 275.7

Steepness 0.02673

M-ABC2, Movement Assessment Battery for Children-2nd Edition; DCDQ,

Developmental Coordination Disorder Questionnaire; SCQ, Social Communication

Questionnaire; ADHD-RS, Attention-Deficit Hyperactivity Disorder Rating Scale; DSRS-C,

Depression Self-Rating Scale for Children; PSE, point of subjective equality; DDT, delay

detection threshold: Steepness, steepness of the probability curve for delay detection.

(56), and Attention-Deficit Hyperactivity Disorder Rating
Scale (ADHD-RS) (57), 1 day prior to conducting the
current study to evaluate the patient’s motor function
(55), autism spectrum disorder (ASD) traits (56), and
ADHD traits (57), respectively (Table 1). In addition, the
patient performed temporal order judgment (TOJ) and
delayed visual feedback detection tasks to evaluate sensory-
dependent tendency and visuo-motor temporal integration,
respectively (Table 1).

M-ABC-2 is an international standard evaluation battery for
evaluating DCD diagnostic criteria A of DSM-5 (53) and DCDQ
is a parent’s rating scale for evaluating DCD diagnostic criterion
B (55). In order to satisfy the DCD diagnostic criteria A of DSM-
5, it is recommended that it be less than the 16th percentile
as measured by M-ABC-2. The Japanese version of M-ABC-2,
which is now being developed (58), has not been standardized.
Thus, the original UK data were used when raw scores were
converted to a standardized score or percentile. In order to satisfy
the DCD diagnostic criterion B of DSM-5, it is recommended
that it is 57 points or less as measured by DCDQ. The patient
was in the 9th percentile of the M-ABC-2 and had 29 points
according to the DCDQ; thus, he was diagnosed with DCD. The
score of SCQwas nine points, ASD traits were low. The percentile
of the ADHD-RS was 88th percentile for the inattention item,
84th percentile for the hyperactivity-impulsivity item, and 87th
percentile for the total. The score of DSRS-C was three points,
and no depression tendency was observed. He was not receiving
any ongoing habilitation or medication therapy at the time of
participating in the current study.

Procedures
Figure 1A outlines the block design of the experimental protocol.
There were three blocks each of the SR on-condition and SR off-
condition (in order of SR on-off-on-off-on-off), with six blocks
in total. Blocks 1, 3, and 5 were the SR on-condition, while blocks
2, 4, and 6 were the SR off-condition. This order was designed
to offset the learning effects of repeating the test. Each block
contained two manual dexterity tests, with a total of 12 manual
dexterity tests performed throughout the study. That is, a total of
12 manual dexterity tests were performed six times each under
the SR on-condition (Blocks 1, 3, and 5) and SR-off condition
(Blocks 2, 4, and 6). The temporal order judgment task and
delayed visual feedback detection task was administered once
each during Block 1 and 5 (first and last SR on-condition) and
Block 2 and 6 (first and last SR off-condition), respectively. This
design was intended to reduce the burden on the patient.

Stochastic Resonance
Vibrotactile noise was applied using four compact devices
(vertical, 10mm; width, 18mm; height, 2mm; Vibration
Actuator Sprinter α; Nidec Seimitsu, Nagano, Japan) attached
to the volar and dorsal areas of the child’s right and left wrists,
respectively, using contact tape (i.e., two devices on the right wrist
and two devices on the left wrist). The resonance frequency of
the device was 170 ± 10Hz (average ± SD); low-pass filters at
500Hz were used as per previous studies (34, 36, 40, 41, 46).
A digital amplifier (FX Audio D802; North Flat Japan, Osaka,
Japan) was used to output the white noise signals to the SR
device (a vibrotactile noise device). Consistent with previous
protocols (34, 36, 40, 41, 46), we attached the device to the
wrist to minimize manual interruption while affecting the tactile
sensation of the fingers. The intensity of the vibrotactile noise was
set to 60% of the sensory threshold at the start of the test—the
optimum level to affect the sensory system (33, 34, 36, 40, 41, 46).
The sensory thresholds of the vibrotactile noise were measured
immediately before starting each of the six blocks, irrespective of
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FIGURE 1 | Block design of the experimental protocol and experimental tasks. (A) Block design of the experimental protocol. Blue squares, stochastic resonance

