
ARTICLE

Received 3 Oct 2013 | Accepted 5 Mar 2014 | Published 8 Apr 2014

Cell wall precursors are required to organize
the chlamydial division septum
Nicolas Jacquier1, Antonio Frandi2, Trestan Pillonel1, Patrick Viollier2 & Gilbert Greub1

Members of the Chlamydiales order are major bacterial pathogens that divide at mid-cell,

without a sequence homologue of the FtsZ cytokinetic tubulin and without a classical

peptidoglycan cell wall. Moreover, the spatiotemporal mechanisms directing constriction in

Chlamydia are not known. Here we show that the MreB actin homologue and its conserved

regulator RodZ localize to the division furrow in Waddlia chondrophila, a member of the

Chlamydiales order implicated in human miscarriage. RodZ is recruited to the septal site

earlier than MreB and in a manner that depends on biosynthesis of the peptidoglycan

precursor lipid II by the MurA enzyme. By contrast, crosslinking of lipid II peptides by the

Pbp3 transpeptidase disperses RodZ from the septum. Altogether, these findings provide

a cytological framework for understanding chlamydial cytokinesis driven by septal cell wall

synthesis.
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F
undamental to proliferation of all cells, the molecular basis
of cell division in Chlamydiales is still largely uncharted
territory. While several proteins that are essential for

division in other bacteria are not encoded in the chlamydial
genomes, functional studies on chlamydial cell division are
hampered by their poor genetic tractability and their obligate
intracellular lifestyle. The Chlamydiae are composed of the
members of the Chlamydiaceae family and of several other
family-level lineages coined ‘Chlamydia-related bacteria’. Chla-
mydiaceae include major human pathogens: C. trachomatis
causes urogenital infections and trachoma; C. pneumoniae and
C. psittaci cause pneumonia1. Waddlia chondrophila, another
member of the Chlamydiales order, is implicated in abortion in
bovines2 and in miscarriage in humans3–5. Like other
Chlamydiae, W. chondrophila is a strict intracellular bacterium
that exhibits two developmental states: infectious non-dividing
elementary bodies (EBs) and non-infectious dividing reticulate
bodies (RBs)6–8. When EBs enter cells, they reside in a vacuole
called inclusion. Next, they differentiate into RBs, decondensing
their genome and initiating transcription and replication. Finally,
RBs redifferentiate into EBs that are expelled by exocytosis or cell
lysis8.

W. chondrophila represents an ideal model for cytological
studies on Chlamydiae. W. chondrophila can infect and
proliferate in a range of cells, including amoebae, human
macrophages, Vero cells, pneumocytes, endometrial cells and
fish cell lines9–12, presumably because of the larger metabolic
capacity encoded in its genome versus that of Chlamydiaceae13.
Moreover, Waddlia cells are bigger than those of Chlamydiaceae
and thus better suited for protein localization studies underlying
chlamydial cell division.

Unlike Chlamydiaceae, W. chondrophila is resistant to many
b-lactam antibiotics10 that target the bacterial cell wall
(peptidoglycan). Peptidoglycan (PG) is a polymer of glycan
strands assembled from N-acetyl-glucosamine and N-acetyl-
muramic acid through b-(1,4)-glycosidic bonds and stabilized
through peptide bridges containing D-amino acids. While it
protects cells from lysis in hypo-osmotic conditions and endows
cells with their characteristic shape, it also plays an important role
in cell division as PG synthesis at the division septum (septal PG)
can direct the invagination of the cytoplasmic membrane14.

Recently, PG has been biochemically detected in Chlamydiae,
and circumstantial evidence suggests that PG-like material resides
at the chlamydial division septum15,16. Moreover, functional
homologues of PG biosynthesis enzymes are encoded in
chlamydial genomes17–21. Septal PG is likely produced in low
amounts, in a modified form and/or only transiently during
constriction, explaining why it is difficult to detect by
conventional biochemical techniques. Antibodies raised against
mycobacterial cell wall skeleton detect a septal non-proteinaceous
antigen, likely a derivative of PG22, in dividing Chlamydiae. The
apparent absence of coding sequences for enzymes that typically
catalyse the polymerization of the glycan strands, suggests that
Chlamydiae might, alternatively, polymerize a modified PG
structure composed exclusively of crosslinked peptide bridges
without a glycan component18. Nevertheless, penicillin-binding
protein (Pbp) homologues that are responsible for the trans-
peptidation of neighboring penta-peptide bridges are encoded in
Chlamydiae, and penicillin inhibits division and induces the
formation of large abnormal RBs, called aberrant bodies23.
Aberrant bodies may result from continued DNA replication
without division, the counterpart of filamentous cells arising
when division of rod-shaped bacteria is inhibited by penicillin.
Importantly, aberrant bodies are involved in the persistence of
chlamydial infections and are also induced by iron or nutrient
starvation or by IFN-gamma treatment23–26. When stress is

relieved, aberrant bodies divide into RBs, which can further
differentiate into EBs27, indicating that viability is maintained to a
certain degree when division is inhibited.

