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Toll-like receptors (TLRs), a critical family of pattern recognition receptors (PRRs), are responsible for the innate immune responses
via signalling pathways to provide effective host defence against pathogen infections. However, TLR-signalling pathways are also
likely to stringently regulate tissue maintenance and homeostasis by elaborate modulatory mechanisms. MicroRNAs (miRNAs)
have emerged as key regulators and as an essential part of the networks involved in regulating TLR-signalling pathways. In this
review, we highlight our understanding of the regulation of miRNA expression profiles by TLR-signalling pathways and the
regulation of TLR-signalling pathways by miRNAs. We focus on the roles of miRNAs in regulating TLR-signalling pathways
by targeting multiple molecules, including TLRs themselves, their associated signalling proteins and regulatory molecules, and
transcription factors and functional cytokines induced by them, at multiple levels.

1. Introduction

Toll-like receptors (TLRs), an important family of pattern
recognition receptors (PRRs), are responsible for the recog-
nition of pathogen-associated molecular patterns from infec-
tious pathogens. This recognition triggers the production of
large amounts of inflammatory cytokines, type I interferons
(IFNs), and antiviral proteins through the activation of inter-
feron regulatory factor (IRF) 3, IRF7, activator protein-1 (AP-
1), and nuclear factor-kappa B (NF-𝜅B) [1–3]. In addition,
the TLR-signalling pathways are strictly and finely regu-
lated by positive or negative modulation at multiple levels
to prevent excessive inflammation and achieve a balanced
output [2, 4, 5]. Several mechanisms are responsible for the
regulation of the TLR-signalling pathways. These include
physical interactions, conformational changes, phosphoryla-
tion, ubiquitylation, and proteasome-mediated degradation
involving various regulatory molecules [2, 4, 5]. Among
the many regulatory molecules, microRNAs (miRNAs) have
received considerable attention as a newly identified family

of regulators involved in fine-tuning the TLR-signalling
pathways [6–12].

miRNAs are a class of small noncoding RNAs (about
22 nucleotides in length) that regulate gene expression by
binding to the 3󸀠-untranslated regions (UTRs) of target
messenger RNAs (mRNAs), typically resulting in protein
translation repression or mRNA degradation [13–15]. miR-
NAs are involved into many biological processes, includ-
ing development, differentiation, growth, homeostasis, stress
responses, apoptosis, and immune activation, in organisms
such as animals, plants, and even some DNA viruses [13–15].
To date, more than 30,000 miRNAs have been identified in
at least 206 species. One prediction is that up to 30% of all
human genes are regulated by miRNAs in many cell types,
including immune and epithelial cells [13–15]. Therefore,
miRNAs may serve as important regulators for controlling
the differentiation of immune cells as well as the immune
responses to pathogen infections [16–18]. Recent studies have
indicated that miRNAs play important roles in regulating
the TLR-signalling pathways and innate immune responses
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and function as immunomodulators for the complex reg-
ulatory networks [6–12]. Remarkably, many molecules that
are involved in the TLR-signalling pathways (including sig-
nalling proteins, regulatory molecules, transcription factors,
cytokines, and TLRs) are regulated by an array of miRNAs
(Figure 1) [6–12].

Here, we review the recent findings regarding the rela-
tionship between miRNAs and the TLR-signalling pathways.
Overall, we summarize the current understanding of the
mechanisms of TLR-signalling pathways regulated by miR-
NAs. Then, we focus on the roles of miRNAs in regulating
the TLR-signalling pathways by targeting TLRs themselves,
their associated signalling proteins and regulatorymolecules,
and transcription factors and functional cytokines induced by
them.

2. Regulation of miRNA Expression by
the TLR-Signalling Pathways

Many studies have demonstrated that miRNAs expression
profiles are subject to change in different cell lines when stim-
ulated by the ligands in the TLR-signalling pathways. Briefly,
in 2006, Baltimore Lab first documented that the upregulated
expression of miR-146a, miR-155, and miR-132 in human
monocytes is related to stimulation with the lipopolysaccha-
ride (LPS) [19]. Subsequent studies found that miR-223, miR-
147, miR-9, miR-27b, and let-7e are induced by stimuli from
other TLRs, by pathogen infection, and by IL-1𝛽 [52, 57–
59]. Furthermore, several miRNAs such asmiR-155, miR-146,
and miR-21 are able to target some molecules involved in the
TLR-signalling pathways, although the expression of some of
these miRNAs depends on the stimulation by TLR ligands
[6, 8, 20, 21]. It is also noted thatmiRNAsmay also induced in
a temporal-specific manner. For example, miR-146 and miR-
155 are highly expressed within 2 h after LPS treatment and
are thus early-responsemiRNAs,whereasmiR-21 is expressed
in macrophages at a later time after LPS treatment and is
thus a late-response miRNA [6, 8, 9, 19–21, 63]. The different
expression of these miRNAs in TLR-induced cells may also
be attributed to the duration of treatment, the technology
used, and the different cell types. Nonetheless, these studies
clearly indicate that molecules involved in the TLR-signalling
pathways can regulate miRNA expression (Table 1).

