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Abstract
Juvenile Hormone (JH) has a prominent role in the regulation of insect development. Much

less is known about its roles in adults, although functions in reproductive maturation have

been described. In adult females, JH has been shown to regulate egg maturation and mat-

ing. To examine a role for JH in male reproductive behavior we created males with reduced

levels of Juvenile Hormone Acid O-Methyl Transferase (JHAMT) and tested them for court-

ship. JHAMT regulates the last step of JH biosynthesis in the Corpora Allata (CA), the organ

of JH synthesis. Males with reduced levels of JHAMT showed a reduction in courtship that

could be rescued by application of Methoprene, a JH analog, shortly before the courtship

assays were performed. In agreement with this, reducing JHAMT conditionally in mature

flies led to courtship defects that were rescuable by Methoprene. The same result was also

observed when the CA were conditionally ablated by the expression of a cellular toxin. Our

findings demonstrate that JH plays an important physiological role in the regulation of male

mating behavior.

Introduction
Effective male courtship behavior is essential for successful reproduction in most animals and
the study of this behavior allows important insight into the regulation of complex behaviors. In
Drosophila, male mating behavior is well described and can easily be observed and quantified
(for reviews see [1–3]. Significant insight into the brain neuronal circuits that control the
behavior has been gained in the last decade [4–7]. In Drosophila, the sex-specific circuits of
brain neurons are not determined by sex hormones as it is in mammals, but cell-autonomously
by a series of alternative splicing events that result in the generation of the two male-specific
transcription factors Fruitless (FRU) and Doublesex (DSX). FRU and DSX are required to
establish the neuronal competence of the circuits that are required for male courtship behavior
[6, 8–10]. However, these circuits are not sufficient for full normal courtship behavior. The
adult fat body, a secretory tissue outside the brain, produces sex-specific factors that signifi-
cantly contribute to normal mating behavior [11]. One of these factors, called Takeout, is
secreted into the circulating hemolymph and has been shown to act in courtship as a secreted
protein [12]. Takeout is similar to Juvenile Hormone Binding Proteins (JHBPs) from other
insects based on sequence similarity and their characteristics of soluble carrier proteins. JHBPs
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bind Juvenile Hormone (JH), one of the major developmental insect hormones [13–15]. In
adult females, JH is required for oogenesis [16–19] and JH has recently been shown to regulate
the onset of female mating behavior and pheromone maturation [20]. In addition, JH has been
shown to affect aging [21]. Mutations that affect JH titers or signaling have been shown to
affect male mating behavior: It has been shown that a mutation in the gene apterous (apt) leads
to a decrease in JH titers, a delay in the maturation of the fat body and male courtship defects
[22–24] but it is unknown why aptmutants have lowered JH levels and whether this is the
cause for the reduced courtship.Methporene tolerant (Met) is a transcription factor that has
been shown to bind JH [25].Metmutant males have mating defects that could partly be res-
cued by aMet transgene [26, 27]. Manipulation of JH levels during developmental stages by
application of the JH analogue Methoprene can also result in courtship defects [28]. Together,
these findings suggest a role for the hormone in courtship. However, since JH has a prominent
role during development, it is unclear to what extent the described adult effects on courtship
might be caused by altered levels of JH during development or brain maturation, since these
mutations affect larval and adult stages alike. In this paper we sought to specifically examine
the adult role of JH in the regulation of male courtship behavior. To this end, we conditionally
expressed an RNAi transgene targeting JHAMT, one of the last enzymes in the JH biosynthetic
pathway [29], in adult, mature males and observed a significant reduction in male courtship.
The courtship defects were rescued by the application of Methoprene, a well-described JH ana-
log, shortly before testing. Our data support an adult physiological role for JH in Drosophila
male courtship behavior.