In most bacteria, septal PG synthesis is organized by the FtsZ
division protein, a tubulin homologue that polymerizes into a
membrane-associated contractile ring at the future division site
and that recruits cell division proteins including the PG
biosynthetic machine. The FtsZ (Z-) ring can also invaginate
the cytoplasmic membrane, at least in vitro28. Remarkably,
Chlamydiae divide by binary fission7–9,22 in the absence of a FtsZ
sequence homologue13,29. Furthermore, the C. trachomatis
genome has only three annotated cell division genes: ftsI
(encoding Pbp3), ftsK and ftsW, whereas the W. chondrophila
genome encodes sequence homologues of ftsI, ftsK, ftsL, ftsQ and
ftsW. Although Chlamydiae lack FtsZ, they do encode
homologues of the MreB actin and its regulator RodZ, known
to be involved in cell shape control by regulating PG synthesis in
rod-shaped bacteria30. Importantly, a functional and cytological
relationship between RodZ and the cytokinetic Z-ring has
been described31–34.

In the absence of a FtsZ-cytoskeleton, Chlamydiae might rely
on MreB and/or RodZ to organize division. Since MreB can
polymerize in vitro, it is a good candidate to act as a cytoskeletal
element that could organize chlamydial division35. Several MreB
interactors were described; FtsK directly interacts with the
C. trachomatis MreB (in a bacterial two-hybrid (BACTH)
assay36), MreC interacts with a MreB homologue in Bacillus
subtilis37 and with RodZ, which was shown to anchor MreB to the
membrane in E. coli38 and which is uncharacterized in
Chlamydiales39. Moreover, E. coli MurG, a component of the
PG biosynthesis pathway, also interacts with MreB40 and
Chlamydia pneumoniae MreB interacts with MurG and MraY
by BACTH assay and with MurF in an in vitro cosedimentation
assay35. However, the spatial relationship between these factors
and the chlamydial division septum remains unexplored.

Here, we show that MreB and RodZ are localized to the
division septum in W. chondrophila RBs. Interestingly, septal
localization of RodZ precedes that of MreB and is dependent on
the function of MurA, a critical enzyme of the PG biosynthesis
pathway, which can be inhibited by the phosphonic antibiotic
phosphomycin. RodZ is enriched at mid-cell upon penicillin
treatment, indicating that RodZ is an early component of the
septum, which then recruits other components of the division
machinery, possibly MreB, which may provide the driving force
for the final stages of division before Pbp3 disperses RodZ. Taken
together, our data highlight the important role of PG derivatives
or precursors in organizing chlamydial division septum.

Results
Primary structure and function of chlamydial MreB. Bioin-
formatics revealed that chlamydial MreBs exhibit 51.8–59.3%
identity with the orthologues of Escherichia coli, Thermotoga
maritima and Caulobacter crescentus. Moreover, as many as
92.3% of the known active site residues41 were conserved in all six
species investigated, whereas only 33.8% of the complete MreB
sequences were conserved (Po0.001, supplementary Fig. 1A),
and important features that were shown to be required for MreB
interaction with the bacterial membrane, an amphipathic
N-terminal helix and a hydrophobic hairpin, are also conserved
among all Chlamydiales42 (Supplementary Fig. 1A). Consistent
with the notion that chlamydial MreB has MreB-like functional
properties, we observed that overexpression of W. chondrophila
MreB (MreBWc) in wild-type C. crescentus induced a ‘lemon-
shape’, a loss of crescent shape and swelling of the cell similar to
that caused by depletion of MreB from Caulobacter (MreBCc)
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(Supplementary Fig. 1B)33. While MreBWccould not substitute for
MreBCc, the trans-dominance suggests that MreBWc can interfere
with MreBCc.

As the MreBWc-induced loss of crescent shape and swelling
resembles those of C. crescentus cells following treatment with the
MreB inhibitors, A22 and MP265 (ref. 43), we explored the effect
of A22 and MP265 on W. chondrophila and C. pneumoniae. As
A22 and MP265 might disturb the host cell cytoskeleton because
of the homology between MreB and actin, we tested the effect of
actin and tubulin inhibitors cytochalasin D and nocodazole on
Waddlia growth. These compounds are toxic for the host cell
(Supplementary Fig. 1C) but do not inhibit proliferation of
W. chondrophila (Supplementary Fig. 1D,E). While A22 or
MP265 have minor toxic side-effects on Vero and Hep-2 host
cell (Supplementary Fig. 1C), division and replication of
W. chondrophila in Vero cells and of C. pneumoniae in Hep-2
cells were impaired after administering either drug at 2 h post-
infection (p.i.) (Fig. 1a and Supplementary Fig. 1F). Consistent
with our findings, inhibitors of MreB disturb infection by
Chlamydia trachomatis36. We cannot exclude that this growth
defect is partially due to toxicity of the drugs towards the host
cell, but more than 80% of the host cells were still viable at a dose
that inhibited the bacterial growth by 99%. Moreover, we
observed the presence of aberrant bodies in cells treated with
MP265 for both W. chondrophila and C. pneumoniae (Fig, 1b,c,
arrows and Supplementary Fig. 2A). Addition of the drugs at 12
and 24 h p.i. caused a rapid block of W. chondrophila
proliferation (Supplementary Fig. 2B–E), indicating that the
drugs likely do not affect the bacteria at a specific step of bacterial
infection such as entry, differentiation or exit of the bacteria but
likely act on bacterial division. Moreover, mitochondrial
recruitment 8 h p.i. was not prevented by these drugs as shown
by Mitotracker staining (Supplementary Fig. 2F). Interestingly,
when the drugs were added 2 h p.i. and removed 24 h p.i.,
Waddlia replicated again by budding from aberrant bodies
(Supplementary Fig. 2I, arrows), showing that A22 and MP265
are bacteriostatic (Supplementary Fig. 2G,H).