(SR) on-condition (+); Pink squares, SR off-condition (–). (B) Temporal order judgment task. A visuo-tactile temporal order judgment (TOJ) device (Keio method,

UT-0021, Medical Try System, Tokyo, Japan) was used for the present task. This device included an LED panel (UT-0021-2, Medical Try System, Tokyo, Japan) and

vibration box (UT-0021-1, Medical Try System, Tokyo, Japan), which provided the visual and tactile stimuli, respectively. The child put the index finger of his right hand

in the hole of the vibration box and contacted the vibrotactile stimulator. Therefore, the case could not observe the tactile stimulus. The child was requested to watch

the LED panel. The TOJ task device was to set conditions for the synchronized presentation of the visual and tactile stimuli, and the presentation of the visual stimulus

at 50 and 100ms earlier than the tactile stimulus (or vice versa). In addition, the setup included a blackout curtain so that the child would not be able to see outside

the experimental chamber. (C) Delayed visual feedback detection task. The child’s right hand was placed under a two-way mirror so that he was unable to see his

right hand directly. The image of the hand, which was reflected in the two-sided mirror, was filmed with a video camera (FDR-AXP35, Sony, Tokyo, Japan). The movie

of the photographed hand was further reflected from an installed monitor (LMD-A240, Sony, Tokyo, Japan) onto the two-sided mirror via a video delay-inserting device

(EDS-3306, FOR-A YEM ELETEX, Tokyo, Japan). Thus, the child observed the delayed image of his right hand reflected in the mirror at the position where his right

hand would be. In addition, the setup included a blackout curtain so that the child would not be able to see outside the experimental chamber. The intrinsic delay of

the visual feedback in this experimental setting was 33.7ms as measured by a time lag check device (EDD-5200, FOR-A YEM ELETEX, Tokyo, Japan).

whether it was an SR on- or off-condition. The vibrotactile noise
device was attached at all times during testing and was turned on
or off at the beginning of each block according to the SR on-/off-
conditions used. The patient was blinded to the condition as he
could not feel the noise vibrations.

Manual Dexterity Test
The manual dexterity test of the M-ABC-2 is a standardized, age-
adjusted test to evaluate the DCD diagnostic criteria A of DSM-5
(53). Since the patient was 10 years old, we conducted three sub-
tests of age band-2 to evaluate manual dexterity; placing pegs
test (Manual dexterity 1), threading lace test (Manual dexterity
2), and drawing trail II test (Manual dexterity 3). The patient
was wearing vibrotactile noise devices on the right and left
wrists during this test. This test was conducted twice in each
block (Blocks 1, 3, and 5 as the SR on-conditions, and Blocks

2, 4, and 6 as the SR off-conditions), with a total of 12 tests
conducted throughout the whole experiment. The component
score, standard score, and percentile were then calculated from
the obtained raw scores. An increase in the component score,
standard score, and percentile represented an improvement
in manual dexterity. This assessment was administered by a
specifically trained, certified physical therapist.

Temporal Order Judgment Task
Sensory dependence was measured using the temporal order
judgment (TOJ) task (59–63) (Figure 1B), where two stimuli
(visual-flashes; tactile-vibrations) were presented in several
stimulus onset asynchronies (SOA). The child was then required
to determine which stimulus (visual or tactile) was presented
first. This visuo-tactile TOJ task was carried out using a TOJ
task device (Keio method, UT-0021, Medical Try System, Tokyo,
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Japan). Visual stimulation was elicited by a green LED in an
LED panel (UT-0021-2, Medical Try System, Tokyo, Japan).
The luminance of the visual stimulus was 40 cd/m2 and the
duration of visual stimulation was 1ms. A 1-ms tactile stimulus
(converted to vibration by pneumatic pressure) was administered
to the right index finger controlled by a 1-V signal from the
vibration box (UT-0021-1, Medical Try System, Tokyo, Japan).
The stimulation condition included the following five conditions:
(at −100, −50, 0, 50, 100ms), i.e., four conditions where visual
or tactile stimulation was administered 50 or 100ms earlier than
the other (i.e., tactile first,−100,−50ms; visual first, 50, 100ms),
and a synchronous condition of visual and tactile stimulation
(0ms). During each block, the five stimulation conditions were
considered a set and the child performed five sets; the trial order
was randomized. Therefore, the child completed 100 trials with
four blocks. This task was performed with the child’s right hand
attached to the vibrotactile noise devices.