To date, almost all of miRNA expressions appearto
depend on the TLR-induced NF-𝜅B and MAPK pathways
(Table 1). In 2006, miR-146a was the first reported miRNA
whose expression depends on the NF-𝜅B pathway in human
THP-1 monocytes after LPS stimulation [19]. Since then,
many studies have further identified subsets of miRNAs
related to the TLR-induced NF-𝜅B-dependent pathway. The
expression of many miRNAs including miR-146a, miR-155,
miR-132, miR-223, miR-147, miR-9, miR-27b, let-7e, miR-
21, miR-16, miR-23b, miR-30b, miR-301a, and miR-125b is
induced in an NF-𝜅B-dependent manner after TLR stimulus
or pathogen infection [10, 19–23, 36–39, 49, 50, 53, 57–
64, 70]. For example, miR-9 expression is directly induced
by LPS via the TLR4-MyD88-NF-𝜅B-dependent pathway in
human monocytes and neutrophils [58]. In addition, miR-
155 expression is induced in the NF-𝜅B-dependent manner

in various cell types after many stimuli, including LPS and
LMP1, the viral latent protein of the Epstein-Barr virus (EBV)
[36, 37].miR-146a expression can also be induced through the
NF-𝜅B-dependent pathway in response to various immune
mediators, such as LPS, IL-1𝛽, LMP1, and tumour necrosis
factor- (TNF-) 𝛼 [19, 22, 23, 39]. Conversely, some miRNAs
(miR-29b, let-7i,miR-98,miR-107,miR-27a, andmiR-532-5p)
are downregulated by the TLR-induced NF-𝜅B-dependent
pathway [39, 72–77, 120]. It is necessary to point out that
miR-125b expression related to the TLR-activated NF-𝜅B-
dependent pathway remains controversial and needs to be
further investigated in the future [40].

TheMAPKpathway is also involved in regulatingmiRNA
expression (Table 1). For example, miR-21, miR-146b, miR-
155, andmiR-146b-5p are reportedly upregulated through the
heterodimers Fos and Jun in different cell types in response
to various stimuli [36, 41, 65, 66, 71, 121]. In contrast, the
MAPK pathway is also involved in the downregulation of
miRNA expression, for example, miR-99a [24]. However,
other cellular pathways are also responsible for regulating
miRNA expression. For example, the expression ofmiR-132 is
regulated by the cyclic AMP response element-binding pro-
tein and the transcriptional coactivator p300 [50]. Expression
of miR-143/145 cluster is downregulated by the Janus kinase
1 (JAK1)—signal transducer and activator of transcription 1
(STAT1)—dependent pathway [85].

Since the expressions of most TLR-responsive miRNAs
are related to the corresponding ligand stimulation or the
infection of some pathogens, it is reasonable to conclude
that these miRNAs may be not only involved in regulating
the innate immune responses, ensuring host protection,
but also play important roles in the pathogenesis of some
infectious diseases. Because TLR and miRNA expression
profiles are limited to certain cell types, the different TLR
distributions in different immune cells might also have
different miRNA expressions. Currently, our understanding
of the TLR-induced miRNAs has significantly expanded,
with breakthroughs providing insights into the finely tuned
miRNA-mediated regulation of the TLR-signalling pathways.

3. miRNA-Mediated Regulatory
TLR-Signalling Pathways

miRNAs regulate TLR-signalling pathways at several layers,
including regulation of TLR expression, TLR-associated sig-
nalling proteins and regulatory molecules, and TLR-induced
transcription factors and functional cytokines (Figure 1).

3.1. miRNAs-Mediated Regulatory TLR Expression. It is well
recognized that the activation of TLR-signalling pathways is
required for hosts to eliminate invading pathogens. However,
excessive activation of these pathways may also disrupt
immune homeostasis, leading to some diseases such as
autoimmune diseases, chronic inflammatory diseases, or can-
cer [2, 4, 5]. Therefore, precise regulation of TLR-signalling
pathways is especially important [6–12]. Since miRNAs act as
a class of key regulators of gene expression, the regulation of
TLR expression may be one of the effective points at which
miRNAs target TLRs (Table 2).
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Table 2: Verified targets of miRNAs in TLR-signalling pathway.

