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Bérengère Valtat1, Petter Vikman2, Peter Spégel1,3, Hindrik Mulder1
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Abstract

RNA editing is a post-transcriptional alteration of RNA sequences that, via insertions,

deletions or base substitutions, can affect protein structure as well as RNA and protein

expression. Recently, it has been suggested that RNA editing may be more frequent than

previously thought. A great impediment, however, to a deeper understanding of this pro-

cess is the paramount sequencing effort that needs to be undertaken to identify RNA edit-

ing events. Here, we describe an in silico approach, based on machine learning, that

ameliorates this problem. Using 41 nucleotide long DNA sequences, we show that novel

A-to-I RNA editing events can be predicted from known A-to-I RNA editing events intra- and

interspecies. The validity of the proposed method was verified in an independent experi-

mental dataset. Using our approach, 203 202 putative A-to-I RNA editing events were pre-

dicted in the whole human genome. Out of these, 9% were previously reported. The

remaining sites require further validation, e.g., by targeted deep sequencing. In conclusion,

the approach described here is a useful tool to identify potential A-to-I RNA editing events

without the requirement of extensive RNA sequencing.

Introduction

RNA editing is a post-transcriptional processing of the RNA molecule, involving insertions
and deletions of bases, as well as base substitutions. RNA editing has been observed in eukary-
otes as well as viruses, archaea and prokaryotes, and has attracted broad interest recently [1–4].
Until now, two types of RNA editing have been described in mammals. The first is C-to-U
editing catalyzed by the apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like
(APOBEC) family of enzymes; its frequency is quite low. The second is A-to-I editing, where
adenosine is deaminated to inosine by the adenosine deaminases acting on RNA (ADAR) fam-
ily of enzymes; this is the predominating type of RNA editing. In 2011, widespread differences
between human RNA and DNA sequences were found [5]. From this finding, the existence of a
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novel form of RNA editing was inferred, providing a yet unexplored dimension of genomic
variation. However, the existence of non-canonical RNA editing in humans is still debated [6,
7]. RNA editing, particularly A-to-I events, is widespread in humans. These events have been
suggested to be linked to miRNA-mediated post-transcriptional regulation, although removal
or formation of miRNA recognition sites, and/or alterations in miRNA sequences also seem to
be frequent [8, 9].

Accurate identification of RNA editing events from high throughput sequencing data still
remains a great challenge. Current comparative methods usually map short reads to a reference
genome or transcriptome, followed by removal of identical reads, filtering of low quality reads,
calling variants and discarding of known single nucleotide polymorphisms (SNPs) [7, 10–14].
Mapping massive numbers of short reads to a reference genome is time-consuming and only a
few pipelines and computational tools are publicly available for RNA editing calling [15].
Moreover, it is difficult to discriminate RNA editing events from novel SNPs since DNA
sequencing is not routinely performed in conjunction with RNA sequencing. In fact, a substan-
tial number of RNA editing events has been annotated as SNPs in dbSNP [16]. Prediction of
C-U editing has been carried out in plant organelles [17] and in physarummitochondria [18],
using homologous information of protein sequences. However, most of these methods are not
capable of predicting RNA editing events that result in synonymous substitutions and editing
in non-coding regions.

To overcome some of these problems, we here introduce a machine learning approach (Fig
1) to detect A-to-I RNA editing events from a genome sequence alone. Hence, this approach
does not require RNA sequencing.

Methods and Materials

Data

The Darned database (Sep 2013), used in this study, was created by Kiran and Baranov [19]
[20]. It includes data generated by a variety of methods: (1) bioinformatics analysis of discrep-
ancies between cDNA sequences and genomic sequences; (2) analysis of SNP data; (3) analysis
of miRNA; and (4) results of high-throughput sequencing of RNA and DNA samples from the
same tissues [20]. After that, sites of RNA editing events were mapped to a reference human
genome. The reliability of those methods was, however, not provided in the Darned database.
The database collects RNA editing events from drosophila melanogaster (fruit fly), mouse and
human. We extracted reference genome sequences for the coordinate of known A-to-I RNA
editing events, including flanking sequences with a length of 5nt (nucleotide), 10nt, 15nt, 20nt
and 25nt, as positive data set. The negative data set was created from sequences of the same
length that were randomly generated by 1 nucleotide per 10000 nucleotides from the whole ref-
erence genome. This frequency is close to the number of current known human A-to-I RNA
editing events divided by size of human-sequenced base pairs: ~1.2e-4. Among them we kept
adenine-centered sequences and filtered instances included in the positive set. For mouse, one-
fifth instances were reselected from the randomly generated data sets as negative data set for
training. Similarly, negative human data set were reselected to match the entries of the positive
human data set. The number of sequences in the positive and negative data sets was for fruit fly
1959 (S1 Table) and 4535, respectively. For mouse, there were 8059 (S2 Table) sequences in the
positive data sets and 15475 sequences in the negative data sets. For human, there were 26228
(S3 Table) and 26228 sequences in the positive and the negative data set, respectively. Binary
classifications employed all these three datasets as training sets but only positive data sets were
used for training of one-class classification.
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Clustering