Localization of MreB and RodZ to the division septum. To
determine the subcellular localization of MreB and its potential
regulators/interactors FtsK, FtsQ, MreC and RodZ, we raised
antibodies against recombinant His6-tagged variants purified
from E. coli. Of these candidates, only RodZ and MreB showed an
expression and localization consistent with a cytokinetic role
(Supplementary Fig. 3A). Both antisera recognize a single protein
of the expected size by immunoblotting (Supplementary Fig. 3B),
and biochemical fractionation experiments by ultracentrifugation
followed by immunoblotting showed the protein to reside in the
predicted subcellular compartments. MreB is present both in the
membrane (insoluble) and cytoplasmic (soluble) fraction, con-
sistent with the known partitioning properties of monomeric and
polymeric MreB, respectively. By contrast, RodZ partitioned
exclusively to the membrane fraction, consistent with the
C-terminal membrane spanning fragment predicted for residues
110–128 of RodZ (Supplementary Fig. 3C). Quantitative reverse-
transcriptase PCR (qRT–PCR) measurements revealed a peak of
mreB and rodZ transcripts between 8 and 24 h p.i. but otherwise
constant expression (Fig. 2a). Indeed, immunoblotting (Fig. 2b)
and immunofluorescence microscopy (Fig. 2c) showed that MreB
and RodZ are present throughout the developmental cycle,
although RodZ abundance in EBs (discernible from RBs by virtue
of their condensed nucleoid) appeared reduced by immuno-
fluorescence (Fig. 2c, arrows).

To determine the localization of these proteins during division,
we observed dividing bacteria 28 h p.i., a time at which RBs are
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Figure 1 | MreB inhibition blocks chlamydial infection and induces

aberrant bodies formation. (a) DNA replication rate is lower in presence

of the MreB inhibitors. Vero cells (resp. Hep-2 cells) were harvested

at different time points after infection with W. chondrophila (resp.

C. pneumoniae) with or without treatment with A22 or MP265 (50 or

100mM), DNA was extracted and W. chondrophila (resp. C. pneumoniae)

DNA was quantified by qPCR. (Error bars represent the s.d. of three

independent experiments). (b) Treatment of W. chondrophila with MreB

inhibitors induces the formation of aberrant bodies. Infected Vero cells

(resp. Hep-2 cells) were fixed and stained with anti-Waddlia antibodies

(resp. anti-chlamydial LPS antibodies), anti-Actin antibodies and DAPI.

Confocal microscopy was performed 48 h p.i. in absence or presence of

MP265. Normal inclusions filled with dividing RBs are pointed by

arrowheads, whereas enlarged non-dividing aberrant bodies are pointed

by arrows. (c) Aberrant bodies of W. chondrophila observed by electron

microscopy. Infected Vero cells were treated with MP265 2 h p.i. Cells were

harvested 24 h p.i., fixed and prepared for EM as described. The arrow points

the presence of an aborted invagination at the mid-cell (Scale bar, 1 mm).
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dividing but no redifferentiation to EBs is visible. We classified
the dividing bacteria into early, medium or late dividing cells
depending on the morphology of the septum (open septum for
early, closed septal band for medium and a single septal focus for
late, Fig. 3a). We observed MreB to be enriched at the division
septum only at medium and late division stages (Fig. 3b,d). To
exclude that this fluorescence signal is due to MreB in juxtaposed
neighbouring cytoplasmic membranes of the two daughter cells,
we quantified the fluorescence signal along dividing cells. We
observed an increase in the MreB fluorescence signal at the
septum compared with the fluorescence signal obtained with the
polyclonal polyspecific antibodies directed against all immuno-

genic Waddlia proteins (‘total’ anti-Waddlia, Fig. 3d lines 1–3).
Moreover, quantification of signals along the division septum
shows a different distribution of MreB compared with that of
total anti-Waddlia signal (Fig. 3d, lines 4–6). Taken together, the
septal signal stemming from the anti-MreB antibody exceeds that
from the other antibodies including the total anti-Waddlia, anti-
FtsQ, anti-FtsK and anti-MreC antibodies.