Target mRNA miRNA(s) Reference
Receptors

TLR4 let-7i, let-7e, miR-223, miR-146a, miR-146b, miR-511 [25, 53, 62, 72, 78, 79]
TLR3 miR-223, miR-26a [53, 80]
TLR2 miR-105, miR-19a/b, miR-143, miR-146a [81–84]

Signalling proteins
IRAK1 miR-146a, miR-146b, miR-21 [19, 26, 28, 31, 85]
TRAF6 miR-146a, miR-146b [19, 26, 79]
IRAK2 miR-146a [19, 26]
MyD88 miR-146b, miR-155, miR-200b, miR-200c, miR-21, miR-149, miR-203 [29, 30, 54, 79, 86–88]
IRAK4 miR-146a, miR-132, miR-212 [51]
TRAF4 miR-29 [89]
FADD miR-155 [38, 40]
IKK𝛽 miR-155, miR-199a [38, 40, 54, 88]
IKK𝜀 miR-155 [38, 40]
TAB2 miR-155 [38, 40]
RIPK1 miR-155 [38, 40]
TIRAP miR-145 [31]
BTK miR-348 [69, 90]
IKK𝛼 miR-223 [91]
MKK4 miR-92a [92]
STING miR-24 [56]
ISGs miR-132 [50]

Transcription factors
P38 MAPK miR-155 [38]
NF-𝜅B1 miR-9, miR-210 [58, 93]
NF-𝜅Bp65 miR-329 [94]
STAT3 miR-17-5p, miR-20a, miR-223 [55, 95]
C/EBP𝛽 miR-155 [32, 33]
PPAR𝛾 miR-27b [59]
p300 miR-132 [50]
FOXP3 miR-155 [34]
Ets2 miR-155 [96]

Functional cytokines
IL-8 miR-146a, miR-16 [22, 97]
RANTES miR-146a [22]
IFN-𝛼 miR-466l [98]
IFN-𝛽 let-7b, miR-26a, miR-34a, miR-145 [11, 99]
TNF miR-125b, miR-187, miR-16, miR-221, miR-579, miR-369-3, miR-155 [40, 42, 67, 97, 100–102]
IL-6 miR-16, miR-365, miR-142-3p, miR-187 [11, 73, 103, 104]
IL-10 miR-106a, miR-106b, miR-466l [105, 106]
IL-12p35 miR-21 [107–109]
IFN-𝛾 miR-9, miR-21 [108, 110]
IL-12p40 miR-187, miR-21 [108, 109]

Regulators molecules
ACHE miR-132 [49]
PDCD4 miR-21 [63, 111, 112]
SHIP1 miR-155 [32, 33, 43–46, 62, 111, 112]
SOCS1 miR-155 [47, 48, 62, 113]
Notch1 miR-146a [35]
CaMKIIalpha miR-148a/b, miR-152 [114]
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Table 2: Continued.

Target mRNA miRNA(s) Reference
PCAF miR-181, miR-17/92 [115, 116]
CIS miR-98, let-7 [75, 117, 118]
SOCS4 miR-98, let-7 [75, 117, 118]
SOCS3 miR-203 [118]
MKP-1 miR-101 [119]

IRAK: IL-1R-associated kinase; TRAF6: TNFR-associated factor 6; MyD88: myeloid differentiation primary-response protein 88; FADD: Fas-associated death
domain protein; IKK: inhibitor of NF-𝜅B kinase; TAB2: TAK1-binding protein 2; RIPK1: receptor TNFR-interacting serine-threonine kinase 1; TIRAP: TIR
domain-containing adaptor protein (also known as MAL, MyD88 adaptor-like protein); BTK: Bruton’s tyrosine kinase; MKK4: mitogen-activated protein
kinase kinase 4; STAT3: transcription factor signal transducer and activator of transcription 3; C/EBP𝛽: CCAAT/enhancer-binding protein-𝛽; PPAR𝛾:
peroxisome proliferator-activated receptor-𝛾; RANTES: regulated upon activation normal T cell expressed and presumably secreted; FOXP3: forkhead box
P3; Ets2: E26 transformation-specific sequence 2; STING: stimulator of interferon genes; ACHE: acetylcholinesterase; PDCD4: programmed cell death 4;
SHIP1: Src homology 2 (SH2) domain-containing inositol-5󸀠-phosphatase 1; SOCS: suppressor of cytokine signalling; CIS: cytokine-inducible Src homology
2; CaMKIIalpha: calcium/calmodulin-dependent protein kinase II; PCAF: protein-associated factor; MKP-1: MAPK phosphatase-1.