CD-HIT [21] (version 4.6) was used to cluster editing-sequence contexts. Within each species,
command CD-HIT-EST compares DNA sequence segments with default settings and a thresh-
old of 0.8. This threshold means that one sequence is redundant if identity is greater than 0.8
with another. Command CD-HIT-EST-2D with default settings and a cut off of 0.8 is used to
compare editing-sequence contexts between two species. It identifies DNA sequence segments
in one species that are similar to another species when identity is above 0.8. In both commands,
strand specificity is not considered, since both +/+ and +/- alignments are performed.

String distances

The edit distance, also called Levenshtein distance [22], counts how many insertions, deletions
and substitutions that are required to yield identical sequences. Unlike the edit distance, the
Hamming distance [23] only allows substitutions. In this study, we used a combination of
edit- and Hamming distances to measure the similarity between two DNA sequence segments
(Eq 1):

D ¼ w �
1

L1

� DEdit þ 1 � wð Þ �
1

L2

� DHamming 1

where DEdit is the edit distance for the L1-length and DHamming is the Hamming distance for
the L2-length pair sequence segments. L1 and L2 are lengths used for calculating edit distance
and Hamming distance, respectively. L1 can be greater, equal or less than L2. The w is the

Fig 1. The flowchart of the proposed method. First, we obtain flanking sequences surrounding the known editing sites and background

sets from the reference genome. Second, we measure the similarity of sequence segments pairs (background sets are not used during the

training process for one-class classification). Then the generated similarity matrix is mapped to string kernel space. For this kernel matrix,

the training process tries to find a maximal margin hyperplane, which is usually achieved by quadratic programming. Based on a generated

model from the training process, prediction can be made, using any given sequence or mapped short reads from next generation

sequencing by extracting adenine centered segments. L1: length used for calculating edit distance. L2: length used for calculating Hamming

distance.

doi:10.1371/journal.pone.0164962.g001
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weight varying from 0 to 1. When w = 0, only the Hamming distance contributes to the combi-
national distance, D. On the contrary, when w = 1, only the edit distance contributes to D. The
higher the value of D is, the lower the similarity between the sequences is.

String kernel

String kernel is a kernel function that operates on strings type data. We use a string kernel
function in LIBSVM [24] to convert string data into a vector space. A kernel functionK(a,b)
can be written as (Eq 2):

Kða; bÞ ¼ expð� gamma � Dða; bÞ2Þ 2

where D is the combinational distance derived from Eq 1. The gamma parameter defines how
far the influence of a single training instance reaches, with low values meaning”far” and high
values meaning "close”. We used a default gamma value of 0.1 as LIBSVMdid in this study.

One-class classification

One-class SVMwas used to build a classifier that recognizes A-to-I RNA editing event. In con-
trast to traditional SVMs, one-class SVMs attempt to learn a decision boundary that achieves
the maximum separation between the points and the origin [25]. According to Schölkopf et al.
[25], this results in binary values of 1 as editing event, and -1 as non-editing event in this study.
In one-class SVM, an important parameter nu (varying from 0 to 1) was an upper bound on
the fraction of training errors and a lower bound of the fraction of support vectors [26]. A
small value of nu (e.g. nu = 0.1) indicates a small training error and few outliers in the train
data, compared to a greater value of nu (e.g. nu = 0.5).