Strikingly, while MreB is a late recruit to the division septum,
RodZ localizes to the septum early during division (in more than
80% of early dividing cells, Fig. 3c). Quantification of the
fluorescence signal from the anti-RodZ antibody along the
longitudinal (Fig. 3e, lines 1–3) and transversal axes (Fig. 3e,
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Figure 2 | MreB and RodZ are synchronously expressed, but RodZ does not accumulate in EBs. (a) RNA expression of MreB and RodZ are synchronous.

Vero cells were infected with W. chondrophila, and samples were taken at the indicated time points. RNA was extracted, cDNA was synthesized and

quantified by qPCR as described (Error bars represent the s.d. of three independent experiments). (b) Antibodies against MreB and RodZ are specific.

Similar samples as for a were taken and proteins were extracted. Proteins were then detected by western blot with antibodies raised against purified

MreB or RodZ. (c) MreB protein is detectable in both EBs and RBs but RodZ only in RBs during the developmental cycle. Vero cells infected with

W. chondrophila were fixed at the given time points and labelled with an anti-MreB antibody (green), concanavalin A (red) and DAPI (blue) and observed by

confocal microscopy. Arrows point to extracellular EBs, which can be recognized thank to their condensed DNA.

Figure 3 | RodZ accumulates at the division septum earlier during division than MreB. (a) Dividing W. chondrophila are classified into three groups:

early, medium and late division. Vero cells were infected with W. chondrophila, fixed 28 h post-infection and labelled with a total anti-Waddlia antibody and

DAPI. Dividing bacteria were then observed and quantified by confocal microscopy (N¼ 200). (b) MreB localizes at the division septum only during

medium and late dividing stages. Infected cells were treated as in a but labelled with anti-MreB antibodies (green) and total anti-Waddlia antibodies (red)

and quantified by confocal microscopy (N¼ 100). (c) RodZ localizes at the division septum early during division. Infected cells were treated as in a but

labelled with anti-RodZ antibodies (green) and total anti-Waddlia antibodies (red) and quantified by confocal microscopy (N¼ 100). (d) Observation of

dividing W. chondrophila by confocal microscopy shows different MreB-containing structures: line (arrows) and distinct punctuae (arrowheads).

Quantification of the fluorescence along the described axes (1–6) was performed using Image J software and shown in the corresponding graphs.

Longitudinal quantification showed an enrichment of MreB at the dividing plane compared with the total Waddlia signal (1–3). Transversal quantification

along the division septum showed one or two peaks of MreB fluorescence, consistent with a Z-ring structure (4–6). (e) Quantification of the enrichment of

RodZ at the division site. The same procedure as in d was performed with an antibody against RodZ. Longitudinal quantification (1–3) showed an

enrichment of RodZ at the division septum. Transversal quantification (4–6) shows two peaks characteristic of a Z-ring structure.
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lines 4–6) in dividing cells is consistent with a specific septal
localization, rather than a diffuse localization in the membrane.
Importantly, the total anti-Waddlia antibody did not yield septal

staining at this time (Fig. 3e, lines 1 and 2). Later, in deeply
constricted cells, both RodZ and MreB show a similar focal
enrichment at the septum (Fig. 3d lines 1–3 and Fig. 3e line 3).
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These findings provide strong evidence that RodZ is an early
septal protein, while MreB is recruited to the septum only in
deeply constricted cells.

Septal localization of RodZ is prevented by phosphomycin. To
explore whether the cell wall biosynthesis enzymes modulate the
septal recruitment of RodZ or MreB in Chlamydiae, we first
determined the effects of phosphomycin and penicillin (two PG
biosynthesis inhibitors) on chlamydial division. Phosphomycin
targets MurA, an UDP-N-acetylglucosamine enolpyruvyl trans-
ferase, while penicillin inhibits Pbp2 and Pbp3, two peptidogly-
can-synthesizing transpeptidase homologues. C. trachomatis
MurA is active in vitro and can substitute for E. coli MurA, but is
resistant to phosphomycin44. In E. coli MurA, resistance to
phosphomycin is conferred by a single Cys115 to Asp mutation45,
a mutation that is present in the MurA orthologues of the
Chlamydiaceae, but not in W. chondrophila MurA
(Supplementary Fig. 4), suggesting that W. chondrophila should
be sensitive to phosphomycin. W. chondrophila encodes a beta-
lactamase that should confer some resistance to penicillin
derivatives13. Nevertheless, we found that W. chondrophila cells
are sensitive to each drug at concentrations higher than
100 mg ml� 1 (Fig. 4a,b), preventing cytokinesis and inducing
the formation of aberrant bodies (Fig. 4c). In comparison, there
was no effect of phosphomycin on growth and morphology of
C. pneumoniae (Fig. 4d,f), while penicillin had a strong effect
on C. pneumoniae growth at much lower concentrations
(5–10 mg ml� 1, Fig. 4e). The penicillin derivatives mecillinam
(targeting specifically Pbp2) and piperacillin (acting on Pbp3)
partially block both W. chondrophila and C. pneumoniae
infections (Supplementary Fig. 5A–G). This is consistent with a
requirement of both Pbps in chlamydial division, as proposed for
C. trachomatis36. Taken together, these results confirm that the
PG biosynthesis pathway is essential for proper growth of the
Chlamydiales.