To date, several miRNAs have been shown to regulate
TLR expression. Among them, the let-7 miRNA family,
including let-7e and let-7i, can regulate TLR4 expression.
Overexpression of let-7e by miRNA mimics resulted in the
downregulation of TLR4 expression in mouse peritoneal
macrophages, and inhibition of let-7e by antisense miRNA
led to the upregulation of TLR4 expression [62]. Let-7i
regulates TLR4 expression in human biliary epithelial cells
[72]. This different member of the let-7 miRNA family is
found in macrophages and epithelial cells, where it regulates
TLR4 expression, probably due to the differences in the
TLR-induced miRNA expression profiles of different cell
types. Another TLR-induced miRNA, the myeloid-specific
miR-223, can regulate both TLR4 and TLR3 expression in
granulocytes [53]. A recent study found that miR-146a can
also negatively regulate TLR4, resulting in accumulation of
oxidized low-density lipoprotein (oxLDL) accumulation and
an inflammatory response in macrophages [25]. In addition,
miR-511 functions as a putative positive regulator of TLR4
under cell cycle arrest conditions, whereas it seems to inhibit
TLR4 expression under similar conditions in monocytes and
dendritic cells (DCs) [78]. Moreover, miR-26a can negatively
regulate the TLR3 signalling pathway by targeting TLR3
expression in rat macrophages and ameliorates pristane
induced arthritis in rats [80].

TLR2 is another receptor regulated by miRNAs (Table 2).
The expression of TLR2 is negatively regulated by miR-146a
and miR-105, respectively [81, 82]. In addition, miR-19a/b
upregulates TLR2 expression in fibroblast-like synoviocytes
of rheumatoid arthritis patients [83]. Overexpression of miR-
19a/b by miRNA mimics not only reduces TLR2 protein
expression but also significantly inhibits the activities of the
TLR2-triggered cytokines and kinases [83]. Furthermore,
miR-143 can inhibit the expression of TLR2, leading to the
suppression of the invasion and migration of a subset of
human colorectal carcinoma cells [84].

Overall, these studies suggest that miRNAs play an
important role in the constitutive expression of TLRs. Further
mining of other TLRs regulated by miRNAs is still needed.
Nevertheless, miRNA regulatory TLR downstream signalling
molecules and/or transcription factors seem more effective

than miRNAs directly targeting TLRs to abolish receptor
expression and thus completely shut down theTLR-signalling
pathway.

3.2. miRNA-Mediated Regulatory TLR-Associated Signalling
Proteins. TLRs recruit many types of proteins for these
signalling pathways upon ligand binding. These proteins
include adaptor molecules [myeloid differentiation factor 88
(MyD88), Toll/Interleukin-1 receptor (TIR) domain-contain-
ing adapter molecule (TRIF), TIR domain-containing adap-
tor protein (TIRAP), and TRIF-related adaptor molecule
(TRAM)], various kinases [IL-1R-associated kinases
(IRAKs), Bruton’s tyrosine kinase (BTK), MAPK kinases
(MKKs), TAK1-binding proteins (TABs), and I𝜅B kinases
(IKKs)], and ubiquitin ligases [TNFR-associated factors
(TRAFs)]. Recently, these molecules have also been shown to
be targeted by a set of miRNAs, especially the TLR-induced
miRNAs [1–12] (Table 2).

Among these miRNAs identified, miR-146a, one of key
TLR-induced miRNAs, inhibits the TLR-signalling pathway
by targeting IRAK1 kinase and TRAF6 ligase [19, 26–28,
85]. IRAK1 and TRAF6 are the important components of
the MyD88-dependent pathway for activating most TLRs-
mediated signalling pathways (except TLR3) in many cell
types, including the THP-1 cell line [9, 19, 26–28]. Recently,
IRAK2, another IL-1R-associated kinase, has also been shown
to be regulated by miR-146a, although its relevance in the
TLR-signalling pathways remains to be further determined
[19, 26]. In addition, miR-146a can inhibit IL-8 expres-
sion, suggesting that this negative regulation might be an
important mechanism of severe inflammation during the
innate immune response [22]. Moreover, miR-146b, another
miRNA of the miR-146 family, is an IL-10-responsive miRNA
with anti-inflammatory activity [79]. miR-146b canmodulate
the TLR4-signalling pathway by directly targeting multiple
proteins, including TLR4, MyD88, IRAK1, and TRAF6 [79].
This modulation leads to a significant reduction of several
inflammatory cytokines and chemokines. The third IL-1R-
associated kinase, IRAK4, has been shown to be targeted by
miR-132, miR-212, and miR-146a, decreasing the production
of inflammatory cytokines [51]. A recent study demonstrated
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Figure 1: The fine-tuning of the TLR-signalling pathways by miRNAs. An array of miRNAs are involved in regulating of the TLR-signalling
pathways and innate immune responses by targeting multiple molecules at multiple levels, including TLRs themselves, TLR-associated
signalling proteins, TLR-associated regulatory molecules, TLR-induced transcription factors, and TLR-induced functional cytokines.