Evaluation metrics

N-fold cross validation was used to evaluate the model. Six common criteria, sensitivity (Sn),
specificity (Sp), accuracy (Acc), positive predictive value (PPV), Matthew's Correlation Coeffi-
cient (MCC) and geometricmean (G mean) [27], were used to evaluate the performance of the
binary classification. The MCC and Gmean metrics consider the performance on both the pos-
itive and the negative data sets. High MCC or G mean values indicate high accuracies on both
positive and negative data sets, making these criteria appropriate to learn on imbalanced data.
Sn, Sp, Acc, PPV, MCC and Gmean are defined as (Eqs 3–8):

Sn ¼ TP=P 3

Sp ¼ TN=N 4

Acc ¼ ðTP þ TNÞ=ðP þ NÞ 5

PPV ¼ TP=ðTP þ FPÞ 6

MCC ¼ ðTP � TN � FP � FNÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P � N � ðTP þ FPÞðTN þ FNÞ

p
7

G mean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sn� Sp

p
8

Where TP is the number of true positive, FP is the number of false positive, TN is the number
of true negative, FN is the number of false negative, P is the total number of positive instances
and N is the total number of negative instances.
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A-to-I RNA editing events calling and validation

A-to-I RNA editing events were called from RNA sequencing (RNA-seq) data generated from
human islets from 184 donors (Data partly published and deposited in the Gene Expression
Omnibus (GEO) database, accession no. GSE50244). Details of RNA-seq and exome sequencing
(Exome-seq) experiments can be found in a recent study [28]. 101-bp long paired-end reads were
aligned to hg19, using STAR [29]. GATK [30] was employed for reads realigned, quality base
scores recalibrated and variants calling. An editing event should have a Phred quality score (Q)
greater than 30, more than 8 reads per base in at least two sample and an editing degree greater
than 5%. Considering that reference and alternative alleles were always given on the forward strand
by GATK, T-to-C events were treated as A-to-I events on the opposite strand. Using the same set-
tings, Exome-seq data derived from islets from 12 human donors (Data unpublished) with corre-
sponding RNA-seq data (Data unpublished) was used to validate A-to-I RNA editing events.

Software availability

The source for one-class and binary classifications is modified based on LIBSVM. It is available
at http://figshare.com/projects/Discriminative_prediction_of_A-to-I_RNA_editing_events_
from_DNA_sequence/15510/. Training and testing datasets are also deposited within this link.

Results

Data description

First, we made a descriptive analysis using the Darned database [19] (Fig 2). This analysis
revealed that A-to-I RNA editing events were most frequent in introns, followed by regions

Fig 2. The genomic distribution of A-to-I RNA editing events. Gene annotation here was derived from the DARNED (http://darned.

ucc.ie/help/). 5’ UTR: 5’ untranslated regions. 3’ UTR: 3’ untranslated regions. CDS: coding region of a gene. An "other" region refers

to an RNA editing coordinate not part of an intron or exon.

doi:10.1371/journal.pone.0164962.g002
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that were neither introns nor exons (others) or 3’ untranslated regions (3’ UTR) in both mice
and humans. A substantial number of editing events in introns and in 3’ UTR (440 RNA edit-
ing events in mouse and 11355 in human) implied that RNA editingmay play an important
role in regulation of miRNA and splicing. In contrast, the genome distribution of A-to-I RNA
editing events in fruit fly was radically different; roughly half of the editing events occurred in
introns while the other half occurred in coding regions (codingDNA sequences; CDS). Very
few A-to-I RNA editing events were found in CDS in mouse and human.

Subsequently, 10 nucleotides (nt) long flanking sequences surrounding the coordinate of
the A-to-I RNA editing event (editing-sequence contexts) were extracted from the reference
genome (fruit fly: dm3, mouse: mm10, human: hg19). A comparison of similarity among the
three species by CD-HIT [21], a program for clustering large sets of nucleotide sequence (see
Methods and Materials) (Table 1), revealed little similarity between the editing-sequence con-
texts in fruit fly and mouse (1.3% of known A-to-I editing events in fruit fly and 0.4% of
known A-to-I editing events in mouse; sequence identity cut off = 0.8). Conversely, editing-
sequence contexts in mouse and human were more similar (31.9% of known A-to-I editing
events in mouse and 30.6% of known A-to-I editing events in humans were similar). Only one
editing-sequence context, located on the X chromosome in mouse and humans and on the 2R
chromosome in fruit fly, was similar among all the three species.

Next, we investigated the redundancy of A-to-I editing-sequence contexts in each species by
using CD-HIT with a cut off of 0.8 (seeMethods and Materials). For the fruit fly, mouse and
humans, 1 690 out of 1 959 instances, 4 187 out of 8 059 instances and 26 228 out of 308 272
instances, respectively, remained.