Materials and Methods

Fly strains
All fly strains were reared on standard corn meal/sugar-based medium at room temperature
under non-controlled light conditions, except for Gal80ts flies that were grown at 18°C and
induced as adults at 30°C as indicated. The JHAMT RNAi line UAS- CG17330 RNAi 103958 was
obtained from the VDRC stock collection, Vienna. hsp70-Gal4, UAS-lacZ and UAS-DTI strains
were a gift from Gregg Roman, University of Houston.

Creation of JHAMT-GAL4 line
5043 bp of the promoter region upstream of the translation start of JHAMT (CG 17330) was
PCR-amplified and inserted upstream of GAL4 into the Not1 and BamH1 restriction sites of
the pPTGAL vector (Drosophila Genomics Resource Center). The primers were: 5’-ATA AGA
ATG CGG CCG CTG CGG TTT AGG GGT GCT ATG ACT-3’ and 5’- GCG GAT CCC TCG
ACA ACT GAT CGA CGA TTG GGA C- 3’ (restriction enzyme sites in italics). The plasmid
was injected into w1118 flies by Rainbow Transgenic Flies, Inc. (http://www.rainbowgene.com/),
and transgenic lines established.

Immunohistochemistry
Cryosections of whole flies were fixed in 4% Paraformaldehyde and immunohistochemistry
performed as described in [30]. Double staining using anti-ßGal and anti-JHAMT antibodies
was performed on the sections. The anti-JHAMT antibody raised in rabbit was a kind gift of
Ryusuke Niwa (University of Tsukuba, Japan) [29] and was used at a 1:100 dilution. The
mouse anti-ßGal antibody (Sigma) was used at 1:200. The secondary antibodies were Alexa-
546 goat anti-rabbit antibody (1:200) and Alexa-633 goat anti- mouse at (1:200) (Invitrogen).
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Fluorescent preparations were viewed using an Olympus FV1000 confocal microscope, images
were processed using Adobe Photoshop.

Behavioral assays
The courtship assay and activity assay were performed as previously described [12] and as
described in the text. For all assays, control and experimental flies were grown, collected and
aged in parallel. In each behavioral session, complete sets of flies were tested. The number of
tested flies (n = 20) was equal for all genotypes in an experiment.

Gal80ts experiments
For Gal80ts experiments, control and experimental flies were raised at 18°C. Virgin males were
collected at eclosion and kept for 5–8 days at 18°C. Matured flies were then placed at 30°C for
the times indicated in the text. All flies were let to rest for 1–2 hours at RT prior to the behav-
ioral assay. Non-induced controls from 18°C were subjected to the same resting period of 1–2
hours at room temperature before testing.

Heat induction of hsp70-Gal4
hsp70-GAL4 was used to drive the expression of the UAS-JHAMT-RNAi construct condition-
ally in adults. The flies were raised at room temperature and newly emerged flies kept in indi-
vidual vials for 4 days. The hsp70-GAL4 driver was induced by placing the flies in pre-heated
vials at 37°C for 1 hour in an incubator. The flies were then transferred to fresh vials and placed
at room temperature for 4 hours to rest. They were then subjected to a courtship assay. Activity
assays were performed for flies of the same genotype.

Methoprene treatment of flies
0.5% Methoprene was prepared by dissolving Methoprene (ChemService) in 100% Acetone.
The flies were anaesthetized on ice and treated with the Methoprene solution (1μ of solution
was applied on the ventral surface of the abdomen using a micropipette). The control flies were
treated with Acetone only. The Methoprene treated and untreated (Acetone treated) flies were
placed at room temperature for 4 hours and subjected to the courtship assay.

Statistical analysis
Statistical analysis was performed by one-way or two-way ANOVA and Bonferroni multiple
comparison post hoc test. Statistical analyses were performed with Statview (Adept Scientifics,
Bethesda, MD).