Next, we determined the effect of inhibiting PG biosynthesis on
septal localization of MreB and RodZ. To this end, we treated
infected cells 2 h p.i. with phosphomycin or penicillin and
immunostained cells for RodZ and MreB in the resulting aberrant
bodies at 24 h p.i. Phosphomycin, but not penicillin, caused a
loss of septal localization of RodZ (Fig. 5 and Supplementary
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Fig. 5H–K). After penicillin treatment, more than 30% of aberrant
bodies were partially constricted and showed a strong septal
localization of RodZ (Fig. 5, arrows). Septal RodZ and cell
constriction were rarely seen after phosphomycin treatment (in
12.3% of counted bacteria, Fig. 5). Interestingly, piperacillin but
not mecillinam had a similar effect on RodZ localization as
penicillin (Fig. 5b and Supplementary Fig. 5L,M). This indicates
that Pbp3, rather than Pbp2, plays a role in the recruitment of the
Waddlia division machinery and that its inhibition causes an
accumulation of septal RodZ. Moreover, MurA acts upstream of
Pbps to localize RodZ to the septum because addition of both
phosphomycin and penicillin together results in a similar
localization defect of RodZ as phosphomycin alone (Fig. 5). This
is consistent with the fact that MurA is also biochemically
upstream of Pbps in the PG biosynthetic pathway. Interestingly,
addition of MP265 also blocks RodZ accumulation (Fig. 5). Thus,
RodZ depends on MreB to reach the septum or to be retained at
this site (see discussion).

Discussion
While the organization of the chlamydial division septum has
remained mysterious in the past, our study makes three major
contributions in illuminating the spatiotemporal mechanisms of
chlamydial division. First, we unearth RodZ and MreB as the first
known septal proteins, with RodZ being an early recruit while
MreB follows later. Second, we show that cell wall precursor
synthesis and trans-peptidation are required for the septal
localization of RodZ and its subsequent dispersion. Finally, we
show that cell wall precursor synthesis (lipid II) is required for
division in W. chondrophila, suggesting that cell wall promotes
constriction. The finding that MreB is involved in the division of
Waddlia chondrophila and Chlamydia pneumoniae, two distant
members of the Chlamydiales order, is supported by the strong

conservation of MreB, by its localization at the periphery of the
cell and by its enrichment at the division furrow. A potential role
of MreB in the division of C. trachomatis was already proposed
by Ouellette and colleagues36, based on A22/MP265-treated
C. trachomatis cells. We extend these pharmacological results
by showing that A22/MP265 also impairs division of
W. chondrophila and C. pneumoniae. Importantly, we bolster
these findings by showing that MreB localizes to deeply
constricted septa. As MreB is not recruited to the division
septum early, it does not seem to function as an organizer of early
division events as would be expected from a functional
homologue of FtsZ. By contrast, we observed an early
localization of RodZ to the division septum and an intricate
dependence of its localization on the function of PG biosynthesis
enzymes in Chlamydiales. Given the ability of RodZ to directly
interact with monomeric and filamentous MreB33,34,46–48, we
speculate that RodZ could function as the division organizer,
tracking or being transported along actin-like filaments of MreB
to reach and ultimately mark the future division site. The RodZ
protein is usually composed of three conserved domains: a
N-terminal essential domain, a transmembrane domain and a
dispensable C-terminal domain39. The chlamydial RodZ, which
exhibits only a low similarity to E. coli RodZ (24–30%,
Supplementary Fig. 6A), has a predicted transmembrane
domain but completely lacks the C-terminal domain
(Supplementary Fig. 6B). The C-terminal part of RodZ is not
essential for RodZ localization but is important for its function
and stability39. Thus, the finding that MreB inhibitors impair
RodZ localization to the septum suggests direct interactions
between RodZ and MreB; however, indirect explanations are also
possible (see below).

Recently, it was hypothesized that Chlamydiales synthesize a
modified version of PG from Lipid II without glycans21. We took
advantage of the sensitivity of W. chondrophila to phosphomycin
to test whether MurA, a critical enzyme in PG precursor
biosynthesis, is required for chlamydial division. Inhibition of
MurA with phosphomycin inhibits cytokinesis, resulting in the
formation of large, round and unconstricted aberrant bodies,
resembling the treatment with the penicillin derivatives that
inhibit Pbps. When Pbp3 is inhibited, aberrant bodies with a
partial contraction at mid-cell are visible. Finally, when MreB is
blocked, partial contraction of aberrant bodies is visible, but RodZ
does not accumulate at mid-cell. Thus, MurA, Pbp2 and MreB all
seem to be required for proper localization of RodZ at the
division septum, while Pbp3 is responsible for a later event that
leads to the contraction of the septum and the disassembly of
RodZ. This interpretation is strengthened by the result that MurA
acts upstream of the Pbps in the W. chondrophila cell wall
biosynthesis, because cotreatment with phosphomycin and
penicillin causes a phenotype similar to phosphomycin alone.
Spatial cues could be provided by enzymes responsible for the
synthesis of lipid II, including particularly those that are known
to interact with chlamydial MreB such as MurG, MurF and/or
MraY35, or other proteins that act in an early step of PG
biosynthesis46. Our result that lipid II plays a key role in the
(direct or indirect) organization of the chlamydial division
septum is reminiscent of the role of staphylococcal cell wall-
associated teichoic acids in organizing division and is in
agreement with an unpublished report that Pbp1A and Pbp2X
are delocalized from the streptococcal division septum by the
lipid II-sequestering antibiotic nisin47.