that miR-29 as tumor suppressor miRNA is one of the neg-
ative regulators of TRAF4 expression in metastatic prostate
cancer [89].

miR-155, another important TLR-induced miRNA, can
target some of several signalling proteins in TLR-signalling
pathways. These proteins mainly include some of the com-
ponents of the NF-𝜅B pathway, such as Fas-associated death
domain protein, IKK𝛽, IKK𝜀, and the receptor- (TNFR super-
family) interacting serine-threonine kinase 1 [38, 40]. Next,
miR-155 has been shown to inhibit the p38 MAPK signalling
pathway and inflammatory cytokine production in human
DCs in response tomicrobial stimuli [38]. Furthermore,miR-
155 can regulate TAB2 (a signalling molecule downstream

of TRAF6) in human monocyte-derived DCs [38]. Recently,
MyD88 has been shown to be regulated by miR-155, miR-149,
andmiR-203 [29, 30, 86, 87]. In addition, TIRAP (also known
as MAL), another MyD88 adaptor-like protein that acts as
a bridging adaptor for TLR2- and TLR4-mediated MyD88-
dependent signalling pathways, has been identified as a target
of miR-145 in hematopoietic stem/progenitor cells [31].

In addition to previously describedmiRNAs, themiR-200
family (such as miR-200b and miR-200c) can also regulate
the expression of MyD88. This regulation can modify the
efficiency of the TLR4-signalling pathway and thus affect host
innate defences againstmicrobial pathogens [88].miR-21 also
inhibits the expression of MyD88 and IRAK1, leading to the
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upregulation of the JNK/c-Jun signalling pathway, the ERK/c-
Fos pathway, and signalling by type I IFNs during RNA virus
infection [54]. In addition, miR-346 can target Bruton’s tyro-
sine kinase (BTK), a critical tyrosine kinase involved in the
TLR4, TLR7, TLR8, and TLR9 signalling pathways for NF-𝜅B
activation [69, 90]. Next, miR-223 has been shown to target
IKK𝛼 (one of the serine-threonine kinases in the canonical
NF-𝜅B pathway) in human monocytes/macrophages [91].
miR-199a can target IKK𝛽 (another serine-threonine kinase)
in human ovarian cancer cells and/or endometrial stromal
cells, leading to suppression of the NF-𝜅B pathway activation
and reduced IL-8 production [122, 123]. Moreover, miR-92a
can target mitogen-activated protein kinase kinase 4 and
thus inhibit the TLR4-triggered inflammatory response in
macrophages [92].

Collectively, some of the key components of TLRs-
associated signalling proteins are regulated by certain miR-
NAs, although relatively few signalling proteins have been
identified so far. These studies suggest that miRNA could
result in timely and appropriate toning down and/or termi-
nation of the TLR-signalling pathway by targeting critical
signalling proteins, once a TLR is triggered.

3.3. miRNA-Mediated Regulatory TLR-Induced Transcription
Factors. Activation of certain transcription factors, such as
IRF, NF-𝜅B, AP-1, and STAT, is a key functional step for
TLR-signalling pathways. Theoretically, targeting transcrip-
tion factors by miRNAs may globally affect TLR-induced
gene expressions. Many studies have experimentally demon-
strated that miRNA also plays a vital role in regulation
of TLR-induced transcription factors [124, 125]. As dis-
cussed above, miRNAs induced by certain TLRs-activated
transcription factor-dependent signalling pathways usually
provide feedback to regulate their activation. Many studies
reveal that miRNAs directly and/or indirectly regulate the
expressions of TLR-activated transcription factors [6–12]
(Table 2). Generally, NF-𝜅B is considered themost important
transcription factor in TLR-induced signalling pathways.
It has been demonstrated that miR-9 (one of the TLR-
responsive miRNAs) directly targets NF-𝜅B1 mRNA [58].
Because the TLR4 agonist LPS induces miR-9 expression in
a MyD88- and NF-𝜅B-dependent pathway manner, miR-9-
mediated feedback may control the TLR-signalling pathways
by fine-tuning NF-𝜅B1 expression [58]. In addition, a recent
study has also demonstrated that miR-210 can target NF-
𝜅B1 under induction by LPS in murine macrophages [93].
Furthermore, miR-329 plays a pivotal role in the inhibition
of IL-6 mRNA expression by targeting the NF-𝜅Bp65 [94].