Before starting the TOJ task, simple stimulus tests were used
to confirm that the patient had no problems with vision and
touch. First, the visual stimulus was not presented, and only the
tactile stimulus was given five times to determine if there was
a problem with tactile input. Subsequently, no tactile stimulus
was presented, and only five visual stimuli were given to confirm
whether there was a problem with visual input. The visual and
tactile stimuli used for confirmation were the same as the stimuli
used in the TOJ task. These simple stimulus tests confirmed that
the patient was able to perceive tactile and visual stimuli.

For the TOJ task, the “visual first” response probability
for each several SOA conditions (−100, −50, 0, 50, 100) was
then calculated. Logistic curves were fitted to the “visual first”
response probability in the TOJ task on the basis of following
formula (23, 64, 65).

P(t) =
1

1+ exp( − a(t − tPSE))

where t is the SOA; P(t) is the probability of “visual first”
response; a indicates the steepness of the fitted curve; and
tPSE indicates the observer’s point of subjective equality (PSE),
which demonstrates the SOA where “visual first” and “tactile
first” judgment probabilities are equal (50%). Data were fitted
using a non-linear least squares algorithm in MATLAB R2014b
(MathWorks, MA, USA). Further, the PSE of each of the four
blocks including the SR on-conditions (Blocks 1 and 5) and
SR off-conditions (Blocks 2 and 6) was calculated. The PSE
was a sensory-dependent quantitative indicator, where a large
negative PSE value showed visual dependence and a large positive
PSE value showed tactile dependence. Therefore, a PSE value
approaching 0ms demonstrated no biased sensory dependence.
As baseline data, this TOJ task was also conducted 1 day before
the current study, with the SR devices not attached (Table 1).

Delayed Visual Feedback Detection Task
The delayed visual feedback detection task was carried out using
the same setting as previous studies (23, 65–67) (Figure 1C).
The child performed the task with his right hand, which
was connected to the vibrotactile noise devices. After the

experimenter had informed him orally that the trial had started,
the child opened and closed his right hand once in a continuous
and smooth manner, according to his own volition. The self-
generated movements were observed under the following 18
delay conditions using a video delay-inserting device: 33, 67, 100,
133, 167, 200, 233, 267, 300, 333, 367, 400, 433, 467, 500, 533, 567,
and 600ms. The child had to determine if the visual feedback
was synchronous or asynchronous relative to the movement of
his right hand. Immediately following the trial, the child had to
state orally if the visual feedback was “delayed” or “not delayed”
by using the forced-choice method. In each block, all 18 delay
conditions were treated as one set; their presentation order was
randomized. Four sets were performed in total. The task was
carried out once during each of the first and last SR on-block
(Blocks 1 and 5) and SR off-block (Blocks 2 and 6), respectively; a
total of four tests were carried out. Therefore, the child completed
a total of 72 randomized trials with 18 delay conditions per set
of four per block. Since there were four blocks in total, with
or without SR, a total of 288 randomized tests were completed.
Before the task, we confirmed that the patient could distinguish
between a minimum delay of 33ms and a maximum delay of
600ms. That is, before the task, he reported “not delayed” for
the minimum delay of 33ms and reported “delayed” for the
maximum delay of 600 ms.

The delay detection threshold (DDT) and steepness of the
probability curve for delay detection, which will be referred
to herein as “steepness,” were determined using this task.
Shortened DDT and/or increased steepness represented high
visuomotor temporal integration, while prolonged DDT and/or
decreased steepness represented poor visuomotor temporal
integration. A logistic curve was fitted to the child’s response
on the visual feedback delay detection task, using the following
formula (23, 64, 65):

P(t) =
1

1+ exp( − a(t − DDT))

where t was the visual feedback delay length (independent
variable); P(t) was the probability of delay detection (observed
value); a was the steepness of the fitted curve; and DDT was
the observer’s DDT representing the delay length at which the
probability of delay detection was 50%. The curve was fitted using
a non-linear least squares method (a trust-region algorithm)
with MATLAB R2014b (MathWorks, Inc., Natick, MA, USA) to
estimate a and DDT. DDT and the steepness of each of the four
blocks including the SR on-conditions (Blocks 1 and 5) and SR
off-conditions (Blocks 2 and 6) were calculated. As baseline data,
this task was also conducted 1 day before the current study, with
the SR devices not attached (Table 1).