Results

Creation of JHAMT-Gal4 lines
In order to reduce JH levels, we chose to target Juvenile Hormone acid O-methyltransferase
(JHAMT), the enzyme that transfers a methyl group from S-adenosyl-L-methionine (SAM) to
the carboxyl group of JH acids in one of the final steps of JH synthesis [29, 31]. A Drosophila
melanogaster homologue DmJHAMT (CG17330) has been characterized by Niwa et al. [29].
These authors have shown specific expression of the protein in the Corpora Allata (CA), the
main place of JH synthesis. In order to drive expression of a UAS-JHAMT RNAi transgene spe-
cifically in the CA we generated a novel JHAMT-Gal4 line by using 5 kb of upstream sequences
of the JHAMT gene. To assess the expression of JHAMT-Gal4 lines we crossed them to a UAS-
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lacZ containing strain. We observed prominent expression of ßGal in the CA, as confirmed by
performing double-staining with anti-ßGal and anti-JHAMT antibodies [29] that showed sig-
nificant overlap (Fig 1). Based on these staining we conclude that our new JHAMT-Gal4 driver
is well suited to target the CA.

Reduction of JHAMT in the Corpora Allata (CA) leads to a courtship
defect that can be rescued by adult application of the Juvenile Hormone
analog Methoprene
In order to reduce JHAMT in the CA, the main place of JH synthesis, we crossed JHAMT-Gal4
flies to JHAMT-RNAi flies (VDRC line 103958). This line proved to be the strongest available
RNAi line in our hands. We introduced an additional UAS-dicer transgene into experimental
flies in order to enhance the effect of the RNAi transgene. Even in this combination the
JHAMT-RNAi effect is weak, as suggested by the fact that UAS-JHAMT-RNAi/+; JHAMT-
Gal4/+ flies survive to adulthood. We did find, however, that RNAi expression driven by a
strong tubulin-Gal4 driver was lethal. For the courtship assays, we collected freshly eclosed
males and aged them individually for 4 days before testing them in a courtship assay. In this
assay, the male is paired with a single non-receptive virgin wildtype female in a mating cham-
ber. His courtship behavior is then scored as the fraction of time he performs any of a series of
well-defined courtship steps [1–3] within a 10-minute observation period. Experimental males
carrying both the JHAMT-Gal4 driver and the UAS-JHAMT-RNAi and UAS-dicer transgenes
(UAS-dicer/Y; UAS-JHAMT-RNAi/+; JHAMT-Gal4/+) were tested alongside control flies that
only carried either the JHAMT-Gal4 (JHAMT-Gal4/+) or the UAS-JHAMT-RNAi and UAS-
dicer transgenes (UAS-dicer/Y; UAS-JHAMT-RNAi/+). The results are shown in Fig 2.
JHAMT-Gal4/UAS-JHAMT-RNAi experimental males showed a significant decrease in court-
ship index (Fig 2A) in comparison to the genotype controls. This suggests that normal JH levels
are required for normal male courtship behavior. To ascertain that the decrease in courtship is
not just due to general sickness and sluggishness of the mutant males, we performed a short-
term activity assay [32] that measures general locomotive activity. In this assay, males are
grown, collected and aged as for the courtship assay. They are placed into the courtship cham-
ber that has a line drawn across the bottom. The number of times the male crosses this line dur-
ing the observation time is recoded (Fig 2B). One of the controls (UAS-dicer/Y;
UAS-JHAMT-RNAi/+) has an activity index that is statistically higher than the other control
(X/Y; JHAMT-GAL4/+) (p = 0.0045) and the experimental genotype (UAS-dicer/Y; UAS-J-
HAMT-RNAi/JHAMT-GAL4) (p = 0.0021). However, the activity index of the experimental
genotype is not different from one of the controls that is normal in courtship, making it
unlikely that the courtship defect is caused by general sickness of the experimental flies.