miRNA can also target other TLR-activated transcription
factors. For example, miR-17-5p and miR-20a in myeloid-
derived suppressor cells can target STAT3 and thus alleviate
the suppressive function of myeloid-derived suppressor cells
[95]. In addition, miR-223 has also been shown to target
STAT3, resulting in the inhibition of the proinflammatory
cytokines IL-6 and IL-1𝛽 production in macrophages [55].
Recently, a transcriptional corepressor CCAAT/enhancer
binding protein-𝛽 has been identified as a target of miR-155.
The effect of miR-155 leads to decreasing the expression levels
of granulocyte colony-stimulating factor and possibly IL-6

in splenocytes [32, 33]. Another transcriptional coactivator,
p300, which often associates with the cAMP-responsive
element-binding protein, is targeted by miR-132 in lymphatic
endothelial cells infected with Kaposi’s sarcoma-associated
herpesvirus [50]. Furthermore, Forkhead box p3 (a tran-
scription factor required for the regulatory T cells) and E26
transformation-specific sequence 2 have also been identified
as targets of miR-155 [34, 96]. Interestingly, when induced
by the NF-𝜅B-dependent pathway, miR-27b directly targets
peroxisome proliferator-activated receptor 𝛾 and inhibits
LPS-induced TNF secretion after LPS treatment [59].

3.4. miRNA-Mediated Regulatory TLR-Induced Cytokines.
Activation of TLR signalling through recognition of patho-
gen-associatedmolecular patterns leads to the transcriptional
activation of genes encoding for proinflammatory cytokines,
chemokines, and costimulatory molecules. These cytokines
play an important role in eradicating infectious pathogens
and recruiting inflammatory cells to the infection site for
effective host defence. Several key TLR-induced functional
cytokines such as type I IFNs, TNF, IL-6, IL-12, and IL-10 have
been demonstrated to be regulated bymiRNAs. Bioinformat-
ics analysis also indicated that the mRNAs encoding these
cytokines and chemokines have the binding sites for miRNAs
[126–128] (Table 2).

A recent study demonstrated that miR-146a sequentially
suppresses the production of type I IFNs, TNF, IL-1𝛽, and IL-
6 by targeting IRAK1, IRAK2, and TRAF6 in macrophages
during vesicular stomatitis virus (VSV) infection or during
LPS tolerance [26–28]. In addition, miR-466l can directly
bind to the 3󸀠-UTR of IFN-𝛼 and thus reduce IFN-𝛼
expression during VSV and EBV infections [98]. Moreover,
miR-26a, miR-34a, miR-145, and let-7b directly regulate the
expression of IFN-𝛽 by targeting the IFN-𝛽 3󸀠-UTR [11, 99].
On the other hand, certain cytokines such as type I IFNs can
also affect miRNA expression. For example, the activation
of IFN-𝛼 can suppress two abundantly expressed miRNAs,
miR-378 and miR-30e. This suppression allows release of
cytolytic mRNAs, resulting in augmented natural killer cell
cytotoxicity [129]. Furthermore, miRNAs can affect antiviral
immunity through modulating IFN downstream signalling.
For example, owing to the absence of a miR-29a cluster in the
thymic epithelium, high expression of IFN-𝛼 receptor in the
thymic epithelium triggers suboptimal signalling and then
results in a rapid loss of thymic cellularity [130]. In addition,
miR-132 has been shown to perform a negative effect on the
expression of interferon-stimulated genes, facilitating viral
replication [50].

Aside from type I IFNs, TNF mRNA contains a binding
site that can be targeted by miR-125b in mouse RAW
264.7 macrophages [40]. Recently, it has been demonstrated
that miR-187 directly targets TNF-𝛼 mRNA and indirectly
decreases IL-6 and IL-12p40 expression via downmodulation
of I𝜅B𝜁, a master regulator of the transcription of these latter
two cytokines [100]. Next, it has been shown that IL-6 can
be targeted by several miRNAs such as miR-16, miR-365, and
miR-142-3p, subsequently reducing the endotoxin-induced
mortality by restricting TLR signalling through a feedback
mechanism [11, 103, 104]. In addition, bioinformatics analysis
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indicates that the 3󸀠-UTR of the IL-6mRNA contains a let-7-
binding site. However, many let-7 familymiRNAs can usually
be suppressed after TLR stimulation, suggesting that let-
7 may contribute to the expression of IL-6 [73]. But, the
relationship between the let-7 family and IL-6 remains to
be experimentally determined. Another study has shown
that IL-10 is also regulated by miR-106a and miR-106b in
human Burkitt’s lymphoma Raji cell line and that IL-12p35
mRNA contains a target site for miR-21 in macrophages and
DCs, as confirmed by reporter assays, leading to restricted
adaptive Th1 responses [105, 107–109]. In contrast, miR-29
suppresses immune responses against intracellular pathogens
by targeting IFN-𝛾 [110].