Parameter selection and the performance of prediction on fruit fly,

mouse and human genome

To find the optimal length of editing-sequence contexts for prediction, we employed the fruit fly
as model.We extracted 5nt, 10nt, 15nt, 20nt and 25nt long flanking sequences surrounding the
A-to-I RNA editing events (11mer, 21mer, 31mer, 41mer and 51mer editing-sequence contexts)
from the fruit fly genome (dm3). Considering that positive instances and negative instances in
the fruit fly data were imbalanced, we oversampled the positive data set 2.31-fold. As displayed in
Fig 3A and 3B, we observed that longer sequence segments improved the performance of both
edit and Hamming distances (S4 Table). For the edit distance, the performance of prediction,
using 5-fold cross-validation (Sn = 0.665, Sp = 0.719, Acc = 0.703, MCC = 0.360, PPV = 0.506
and Gmean = 0.691), was close to a stationary point when predicting on 41mer editing-sequence
contexts. For the Hamming distance, the sensitivity (Sn = 0.675) reachedmaximum and the
other measures of performance (Sp = 0.710, Acc = 0.699, MCC = 0.360, PPV = 0.501 and G
mean = 0.692) were close to a stationary point, when predictionwas based on 31mer editing-
sequence contexts. Consequently, 41mer editing-sequence contexts (the Hamming distance was
measured on 31mer inner sequence contexts) were chosen to study the prediction of A-to-I RNA

Table 1. Similarity of editing-sequence contexts in fruit fly, mouse and human. Each row shows the

number of A-to-I editing-sequence contexts in species similar with those in fruit fly, mouse and human. Val-

ues in brackets refer to training datasets in this study.

Fruit fly Mouse Human

Records in fruit fly 1959 (1690) 26 (12) 233 (102)

Records in mouse 30 (13) 8059 (4187) 2574 (673)

Records in human 931 (115) 94366 (915) 308272 (26228)

doi:10.1371/journal.pone.0164962.t001

Prediction of RNA Editing Events

PLOS ONE | DOI:10.1371/journal.pone.0164962 October 20, 2016 6 / 18



Prediction of RNA Editing Events

PLOS ONE | DOI:10.1371/journal.pone.0164962 October 20, 2016 7 / 18



editing events in all three species.With this setting, the prediction (w = 0.5) for fruit fly yielded
an Sn of 0.680, Sp of 0.728, Acc of 0.714, MCC of 0.383 and a Gmean of 0.704.

A 5-fold cross validation was performed to evaluate which weight w to use for fruit fly,
mouse and human data. An oversampling approach was used to balance positive and negative
instances for mouse (1.92-fold oversampling for the positive data set). The positive human
data set was assembled from the representative sequences of clusters (see Data description).
The majority of performance criteria reached maximumwhen w equaled 0.5 for fruit fly data
(Fig 3C). For mouse and human data (Fig 3D and 3E), the Sn initially increased but then grad-
ually declined. On the other hand, when w was varied from 0 to 0.8, the Sp improved dramati-
cally, by 13.3% for mouse and 7.1% for human. The Sn reached a maximumwhen w = 0.2
(Sn = 0.791 and 0.722 for mouse and human, respectively). The other performance criteria
were close to a stationary point (Acc = 0.781 and 0.730, MCC = 0.545 and 0.460, PPV = 0.647
and 0.733, G mean = 0.783 and 0.730, for mouse and human data, respectively). Consequently,
w was set to 0.5 for fruit fly and 0.2 for both mouse and human, to allow for correct recognition
of most RNA editing events.

A receiver operating characteristic (ROC) curvewas plotted for fruit fly (w = 0.5), mouse
(w = 0.2) and human (w = 0.2). The AUC (area under the curve) values for fruit fly, mouse and
human were 0.756, 0.857 and 0.791, respectively. In line with results displayed in Fig 3C–3E,
the prediction based on mouse and human data reached a lower false positive rate and higher
true positive rate than predictions based on fruit fly data (Fig 3F).

Using results of five-fold cross-validation for drawing ROC curvewhen weight w = 0.2, we
evaluated the performance of the binary classifier separately on regions of Alu elements and
non-Alu elements of human A-to-I RNA editing events, respectively. 6544 out of 7375 events
(88.7%) in Alu regions and 12500 out of 18853 events (66.3%) in non-Alu regions were cor-
rectly recognized, respectively (S5 Table).