Taken together, our results show the importance of cell wall
precursors for the organization of the division septum in
W. chondrophila. We took advantage of the rapid growth of
W. chondrophila, of the bigger size of its cells and of its sensitivity
to phosphomycin to perform this study. The resistance of
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localization of RodZ and MreB. (a) Localization of RodZ and MreB in

presence of different drugs. Vero cells infected with W. chondrophila were

treated with the indicated drugs 2 h p.i. (500mg ml� 1 phosphomycin,
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Chlamydiaceae to phosphomycin would not have allowed the
investigation of the importance of PG in the division of these
bacteria. However, PG precursor biosynthesis is conserved among
Chlamydiales (Supplementary Tables 1 and 2), indicating that our
results might be representative of a common mechanism among
all Chlamydiales.

Methods
Antibodies, probes and reagents. Polyclonal mouse and rabbit antibodies against
W. chondrophila were produced in-house as previously described48. Antibodies
against actin were purchased from Sigma-Aldrich (St Louis, MO). MitoTracker Red
CMXRos (M7512) as well as secondary antibodies Alexa Fluor 488 goat anti-rabbit,
488 anti-mouse, 594 anti-rabbit and 594 anti-mouse were all obtained from
Molecular Probes (Grand Island, NY). A22, phosphomycin, penicillin, mecillinam
and piperacillin were purchased from Sigma-Aldrich. MP265 was synthesized by
American Custom Chemicals Corporation (San Diego, CA). Vero cells were treated
with 10mM nocodazole (Sigma-Aldrich) or 10 mM cytochalasin D (Sigma-Aldrich).
Primers and probes used in this study are described in supplementary Table 3.

Strains and growth conditions. E. coli EC100D (Epicentre Technologies, Madi-
son, WI) and Rosetta (DE3)/pLysS (Novagen, Madison, WI) were grown in Luria
Bertani broth (LB). Caulobacter crescentus NA1000 (ref. 49) and derivatives were
grown at 30 �C in PYE (peptone-yeast extract) or PYE supplemented with either
0.3% xylose (PYEX) or 0.2% glucose (PYEG).

W. chondrophila ATCC VR-1470T was grown using the amoeba Acanthamoeba
castellanii ATCC 30010 cultivated in 25 cm2 cell-culture flasks with 10 ml peptone-
yeast extract-glucose medium. The flasks were incubated for 6 days at 28 �C, cell
suspension was collected and filtered through a 5-mm-pore filter to retain amoebae
and to purify bacteria in the flow-through.

C. pneumoniae ATCC VR-1310 was grown using Hep-2 cells cultivated in 24
well-plates (Corning, NY) with 1 ml DMEM containing 10% fetal calf serum (FCS),
1% amino-acid mix, 1% vitamin mix and 2 mg/ml of cycloheximide (Life
technologies, Carlsbad, CA). The flasks were incubated for 72 h at 37 �C in presence
of 5% CO2. Cells were then resuspended and homogenized with glass beads.

Cell culture and bacterial infection. Vero cells (ATCC CCL-81) were grown in
75 cm2 flasks with 20 ml DMEM containing 10% fetal calf serum at 37 �C in
presence of 5% CO2. Hep-2 cells (ATCC CCL23) were grown in 75 cm2 flasks with
20 ml DMEM containing 10% fetal calf serum, 1% non-essential amino-acid mix,
1% vitamin mix and 2 mg ml� 1 of cycloheximide at 37 �C in presence of 5% CO2.

Overnight cell cultures containing originally 105 cells per ml were infected with
a 2,000� dilution of W. chondrophila or a 10� dilution of C. pneumoniae (MOI
of 1-2). The cells were then centrifuged for 15 min (W. chondrophila) or 30 min
(C. pneumoniae) at 1,790 g, incubated 15 min at 37 �C, washed with PBS before
addition of fresh media.