Stability of proteins is very important for their biolog-
ical function. Increasing evidence indicates that miRNAs,
together with RNA-binding proteins (RBPs), regulate the
stability of numerous cytokine-encoding mRNAs and/or
their translation through the AU-rich elements (AREs) of
their 3󸀠-UTR regions. For example, both TNF and IL-
10 mRNAs contain long AREs targeted by tristetraprolin
(TTP), a key factor in mRNA destabilization downstream
of the TLR-signalling pathway [67, 68]. In addition, miR-16
cooperates with TTP to mediate TNF mRNA destabilization
[97]. Furthermore, a recent study showed that TNF mRNA
is directly degraded by miR-221, miR-579, and miR-125b
with TTP, leading to LPS tolerance [40, 101]. Among these
miRNAs, miR-221 interacts with TTP to accelerate TNF
mRNA decay, whereas miR-579 and miR-125b combine with
TTP to block TNF mRNA translation [40, 101]. However,
some of these effects could result from the upregulation of
miR-125b expression [40].

Conversely, miRNAs can also compete with RBPs to
protect cytokine-encoding mRNAs from destabilization. For
example, miR-466l competes with TTP to bind to the canon-
ical ARE “AUUUA” sequence in IL-10 through its seed region.
This binding effect protects the IL-10 mRNA from TTP-
mediated degradation [106]. Interestingly, environmental
factors are also involved in cytokine-mediated stability of
encodingmRNA. For example, under serum starvation,miR-
369-3 directly interacts with the ARE in TNF mRNA to
initiate TNFmRNA translation, and this interaction depends
on the recruitment of the fragile-Xmental retardation-related
protein 1 and argonaute 2 [102]. In contrast, miR-369-3
represses the expression of TNF when the cells are actively
proliferating [42]. It has also been shown that miR-155 is
required for TNFmRNA stabilization, as miR-155-deficient B
cells and/or miR-155-deficient mice fail to produce increased
levels of TNF after LPS injection, although a direct binding
site formiR-155 in the TNFmRNAhas not yet been identified
[40, 42]. In addition to the insights discussed above, further
studies are needed to elucidatewhether other TLR-responsive
cytokines are subject to feedback regulation by miRNAs.

3.5. miRNA-Mediated Regulatory TLR-Associated Regulatory
Molecules. miRNAs can target TLR-associated regulatory
molecules for regulating TLR-signalling pathways (Table 2).
A recent study indicated that miR-132 can target acetyl-
cholinesterase (ACHE), a key regulator of TLR-signalling
pathways, to increase the acetylcholine-mediated negative

regulation of TLR-signalling pathways [49]. Next, miR-21
targets tumour suppressor protein programmed cell death
4 (PDCD4), an inhibitor of eukaryotic translation initiation
factor 4F, in macrophages, thus enhancing innate immune
responses in the early phase of pathogen infections [63, 111,
112]. In addition, the inhibition of PDCD4 expression by
miR-21 increases IL-10 secretion, suggesting complex roles
of TLR-induced cytokine production in pathogen infections
[63, 111, 112]. Moreover, Src homology 2 domain-containing
inositol-5󸀠-phosphatase 1 (SHIP1), a negative regulator of
TLR-signalling pathways and inflammatory responses, has
been identified as a target of miR-155 [33, 43–45]. The
increased expression of miR-155 in response to LPS stimu-
lation or pathogen infection in macrophages accompanies
the decreased expression of SHIP1 [32, 43–46, 111, 112].
Furthermore, miR-155 has also been shown to target sup-
pressor of cytokine signalling 1 (SOCS1), which is another
negative regulator of TLR-signalling pathways [47, 48, 113].
The expression ofmiR-155 is also upregulated inmacrophages
during RNA virus infection, and upregulation of miR-155
provides positive feedback regulation to TLR3- and TLR4-
triggered antiviral innate immune responses by promoting
type I IFNs signalling via targeting of SOCS1 [47, 113]. How-
ever, IL-10 inhibition of miR-155 expression increases SHIP1
and SOCS1 expression and mitigates TLR signalling [47, 48,
62]. Overall, these findings indicate that miR-155 expression
is upregulated and inhibits the expression of the negative
regulators SHIP1 and SOCS1 in the early phase of TLR4 and
endosomalRNA-sensingTLRactivation, allowingTLR signal
transduction and cytokine production. Later in the response,
the increased miR-21 induces IL-10 production by repressing
PDCD4 expression, and IL-10 then feeds back to the pathway
to reduce miR-155 expression, thereby increasing SHIP1 and
SOCS1 expression and limiting the TLR4 and endosomal
RNA-sensing TLR-signalling pathways.