Predicting A-to-I RNA editing events using positive data only

Not surprisingly, one-class classification of the positive data sets, using a default nu value (see
Methods and Materials) of 0.5, was less accurate (Acc value of 0.489, 0.495 and 0.498 for fruit
fly, mouse and human, respectively) than binary classification. This is likely due to the absence
of a negative control. Therefore, the performance of the model was studied on the positive data
set, using 5-fold cross-validation and varying values of nu from 0.1 to 0.5. Predictions on the
negative data sets were used to test the reliability of the model. The accuracy decreased roughly
2-fold for all species in positive data sets (0.871 to 0.489 for fruit fly, 0.889 to 0.495 for mouse
and 0.897 to 0.498 for human) while it increased roughly 3-fold in negative data sets (0.262 to
0.737 for fruit fly, 0.358 to 0.861 for mouse and 0.154 to 0.660 for human) when nu was varied
from 0.1 to 0.5. For all cases, the prediction on negative data sets frommouse was about 10%
higher than that from fruit fly (Table 2). However, the performances of prediction on negative
data sets were poor when nu was small. At this point, it is necessary to find a suitable value of
nu to obtain a favorable balance of false/truepositive and negative rates. Typically, a small nu

Fig 3. The performance of the five-fold cross validation. Performances on fruit fly with 11-mer, 21-mer, 31-mer, 41-mer and 51-mer

length of editing-sequence contexts using (A) edit distance and (B) Hamming distance. The longer the flanking sequences were, the

higher the specificity of editing-sequence context was. Based on the performance of the prediction on fruit fly data, 10 flanking sequences

could provide reasonable enough information for prediction while 20 flanking nucleotides improved the prediction dramatically.

Performances on (C) fruit fly, (D) mouse and (E) human when the parameter w is varied from 0 to 1. Based on evaluation of Sn and G

mean, the best weight for fruit fly, mouse and human is 0.5, 0.2 and 0.2, respectively. (F) ROC curve for fruit fly (blue line), mouse (red line)

and human (green line) with five-fold cross validation. The gray solid line shows the random guessing results. The greater the area under

ROC curve, the better the performance of prediction.

doi:10.1371/journal.pone.0164962.g003
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value will cluster most A-to-I RNA editing events in the same class. This is probably associated
with high rates of both true and false positives. A higher nu is likely to treat a larger number of
A-to-I RNA editing events as outliers since they are distant from the center of the cluster.

Human A-to-I RNA editing events can be predicted from animal models

Next, we employed one-class classificationmodels built on fruit fly and mouse data to study A-
to-I RNA editing events in humans (Table 2). With a small nu, the model trained on fruit fly
data was more efficient in correctly predicting A-to-I RNA editing events in human data than
the correspondingmodel trained on mouse data. However, the model derived from fruit fly
data also incorrectly assigned a large number of negative instances as editing events. As shown
in Table 3, the binary classification gave reasonable results for all species, correctly recognizing
80% of the negative instances. The model trained on mouse data outperformed the model
trained on fruit fly data (2.1%, 6.8% and 4.7% improvement in Sn, MCC, and PPV, respec-
tively) in predicting A-to-I RNA editing events in the human data.

Due to the differences betweenmodels trained on the different species, we trained a model
on combined fruit fly and mouse data. With this mixed-model, prediction of editing events in
human data was improved with respect to sensitivity (yielding an Sn of 0.622, MCC of 0.412
and Gmean of 0.699). Remarkably, the PPV values were above 0.700 in all three animal mod-
els, indicating a low false discovery rate. Hence, models generated on fruit fly and mouse data
reliably recognizedhuman editing events.

Table 2. The performances of one-class classification.

Species nu Positive data set Negative data set Human positive data set Human negative data set Independent data set

Fruit fly 0.1 0.871 0.262 0.803 0.290 0.776

0.2 0.769 0.416 0.652 0.459 0.621

0.3 0.674 0.540 0.538 0.590 0.483

0.4 0.577 0.651 0.429 0.695 0.431

0.5 0.489 0.737 0.335 0.781 0.397

Mouse 0.1 0.889 0.358 0.732 0.367 0.724

0.2 0.791 0.566 0.574 0.578 0.569

0.3 0.693 0.695 0.449 0.719 0.379

0.4 0.593 0.786 0.347 0.815 0.293

0.5 0.495 0.861 0.261 0.881 0.207

Human 0.1 0.897 0.154 - - 0.879

0.2 0.798 0.296 - - 0.828

0.3 0.697 0.421 - - 0.793

0.4 0.599 0.545 - - 0.724

0.5 0.498 0.660 - - 0.466

Independent data coming from the Supplementary S8 Table (Peng et al. 2012) by filtering out non- A-G editing and non-A reference alleles (See Results)

doi:10.1371/journal.pone.0164962.t002

Table 3. Predicting RNA editing events in human using animal models.