Fig 1. JHAMT-Gal4 driver directs expression in the corpora allata (CA). Frozen sections of adult JHAMT-Gal4/UAS-lacZmales were incubated with an
anti-ßGal antibody (red) and with an anti-JHAMT antibody (green). Overlapping expression in the CA (marked by arrow) was observed. H:Head; T:Thorax

doi:10.1371/journal.pone.0151912.g001

Juvenile Hormone Regulates Male Courtship

PLOS ONE | DOI:10.1371/journal.pone.0151912 March 22, 2016 4 / 11



Expression of JHAMT-RNAi in the CA is predicted to lower JH levels. To confirm that the
observed courtship defect is due to a reduction in JH, we performed rescue experiments by
applying Methoprene, an established JH analog [27]. Males were aged for 4 days, anesthetized
on ice and 1 μl of 0.5% Methoprene dissolved in acetone was applied to their abdomen. As a
control, acetone only was applied in parallel to another set of flies. Four hours after application,
the males were tested in the courtship assay. As shown in Fig 2C, application of acetone alone
did not affect the behavior of control males, and did not change the reduced courtship index of
UAS-dicer/Y; UAS-JHAMT-RNAi/+; JHAMT-GAL4/+males. In contrast, application of Meth-
oprene to UAS-dicer/Y; UAS-JHAMT-RNAi/+; JHAMT-GAL4/+males resulted in the complete

Fig 2. Expression of JHAMT-RNAi lowers the courtship index and can be rescued by application of the JH analog Methoprene.Graphs show the
courtship index CI (fraction of time males spend courting during the observation period) ± SEM of the indicated genotypes (A, C), or the performance of males
in a control activity assay (# of line crossings ± SEM) (B). Data were analyzed by ANOVA followed by Bonferroni multiple comparisons. A) Expression of
UAS-JHAMT RNAi using our CA-specific JHAMT-Gal4 driver significantly reduces male courtship in comparison to the control males. N = 20. (p < 0.001).
Genotypes used were UAS-dicer/Y; UAS-JHAMT-RNAi/+; JHAMT-GAL4/+; and control genotypes UAS-dicer/Y; UAS-JHAMT-RNAi/+; +/+ and X/Y; +/+;
JHAMT-GAL4/+. B) Activity levels in the mutants and in control flies (genotypes as in A). Mutants are not different from the normally courting X/Y; +/+;
JHAMT-Gal4 control. (N = 10). C) Mature males of the genotypes described in (A) were treated with Methoprene in acetone or acetone alone, and tested four
hours later. The experimental genotype shows complete rescue of the courtship index following Methoprene treatment compared to acetone treatment alone.
(N = 20).

doi:10.1371/journal.pone.0151912.g002
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rescue of the courtship defect, confirming lowered levels of JH as the cause of the reduced
courtship observed in these animals. The rescue was obtained by application of Methoprene to
mature flies shortly before subjecting them to the courtship assay. These results indicate an
adult physiological requirement for normal JH levels in male courtship behavior. Application
of Methoprene did not affect the courtship of control males, although we have observed a
trend towards lower scores following Methoprene application. The knockdown of JHAMT
mRNA by RNAi appears to be weak, since it did not affect the viability of these flies. A strong
reduction of JH might have been expected to result in precocious metamorphosis [33, 34]. JH
levels in larvae and adults are comparable [35, 36], suggesting that courtship behavior is more
sensitive to relatively small JH disturbance than earlier developmental processes are.

JH is required in adult males for courtship behavior
The fact that the courtship reduction of UAS-dicer/Y; UAS-JHAMT-RNAi/+; JHAMT-GAL4/+
males can be rescued by the adult application of Methoprene strongly argues that the observed
courtship defect is not due to developmental effects of JH reduction in these flies. To confirm
that normal levels of JH are an important physiological adult component of courtship regula-
tion, we next performed experiments in which we conditionally reduced JH levels only in
mature adult flies. We used the heat-inducible ubiquitous hsp70-Gal4 driver to conditionally
express JHAMT-RNAi in mature males. 4-day-old males were subjected to a one-hour 37°C
heat shock, let recover for four hours at room temperature and then tested for courtship. Non-
induced flies were kept at room temperature and tested in parallel for comparison. As shown
in Fig 3A, heat shock did not affect the courtship of the control +/hsp70-Gal4 and