Many other miRNAs also target other regulatory
molecules involved in regulating the TLR-signalling
pathways (Table 2). Notch1, a known positive regulator of
IL-12p70 production in DCs, has been confirmed as a target
of miR-146a. miR-146a targeting Notch1 suppresses IL-
12p70 production in TLR9-triggered DCs [35]. In addition,
miR-148a/b and miR-152 can inhibit the expression of
calcium/calmodulin-dependent protein kinase II, and thus
they regulate TLR-signalling pathways [114]. Furthermore,
miR-181 and miR-17/92 suppress TNF-induced cytokine
production in epithelial cells by targeting p300/cyclic AMP
response element-binding protein-associated factor that is
a coactivator and acetyltransferase that promotes histone
acetylation and gene transcription [115, 116]. Cytokine-
inducible Src homology 2 (CIS) protein and SOCS4, as the
regulatory molecules, have been identified as direct targets
of miR-98 and let-7. Furthermore, LPS stimulation and the
pathogen (Cryptosporidium parvum, C. parvum) infection
can induce CIS and SOCS4 expression by downregulating
miR-98 and let-7 expression in biliary epithelial cells [75, 117,
118]. These studies suggest that miRNAs may be responsible
for coordinately regulating the CIS and SOCS expression
in human biliary epithelial cells, but the roles of miRNAs
in regulating the CIS and SOCS expression can be changed
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after C. parvum infection. Interestingly, TLR-dependent
induction of miR-101 appears to provide positive feedback
loop control of innate immune responses through miR-101-
mediated suppression of MAPK phosphatase 1, an inhibitory
regulator of TLR-signalling pathways [119]. Thus, miRNAs
are responsible for regulating regulatory molecules to
fine-tune TLR-signalling pathways and downstream events.

4. Summary

Over the past decade, significant progress has been made in
our understanding of the roles of miRNAs in the immune
system. The functions of miRNAs have been investigated in
detail, particularly in regulating TLR-signalling pathways and
innate immune responses by targeting multiple molecules at
multiple levels. Subtle differences in TLR-induced miRNA
expression profiles revealed by a number of studies have been
found to be closely related to ligands, as well as correlated
with treatment time, technology used, and cell types. How-
ever, the mechanisms regarding TLR-signalling pathways-
mediated miRNA expression regulation, through transcrip-
tional repression or posttranscriptional destabilization, need
to be further deeply investigated. Given the multifunc-
tional roles of miRNAs in TLR-signalling pathways, miRNA
targeting these pathways appears relatively more effective,
economical, and common rather than completely shutting
them down by abolishing receptor and cytokines expression.

Importantly, studying the central roles of miRNAs in
regulating TLR-signalling pathways indicates that TLR-
signalling pathways induce multiple miRNAs, which in turn
regulate the strength, location, and timing of the TLR-
signalling pathways, and might be involved in controlling
the switch from a strong early inflammatory response to the
resolution phase of the inflammatory process in a timely
and orchestrated manner.The innate immune system utilizes
multiple miRNAs to properly regulate its functional capac-
ity, creating a finely tuned balance between activation and
repression in TLR-signalling pathways. Interestingly, several
miRNAs work together with RBP to regulate TLR-responsive
mRNA stability and translation in different ways. These
findings open up an exciting new area in the regulation of
TLR-signalling pathways.

Besides the TLR-signalling pathways, some miRNAs,
such asmiR-146a,miR-466l,miR-24,miR-122,miR-378,miR-
30e, miR-29a, and miR-223, are induced by signalling path-
ways of retinoic acid-inducible gene-I- (RIG-I-) like receptors
and/or nucleotide-binding oligomerization domain- (NOD-)
like receptors. Furthermore, they use feedback mechanisms
to regulate these signalling pathways and downstream events
[26, 56, 98, 99, 130–135]. However, the roles of miRNA-
mediated regulation are only beginning to emerge. A wide
variety of pathogens, especially DNA viruses, express the
highest number of miRNAs, and then these miRNAs directly
modulate PRR-signalling pathways and innate immune
responses to establish a cellular environment conducive for
viral infection and replication [134, 136–141]. More strikingly,
a number of studies have revealed that several miRNAs,
such as miR-21, miR-29a, and let-7b, can even serve as
physiological ligands of the single-stranded RNA-sensing

TLRs [142–146]. However, the precise regulatory roles of
miRNAs in PRR-mediated signalling pathways and innate
immune responses are still not fully understood, especially
how these miRNA networks interact to optimize PRR-
signalling pathways and inflammatory responses. Moreover,
as newly identified regulators, the mechanisms by which
miRNAs, in combination with other regulatory mechanisms,
control the outcome of immune responses need to be elu-
cidated in future studies. Understanding the roles of miR-
NAs in regulating PRR-signalling pathways, especially TLR-
signalling pathways, innate immune responses, and viral
immune evasion may provide important clues for identifying
novel and attractive drug targets to inflammatory diseases,
cancer, autoimmunity, and infections.
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