Model Sn Sp Acc MCC PPV G mean

Fruit fly 0.574 0.762 0.668 0.342 0.707 0.661

Mouse 0.595 0.806 0.700 0.410 0.754 0.692

Fruit fly + Mouse 0.622 0.784 0.703 0.412 0.743 0.699

doi:10.1371/journal.pone.0164962.t003
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Prediction and comparison on validated human A-to-I RNA editing

events

To assess the predictive capability of our models, we culled human A-to-I editing events from a
Sanger sequencing data set (57 out of 58 editing events were validated) [9]. Out of such 58 A-
to-I RNA editing events, 46 (79.3%) were correctly recognizedby a model that was trained on
human data. The accuracy of the prediction, using models trained on fruit fly, mouse and com-
bined fruit fly and mouse data, was 0.724, 0.690 and 0.724, respectively (S6 Table). One candi-
date RNA editing event (chromosome: 1, coordinate: 28534767, strand: +), identified by
computational pipelines treating sequencing data, was recognized as a false positive when vali-
dated by Sanger sequencing. In contrast, our approach correctly recognized it, using models
trained on data from both fruit fly and mouse.

One-class classification (Table 2) recognized a larger number of these validated RNA editing
sites than binary classification (77.6%, 72.4% and 87.9% for models based on fruit fly, mouse
and human data, respectively, with nu = 0.1). However, one-class classification trained with a
small nu value (for example, nu = 0.1 for fruit fly) may generate a large number of false posi-
tives, which clearly limits its application. This notwithstanding, one-class classification could
still be useful as a first step to filter out most unlikely editing sites.

Our approach outperformed an existing predictor InosinePredict [31], whose accuracies
were 72.4% and 60.3%, respectively based on preferences for human ADAR1 (hADAR1) and
human ADAR2 (hADAR2). An accuracy of 77.6% could be obtained using InosinePredict if
we combined predicted results from both hADAR1 and hADAR2 (Table 4).

Identification of putative editing sites in the whole human genome

First, we took 26 228 representative editing-sequence contexts from clusters obtained by
CD-Hit (see Data description) as seeds. This generated 438 339 exactly matched segments
from the whole human genome (hg19). Second, we used one-class support vector machine
(SVM) (nu = 0.1) to remove most unlikely editing sites. Third, we applied binary classification,
trained on human data, to identify the most likely editing events on sequence contexts that
passed one-class classification. Thereby, 203 212 editing sites were identified by prediction.
Among these, only 2 715 were found in dbSNP (Build 139), 17 773 were found in the Darned
database and 17 591 were found in the RADAR database [32] while 17 032 were found in both
databases, which showed a low overlap between editing sites in previous studies (less than
10%). Thus, 91.0% of the potential editing sites identified by our approach were novel (Fig 4A).

The genomic distribution of these putative RNA editing sites is shown in Fig 4B. These edit-
ing sites were rarely found in exons (1%), but quite frequently in intergenic region (74.5%) and

Table 4. Comparison of predictors.

Model Accuracy

Our approachBinary_classification 0.793

Our approachOne-class_classification 0.879

InosinePredicthADAR1 0.724

InosinePredicthADAR2 0.603

InosinePredicthADAR1 + hADAR2 0.776

InosinePredict: cutoff of unedited (A) sites: 9.6% for hADAR1 (human ADAR1), and 21% for hADAR2

(human ADAR2). The InosinePredicthADAR1 + hADAR2 combined right predictions either based on the model of

hADAR1 or hADAR2.

doi:10.1371/journal.pone.0164962.t004
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introns (24.5%). The number of editing sites in 5’ UTR, CDS and 3’ UTR were 860, 290 and
2104, respectively. 174 out of 290 sites in CDS were non-synonymous substitutions (S7 Table).
We found 33 editing sites in pri-miRNA; within them, 24 sites were maintained in mature
miRNA, as assessed by the miRBase [33]. None of the predicted sites were found in the geno-
mic positions of small nuclear RNA (snRNA) and small nucleolar RNAs (snoRNAs). Interest-
ingly, we found 6 972 A-to-I RNA editing events in long intergenic non-coding RNAs
(lincRNA). Out of these, 6 075 were novel, and not found in the Darned database. Ten sites
were found in tRNA based on a genomic tRNA database GtRNAdb [34]. Considering that
tRNA editing is different from editing events on double-stranded RNA, we removed these
tRNA editing events from the putative set. Thus, 203 202 editing sites were identified by our
approach (S1 Dataset).