Immunofluorescence labelling. Infected Vero or Hep-2 cells on coverslips were
fixed with ice-cold methanol for 5 min at room temperature or with 4%
paraformaldehyde for 15 min. Mitotracker staining was performed on living cells
before fixation following the manufacturer’s protocol (Molecular Probes). After
fixation, cells were washed three times with PBS. Cells were then blocked and
permeabilized for at least 1 h with a blocking buffer (PBS, 0.1% saponin, 1% BSA).
Coverslips were then incubated with 1:100 dilutions of primary antibodies directed
against bacteria or the actin of the host diluted in blocking buffer for 1 h at
room temperature. After three washes with PBS containing 0.1% saponin,
coverslips were incubated with 1:1,000 dilutions of secondary antibodies in
blocking buffer containing DAPI (Molecular Probes). Coverslips were washed three
times with PBS containing 0.1% saponin, once with PBS and once with
water. Subsequently, they were mounted onto glass slides using Mowiol
(Sigma-Aldrich)48,50.

Confocal and fluorescence microscopy. Infection rate, inclusions and aberrant
bodies were quantified by fluorescence microscopy by counting a minimum of
hundred cells in duplicate. Images were taken by confocal microscopy using a Zeiss
LSM 510 Meta (Zeiss, Oberkochen, Germany). Images were then treated and
quantified using the ImageJ software (http://www.macbiophotonics.ca).

Quantitative PCR. Infection was quantified by real-time PCR. At different time
points after infection, infected cells were resuspended by scrapping. Genomic DNA
was extracted from 50 ml of cell suspension using the Wizard SV Genomic DNA
purification system (Promega, Madison, WI). Elution was processed with 200 ml of
water. Quantitative real-time PCR was performed using iTaq supermix with ROX
(BioRad, Hercules, CA). To detect W. chondrophila, 200 nM of primers WadF4 and
WadR4, 100 nM of probe WadS2 (ref. 51) and 5 ml of DNA were used. For
C. pneumoniae detection, 550 nM of primers CpnF and CpnR, and 100 nM of
probe CpnS were used52. Cycling conditions were 3 min at 95 �C followed by

40 cycles of 15 s at 95 �C and 1 min at 60 �C for both PCRs. A stepOne Plus Real-
time PCR System (Applied Biosystems, Carlsbad, CA) was used for amplification
and detection of the PCR products.

RNA extraction, cDNA synthesis and qPCR. Five hundred microlitres of infected
cell culture was taken at the given time points, mixed with 1 ml of RNA Protect
(Qiagen, Venlo, Netherlands), mixed and incubated for 5 min at room temperature.
The suspension was then centrifuged for 10 min at 5,000 g, the supernatant was
removed and the pellet was frozen at � 80 �C. The pellet was then unfrozen, and
RNA was extracted using the RNeasy Plus kit (Qiagen). DNA contamination was
removed by DNAse digestion, using Ambion DNA-free kit (Life technologies,
Grand Island, NY).

cDNA was then synthesized by reverse transcription using a Goscript Reverse
Transcription System (Promega, Fishburg, WI). qPCR was performed by adding
4 ml of cDNA to 10ml of iTaq Universal SYBR Green mix (BioRad, Hercules, CA),
4.8 ml of water and 0.6 ml of each specific forward and reverse primers targeting the
16S rRNA gene, mreB or rodZ. Cycling conditions were 3 min at 95 �C followed by
45 cycles of 15 s at 95 �C and 1 min at 60 �C. A stepOne Plus Real-time PCR System
(Applied Biosystems, Carlsbad, CA) was used for amplification and detection of the
PCR products.

Protein extraction, SDS-PAGE, western blot. Five-hundred microlitres of
infected cell culture were harvested at different time points. Cells were harvested,
and proteins were extracted by resuspension in loading buffer (60 mM Tris pH 6.8,
1% SDS, 1% mercaptoethanol, 10% glycerol, 0.02% bromophenol blue). Ten
microlitres of the suspension was loaded on a 12.5% polyacrylamide gel. After
45 min migration at 200V, proteins were transferred onto a nitrocellulose mem-
brane by electroblotting at 75 V for 1 h. The membrane was blocked with 5% milk
for 2 h and then incubated for at least 2 h with a 1:2,500 dilution of rabbit antibody
directed against heat-inactivated W. chondrophila. An incubation of 2 h with a
1:2,500 dilution of a HRP-conjugated goat anti-rabbit antibody was then per-
formed. Detection of HRP was done using 0.03% hydrogen peroxide, 220 mg ml� 1

luminol and 32.5 mg ml� 1 coumaric acid in 0.1 M Tris pH 8.5. Chemiluminescence
was recorded with the ImageQuant LAS 4000 Mini imager (GE healthcare,
Waukesha, WI). Images were then treated using ImageJ. Uncropped version of the
Western blot is provided in the Supplementary Fig. 3B.

Electron microscopy. Vero and Hep-2 cells were infected as described above.
Infected cells were collected 24 h p.i. and fixed in 2% paraformaldehyde and 0.1%
glutaraldehyde for 45 min. Samples were then treated for 1 h at room temperature
with 1% osmium tetroxide in PBS and then washed several times in increasing
acetone concentrations (50–100%). Samples were resuspended for 1 h in acetone–
epon and overnight in epon and finally embedded using an epoxy resin (Fluka).
Embedded blocks were then sliced with a LKB 2088 Ultratome microtome, placed
on formvar-coated copper grids (Sigma–Aldrich) and stained for 10 min with
methanol–uranyl acetate and lead nitrate with sodium citrate in water48. The
resulting sections were examined with a Philips CM-100 transmission electron
microscope.