Fig 3. Conditional reduction of JHAMT in mature males causes courtship defects that can be rescued
by application of the JH analog Methoprene.Graphs show the courtship index CI (fraction of time males
spend courting during the observation period) ± SEM of the indicated genotypes (A, C), or the performance of
males in a control activity assay (# of line crossings ± SEM (B). Data were analyzed by ANOVA followed by
Bonferroni multiple comparisons. (A) Courtship index of induced and un-induced experimental (X/Y;
UAS-JHAMT-RNAi/+; hsp70-GAL4/+) and control (X/Y; +/+; hsp70-GAL4/+; and X/Y; UAS-JHAMT-RNAi/+;
+/+) genotypes. The experimental genotype shows a significant reduction in courtship index (p = 0.0007).
(N = 20). Induced flies were heat-shocked at 37°C for 1 hour and let recover for four hours. (B) Activity assay
of the induced and un-induced genotypes; genotypes as in (A) (n = 10). (C) Genotypes as in (A); one hour
after induction, flies were treated with Methoprene in acetone, or with acetone alone, and courtship was
examined 4 hours later. The experimental genotype shows complete rescue (p< 0.003) (N = 20). (Un-induced
(-), Induced (+).

doi:10.1371/journal.pone.0151912.g003
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+/UAS-JHAMT-RNAi flies. In contrast, it significantly reduced the courtship of hsp70-Gal4/
UAS-JHAMT-RNAimales. Un-induced hsp70-Gal4/UAS-JHAMT-RNAi experimental males
courted normally. To ascertain that the courtship defect we observed was due to JH reduction,
we heat-shocked experimental and control flies as described above and applied either Metho-
prene or the vehicle alone one hour after heat shock. The flies were then tested for courtship
four hours later. Again, application of Methoprene to heat-shocked hsp70-Gal4/UAS-JHAMT
RNAimales completely rescued the courtship reduction (Fig 3C).

These results strongly support an adult requirement for JH in the regulation of male court-
ship. hsp70-Gal4 is expressed throughout the flies. Since JH is produced in the CA it is likely
that the observed effect was due to JH reduction in this organ. To confirm this, we condition-
ally ablated the CA by expression of DTI, a modified version of Diphtheria toxin [20] and
tested courtship and Methoprene rescue. Indeed, the same result was also observed when we
conditionally ablated the CA, the place of JH synthesis, by the conditional adult expression of
Diphtheria Toxin (DTI) (Fig 4). DTI expression in cells results in toxicity by the attenuation of
protein synthesis [37]. Due to the high toxicity of DTI, conditional adult expression in the CA
was performed in the presence of two copies of temperature-sensitive Gal80ts, using the
Gal80ts/Gal4/UAS (TARGET) system [38]. At 18°C, Gal80ts is functional and blocks the activ-
ity of Gal4. When flies are placed at 30°C, Gal80ts becomes inactive and Gal4 is active. Gal80ts/
Gal80ts; JHAMT-Gal4/UAS-DTI flies were grown at 18°C. Upon eclosion, males were kept at
18°C for maturation. They were then placed at 30°C for two days, followed by room tempera-
ture for 24 hours to allow expression of DTI in the CA. As shown in Fig 4A, induced expression
of DTI in the CA results in a decrease in courtship similar to the one observed in hsp70-Gal4/
UAS-JHAMT-RNAi knock down flies. A smaller but significant decrease was observed in the
absence of induction. This is most likely due to a “leakiness” of Gal80ts that allows small
amounts of Gal4 to be made. As shown in Fig 4B, general activity was not affected in the exper-
imental genotypes under un-induced or induced conditions. We next examined whether the
courtship of CA- ablated flies could be rescued by application of Methoprene. Flies were treated
as in (A), but in addition, Methoprene in acetone or acetone alone were applied 3 hours prior
to courtship assay (Fig 4C). As before, the reduced courtship could be rescued by Methoprene
application. These experiments confirm that efficient courtship is dependent on JH that is
made in the CA.