Validation of exonic A-to-I RNA editing events in human pancreatic

islets

There were 561 putative A-to-I RNA editing events in exons out of the reported putative events
left after removing overlap with DARNED and RADAR. First, we validated these sites using
RNA sequencing of human islets from 184 donors (Fig 5). 322 were sites of low quality (Q<30)
mapped reads, 1 site with only one allele count and 28 were no-call sites. These sites were not
considered for further analysis. Finally, 210 sites were kept for validation. Out of these, 103, 41
and 66 sites were located in non-repetitive regions, non-Alu repeats and Alu repeats, respec-
tively. 36 showed signs of editing in non-repetitive regions in human islets. In addition, 28

Fig 4. The putative A-to-I RNA editing events. (A) Overlap between the predicted RNA editing events (red) with Darned (blue)

and RADAR (green). Notice that RADAR only collects A-to-I RNA editing events. (B) The genomic distribution of predicted RNA

editing events. The genomic regions are annotated by UCSC known genes and repeat masker (hg19, http://genome.ucsc.edu/).

One genome coordinate position may have multi- annotations. 5’ UTR: 5’ untranslated regions. 3’ UTR: 3’ untranslated regions.

CDS: coding region of a gene. Intergenic: intergenic region. Alu repeat: a short stretch of DNA originally characterized by the action

of the Arthrobacter luteus restriction endonuclease.

doi:10.1371/journal.pone.0164962.g004
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events were observedwith a low confidence (<8 reads per base or observed in only one individ-
ual), and 8 events were also sites of common SNPs. 20 events showed signs of editing in non-
Alu repeats. Only 11 sites showed signs of editing in Alu repeats (S8 Table).

In contrast, we also investigated all (3893) known exonic A-to-I RNA editing events in the
human training set. After filtering 902 low quality sites, 122 no-call sites and 506 SNPs, 1352
out of 2363 (57.2%) known editing sites were identified by RNA-seq in the human islets alone
(Fig 5A and S9 Table). Of these, seven editing events were also reported in a previous study
[28], which was based on data from islets from 82 human donors; our extended study sample
of 184 donors included these 82 donors.

After this initial validation using RNA-seq alone, we further validated these novel exonic A-
to-I RNA editing events, using novel Exome-seq and RNA-seq data from 12 recently analyzed
human islet donors. We identifed 47 editing sites by RNA-seq, out of which 35 could be vali-
dated comparing genotypes derived from Exome-seq with that of RNA-seq. However, geno-
types of 11 sites could not be inferred from Exome-seq, and were thus potential artefacts from
sex chromosomes. Only one site failed to be validated. Interestingly, 4 SNPs were also found to
be sites of A-to-I RNA editing events in human islets (Table 5).

Discussion

Identification of RNA editing events is of great importance for the understanding of post-tran-
scriptional regulation. Currently, most editing sites have been identified by large scale sequenc-
ing efforts. However, these studies are expensive and time-consuming. In addition, it is
difficult to distinguish editing events from SNPs and sequencing errors. Furthermore, whereas
we today have access to huge amounts of genomic data, we rarely have access to both DNA
and RNA sequences from the same individual. Currently, a targeted analysis of RNA editing
remains a challenge, since information on where they occur is lacking. A recent study of ultra-
deep Alu-targeted sequencing showed that the scope of editing is much greater than expected

Fig 5. Validation of putative A-to-I RNA editing events. (A) A-to-I RNA editing events observed in human islets for 3893 known

sites (training set) and 561 putative sites (novel set). In the training set, 1352 sites show signs of editing, 257 sites show signs of

editing but at a low confidence, 1260 sites including 506 SNPs do not show any sign of editing and 1024 no-call sites. In the novel set,

68 sites show signs of editing, 29 sites show signs of editing but at a low confidence, 114 sites including 8 SNPs do not show any sign

of editing and 350 no-call sites. (B) The observed A-to-I RNA editing events in Alu repeats, non-Alu repeats and non-repetitive region

in human islets. There are 11, 2 and 53 sites in Alu repeats, 20, 2 and 19 sites in Non-Alu repeats and 36, 26 and 41 sites in non-

repetitive region show signs of editing, signs of editing at low confidence and no sign of editing, respectively.

doi:10.1371/journal.pone.0164962.g005
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Table 5. Validation of putative A-to-I RNA editing events in 12 human islets using RNA-seq and Exome-seq.