Bioinformatic studies. Identity values were obtained using BLASTP version 2.2.25
with an expectation value threshold of 0.1. If necessary, the average identity of
multiple High-Scoring segment Pair (HSP) was weighted according to the length of
each HSP. Protein sequences were aligned using Tcoffee53. The computational
analyses were performed at the Vital-IT (http://www.vital-it.ch) Center for high-
performance computing of the Swiss Institute of Bioinformatics (SIB).
Amphipathic helixes prediction was done using the online program Amphipaseek
(http://npsa-pbil.ibcp.fr/)54. Topology and transmembrane domain prediction was
performed using the online program TMHMM Server (http://www.cbs.dtu.dk/
services/TMHMM/)

Cell viability. Viability of the host cells in presence of the different drugs was
determined using the Resazurin kit (Sigma-Aldrich). Cells were incubated for 24 h
in presence of the drugs. Resazurin was added in an amount equal to 10% of the
culture volume. Cells were then incubated at 37 �C for 4 h. Absorbance was then
measured using the FLUOstar Omega microplate reader (BMG Labtech, Offen-
burg, Germany).

MreB expression, purification and antibody production. mreBWc was amplified
from W. chondrophila ATCC VR-1470 (ref. 13) genomic DNA by using primers
mreB_Nde and mreB_Eco. The product was digested with NdeI and EcoRI
restriction endonucleases (Roche, Basel, Switzerland) and the reaction purified with
QIAquick Gel extraction kit (QIAgen, Venlo, The Netherlands). The purified
mreBWc was ligated into the expression vector pMT335 (ref. 55) restricted with
NdeI and EcoRI. Recombinant plasmids were introduced in E. coli EC100D by
electroporation. The construct was verified by sequencing (Fasteris, Geneva,
Switzerland). His6-SUMO-MreBWc was expressed in pCWR547 in E. coli Rosetta
(DE3)/pLysS and purified under denaturing conditions (in 8 M UREA standard
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procedures, QIAgen, Hilden, Germany). In brief, cells were inoculated in 1 l of LB
and grown at 30 �C until they reached an OD600 ¼B0.4. One millimolar IPTG
was added to the culture and then grown at 30 �C for 3 h. Cells were pelleted and
resuspended in 25 ml of lysis buffer (10 mM Tris HCl pH8, 0.1 M NaCl, 1 mM
b-mercaptoethanol, 5% glycerol, 0.5 mM imidazole, triton 0.02%). Cells were
sonicated (Sonifier Cell Disruptor B-30; Branson Sonic Power, Danbury, CT) on ice
using 20 bursts of 20 s at output level 5.5. After centrifugation at 6,000 r.p.m. for
20 min at 4 �C, the supernatant was discarded while the pellet was resuspended in
buffer B (8 M Urea, 0.1 M NaH2PO4, 0.1 M Tris-HCl, pH 8.0). The resulting
suspension was centrifuged for 20 min at 6,000 r.p.m. at 4 �C. The supernatant was
loaded onto a column containing 5 ml of Ni-NTA agarose resin. Column was
rinsed with buffer B and buffer C (8 M Urea, 0.1 M NaH2PO4, 0.1 M Tris-HCl, pH
6.3). His6-SUMO-MreBWc was eluted in buffer E (8 M Urea, 0.1 M NaH2PO4,
0.1 M Tris-HCl, pH 4.5). The protein was then excised from a 12.5% SDS
polyacrylamide gel and used to immunize New Zealand white rabbits (Josman
LLC, Napa, CA).

RodZ expression, purification and antibody production. The ORF corre-
sponding to RodZ (ORF wcw_0755) was amplified by PCR using the primers
RodZ_fwd and RodZ_rev and cloned into the pET200 vector (Life technologies) in
E. coli. This vector allows the expression of a N-terminal tagged version of the
protein under a isopropyl-b-D-thiogalactopyranoside (IPTG) inducible promoter.
Protein was expressed with 1 mM IPTG (MP Biomedicals, Santa Ana, CA) during
4 h and purified in presence of 8 M urea. Bacteria were lysed using Fastbreak Lysis
buffer (Promega). Lysate was then incubated with MagneHis Ni particles beads and
beads were washed with binding/wash buffer (Promega). The purified protein was
then eluted using 500 mM imidazole (Sigma-Aldrich)56. The purified protein was
then used to immunize mice (Eurogentec, Seraing, Belgium).

Membrane fractionation. Waddlia-infected Vero cells were harvested and
resuspended in 500 ml of 10 mM EDTA at pH 9.5 and incubated for 2 h at 37 �C.
Membrane and cytosol fractions were separated by ultracentrifugation for 1 h at
100,000 g. The membrane and cytosol fraction were boiled in sample buffer and
analysed by western blot.
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