Discussion
The results described here demonstrate that expression of an RNAi targeting JHAMT, a key
enzyme in the biosynthesis of JH, results in a reduction of male courtship. Reduction of
JHAMT is predicted to lead to lowered JH levels in these animals. Consistent with this, we find
that application of Methoprene, a JH analogue, is capable of rescuing the phenotype. Further-
more, a reduction in courtship is also observed when the corpora allata, the site of JH synthesis,
are conditionally ablated in mature males by the expression of DTI. These findings demon-
strate that JH is required for normal male courtship behavior and identify a direct role for JH
in adult fly behavior. Importantly, all of our manipulations can be rescued by application of the
JH analogue Methoprene shortly before performing courtship assays. Therefore, the observed
courtship defects are not a consequence of permanent developmental defects. The importance
of JH during development has long been recognized and is well studied. In adult flies, its
important role in female egg maturation is well known, but we are just beginning to understand
some of its adult behavioral functions. Bilen et al have recently shown that in females JH regu-
lates the production of cuticular pheromones and the onset of mating [20]. Our experiments
now demonstrate that physiologically correct adult levels of JH are required for normal male
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courtship. Even in flies that have been expressing a weak JHAMT-RNAi throughout develop-
ment the rescue of the courtship defect can be achieved by application of Methoprene to
mature males shortly before they were tested in a courtship assay, underscoring the importance
of normal JH levels for courtship. It is unknown how JH regulates courtship. JH as a hydropho-
bic molecule is thought to require a hydrophilic carrier protein for its transport to target cells.
JH has been shown to be bound by JHBPs in the hemolymph of many insects [39–41].

Fig 4. Conditional adult ablation of the corpora allata (CA) causes courtship defects that can be rescued by application of the JH analog
Methoprene. The conditional Gal80ts system was used to express UAS-DTI in adult males. The flies were created and maintained at 18°C. For induction,
mature males were placed at 30°C for 2 days and then kept at room temperature for one day. The induced and un-induced experimental and control
genotypes were subjected to courtship assay. Graphs show the courtship index CI (fraction of time males spend courting during the observation period) ±
SEM of the indicated genotypes (A, C), or the performance of males in a control activity assay (# of line crossings ± SEM (B). Data were analyzed by ANOVA
followed by Bonferroni multiple comparisons. (A) Courtship assay of induced and un-induced experimental X/Y; Gal80ts/Gal80ts; JHAMT-GAL4/ UAS-DTI
and control genotypes X/Y; Gal80ts/+; UAS-DTI/ +; and X/Y; Gal80ts/+; JHAMT-GAL4/+. (N = 15). Experimental flies had significantly lower courtship than
the controls (p<0.01). (B) Activity assay of the flies described in (A) (N = 10). (C) Methoprene in acetone or acetone alone was applied to induced males four
hours prior to testing for courtship. Methoprene application completely rescued the courtship defect of experimental flies (P<0.001). (N = 20). (Un-induced (-),
Induced (+).

doi:10.1371/journal.pone.0151912.g004
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However, hemolymph JHBPs have not been identified in Drosophila yet. Intriguingly, Takeout
and the proteins of the Takeout family have similarity to JHBPs [12, 42], and takeoutmutants
have courtship defect, but it is unknown whether Takeout proteins bind JH.

In this study we have shown that JH regulates male courtship behavior in adult courting
males, demonstrating a novel adult function for this important insect hormone. These results
add to our increasing understanding that although sex determination in flies is mostly cell-
autonomous and sexual neuronal circuits are determined during development, soluble circulat-
ing factors from the fat body and Juvenile Hormone are important regulators of the behavior.
Future studies will have to reveal how JH and these factors interact with the relevant neuronal
circuits to influence courtship.
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