Statistical Analysis
The results of the manual dexterity test under the SR on-
conditions (a total of six test results of twice each in Blocks
1, 3, and 5) and the results of the manual dexterity test
under the SR off-conditions (a total of six test results of twice
each in Blocks 2, 4, and 6) were compared. Manual dexterity
test scores (component score, standard score, percentile) were
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compared using the Wilcoxon signed-rank test, since they were
not normally distributed by the Shapiro-Wilk test. In addition,
the effect size was calculated (68). The significance level was set
at P < 0.05. All statistical analyses were performed using SPSS
ver. 24 (SPSS, Chicago, IL, USA).

RESULTS

Table 2 outlines the measurement results of each index of each
block. Figure 2A shows a comparison of themanual dexterity test
scores (component score, standard score, and percentile) of the
SR on-conditions (a total of six test results of twice each in Blocks
1, 3, and 5) and the SR off-conditions (a total of six test results of
twice each in Blocks 2, 4, and 6). The manual dexterity test scores
were higher during the SR on-conditions compared with the SR
off-conditions (component score, z = −2.207, P = 0.027, effect
size (r) = −2.21; standard score, z = −2.214, P = 0.027, effect
size (r)=−2.21; percentile, z =−2.207, P= 0.027, effect size (r)
=−2.21; Figure 2A).

Figure 2B shows the “visual first” response probability curves
of the SR on-conditions (average of two results in Blocks 1 and 5)
and the SR off-conditions (average of two results in Blocks 2 and
6). On average, the PSE of the SR off-condition was −16.092ms,
whereas the average PSE of the SR on-condition was −0.096ms
(Table 2; Figure 2B). Therefore, the PSE of the SR on-condition
approached 0ms as compared with the SR off-condition, which
showed a reduction of visual dependence (Table 2; Figure 2B).

Figure 2C shows the delay detection probability curves of
the SR on-conditions (average of two results in Blocks 1 and 5)
and SR off-conditions (average of two results in Blocks 2 and
6). DDT and steepness of the SR on-condition were 219.4ms
and 0.049 on average, respectively, whereas DDT and steepness

of the SR off-condition were 272.9ms and 0.028 on average,
respectively (Table 2; Figure 2C). Thus, DDT and steepness of
the SR on-condition shortened and increased, respectively, as
compared with the SR off-condition, which in turn indicated the
improvement of visuo-motor temporal integration during the SR
on-condition (Table 2; Figure 2C).

DISCUSSION

The present results showed that in this one case of DCD, manual
dexterity under the SR-on conditions significantly improved
immediately, compared with the SR off-conditions. Generally,
children with DCD have visual dependence (5–12). In the
current case, the PSE of the TOJ task on the day before the
experiment was −24.77ms (Table 1) and the average PSE under
the SR off-conditions was −16.092ms (Table 2; Figure 2B),
which indicated visual dependency. However, the average PSE of
the TOJ task under the SR on condition was −0.096, indicating
a mitigation of visual dependence (Table 2; Figure 2B). Tactile
sensation of the hand is a prerequisite for manual dexterity such
as object grasping, object manipulation, and handwriting (69–
72). Previous studies showed that vibrotactile noise stimulation
to the wrist with an intensity of 60% of the sensory threshold
improves fingertip tactility and manual dexterity in the affected
limbs of patients with stroke (32, 34, 40). Therefore, the
improvement of manual dexterity under the SR on-conditions in
the current case may have been due to the improvement of tactile
sensitivity in the child’s hand, which is important for manual
dexterity, and the accompanying relief of visual dependency.

In addition, visuo-motor temporal integration is a very
important function for manual dexterity (23, 66). In the current
case, the DDT and steepness of the delayed visual feedback

TABLE 2 | Measurement results of each index of each block.

Block-1 Block-2 Block-3 Block-4 Block-5 Block-6 SR (+)

Mean

SR (–)

Mean

SR (+) SR (–) SR (+) SR (–) SR (+) SR (–)

1 2 1 2 1 2 1 2 1 2 1 2

Manual dexterity test MD 1 item standard

score

14 12 12 12 13 14 13 13 14 12 10 10 13.2 11.7

MD 2 item standard

score

13 13 12 12 12 14 11 13 13 11 11 11 12.7 11.7

MD 3 item standard

score

11 6 1 6 11 11 6 6 11 11 11 11 10.2 6.8

Component score 38 31 25 30 36 39 30 32 38 34 32 32 36.0 30.2

Standard score 15 11 8 10 13 15 10 11 15 12 11 11 13.5 10.2

Percentile rank 95 63 25 50 84 95 50 63 95 75 63 63 84.5 52.3

Temporal order judgment

task (sensory bias)

PSE −1.994 −24.770 – – 1.802 −7.413 −0.096 −16.092

delayed visual feedback

detection task (visuomotor

temporal integration)

DDT 233.2 283.4 – – 205.6 262.4 219.4 272.9

Steepness 0.041 0.028 – – 0.057 0.028 0.049 0.028

SR (+), stochastic resonance on-condition; SR (–), stochastic resonance off-condition; MD 1, manual dexterity test one (placing pegs test); MD 2, manual dexterity test two (threading

lace test); MD 3, manual dexterity test three (drawing trail II test); PSE, point of subjective equality; DDT, delay detection threshold: Steepness, steepness of the probability curve for

delay detection.
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FIGURE 2 | Results of the manual dexterity test and experimental tasks under the SR on-and SR off-conditions. (A) Comparison results of manual dexterity test

scores between the SR on- and SR off-conditions. SR (+), stochastic resonance on-condition; SR (–), stochastic resonance off-condition; Blue box, SR on-condition;

Pink box, SR off-condition. *P < 0.05. Lines represent the range of the minimum and maximum. Boxes represent the lower, median, and upper quartiles. (B) The

“visual first” response probability curves of the SR on- and the SR off-conditions in the TOJ tasks. Blue curve, SR on-condition; Pink curve, SR off-condition. (C) Delay

detection probability curves of the delayed visual feedback detection tasks in the SR on- and off-conditions. Blue curve, SR on-condition; Pink curve, SR off-condition.

detection task on the day before the experiment were 275.7ms
and 0.0267, respectively (Table 1), and the average DDT and
steepness under the SR off-conditions were 272.9ms and 0.028,
respectively (Table 2; Figure 2C). In contrast, the average DDT
and steepness under the SR on-conditions were 219.4ms and
0.049, respectively (Table 2; Figure 2C). This suggested that
the improvement of visuo-motor temporal integration under
the SR on-conditions, which, in addition to the reduction of
visual dependency, could have contributed to the improvement
of manual dexterity following imperceptible vibrotactile noise
stimulation in the current case. Therefore, it is possible to
hypothesize that the improvement of manual dexterity by SR in

the current case was because SR reduced visual dependency and
promoted visuo-motor temporal integration.

We did not measure the patient’s brain activity; therefore,
although the following is completely speculative, the results
observed in the current case may have been brought about by
the effects of SR on the activity of the central nervous system.
Seo et al. (46, 47) demonstrated that imperceptible vibrotactile
noise on the wrist increases not only sensorimotor cortex activity
but also the activity of the premotor and parietal cortices, which
are responsible for tactile sensitivity (46), visuo-motor temporal
integration (48), andmanual dexterity (24–27). Thus, the positive
effects observed in the current case may have been due to
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activation of the frontal-parietal network in addition to activation
of the sensorimotor cortex.

The current case study has several limitations that should
be noted. The data could not be analyzed statistically since
only a few sensory dependence (TOJ task) and visuo-motor
temporal integration (delayed visual feedback detection task)
measurements were acquired during the SR on- and off-
conditions. Therefore, we cannot conclude that the reason for the
significant improvement of manual dexterity under the SR on-
conditions shown in the current case was via an improvement
of visual dependence and visuo-motor temporal integration. In
addition, this was a single case study; thus, future interventional
studies with a large sample size are needed to determine the
effectiveness of SR for children with DCD. Furthermore, the
verification of retention effects after the end of SR administration
is also required. In the current study, the SR on- and off-
conditions were performed alternately, but the effects obtained
under the SR on-condition disappeared under the next off-
condition. Therefore, there may be no retention effects after
removing SR devices. Thus, future studies designed to investigate
retention effects after removing SR devices are also needed. The
advantage of the SR phenomenon is that children only wear
the devices, the stimulation is below the detection threshold,
and children do not need special efforts to use the devices. The
combined use of SR with highly effective interventions (73), such
as the cognitive orientation to daily occupational performance
approach and neuromotor task training, may provide additional
benefits to children with DCD.
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