Chrom Position dbSNP ID Ref Alt Alu

repeats

Non-Alu

repeats

Non-

repetitive

Signs of editing using

RNA-seq alone

Signs of editing using Exome-

seq and RNA-seq

1 16996 T C No No Yes Yes Yes

1 136145 T C No No Yes Yes Yes

1 136176 T C No No Yes Yes Yes

1 327178 A G No No Yes Yes Yes

1 327209 A G No No Yes Yes Yes

1 146033351 T C No Yes No Yes Yes

1 146033357 T C No Yes No Low confidence Yes

1 146466935 A G No Yes No Low confidence Yes

1 148003734 T C No Yes No Yes Yes

1 148251061 T C No Yes No Yes Yes

1 148251067 T C No Yes No Yes Yes

1 148757492 A G No Yes No Low confidence Yes

1 149671816 A G No No Yes Low confidence Yes

2 114352638 rs377338570 A G No No Yes Yes Yes

3 188598721 A G Yes No No Yes Lack of coverage

3 197940920 A G No No Yes Low confidence Yes

4 3511496 rs10020994 T C No No Yes Yes Lack of coverage

5 43527381 rs71629179 T C No No Yes Yes Failed

5 69744694 A G Yes No No Low confidence Lack of coverage

5 180753793 A G No No Yes Low confidence Yes

5 180753824 A G No No Yes Low confidence Yes

6 36109404 A G Yes No No Yes Lack of coverage

7 76681891 A G No No Yes Low confidence Yes

7 102135806 rs377051321 A G No No Yes Yes Yes

7 102234975 rs372070045 A G No No Yes Yes Yes

7 128293801 A G No No Yes Yes Yes

8 42876550 A G No No Yes Yes Yes

9 18481 rs11555811 T C No No Yes Yes Yes

10 47228601 T C Yes No No Low confidence Lack of coverage

11 128359 T C No No Yes Low confidence Yes

11 128390 T C No No Yes Low confidence Yes

12 87267 A G No No Yes Yes Yes

12 88651 A G No No Yes Yes Yes

15 102514167 A G No No Yes Yes Yes

16 66679 T C No No Yes Yes Yes

16 21443512 T C Yes No No Low confidence Lack of coverage

16 21875788 T C Yes No No Low confidence Lack of coverage

16 90237172 A G No No Yes Yes Yes

16 90237203 A G No No Yes Low confidence Yes

17 44412592 T C No No Yes Yes Yes

18 60995796 T C Yes No No Yes Yes

19 198277 T C No No Yes Low confidence Yes

19 198308 T C No No Yes Low confidence Yes

X 15802285 A G No No Yes Yes Lack of coverage

X 155251357 A G No No Yes Yes Lack of coverage

X 155252758 A G No No Yes Yes Lack of coverage

(Continued )
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[35]. Most identified sites exhibited a low level (<1%) of editing. It was not possible to provide
a comprehensive overviewof the whole human genome. In an attempt to resolve this problem,
we here introduce a machine learning approach to predict A-to-I RNA editing events from
genomic data. It can be used to identify putative editing sites or to test whether RNA editing is
likely to occur in a given DNA sequence.With this approach, the accuracy of prediction was
generally determined by the source and quality of training data. The more representative the
real distribution of training data was, the more powerful the prediction was. To this end, we
used known editing events in fruit fly, mouse and human as training sets. These data were
diverse within the species itself but conserved between species. This was supported by: 1, a sub-
stantial number of clusters following clustering of editing-sequence contexts for fruit fly,
mouse and human; 2, mouse and human shared a substantial number of similar editing-
sequence contexts; 3, mouse and human displayed a similar genomic distribution of RNA edit-
ing events; 4, about 60% of human editing events could be predicted by training on data from
fruit fly, mouse or a mix of them. The great similarity betweenmouse and human suggested
that the mouse could be used as a model to study RNA editing in the human.

To avoid overfitting, we performed predictions based on models derived from one species
on data from other species in addition to validation, using Sanger sequencing-verifiedRNA
editing events. To this end, models trained on human data or combined data from fruit fly and
mouse correctly recognizedmore than 70% of verifiedRNA editing sites. The successful identi-
fication on this independent data set validated the proposedmethod. From the study on cur-
rently known RNA editing events, we concluded that A-to-I RNA editing events could be
predicted by use of the DNA sequence. However, we also believe that use of more data is likely
to generate a higher accuracy of prediction.

Considering that the negative data sets that we used for binary classificationmay contain
novel editing events, we used a one-class classification approach to overcome this problem.
With this approach, we could predict A-to-I RNA editing events using only a positive data set.
However, the accuracy of this approach was slightly lower than for binary classification. This
was likely due to that most editing events were merged into a single cluster. The non-editing
events might be mistaken as editing events if they were located in the distribution of this one
cluster. One solution to this problem would be to divide A-to-I RNA editing events into num-
bers of clusters and to perform one-class classification on each cluster. Another possible solu-
tion to address false positive is enlarging negative data sets used in the binary classification.
However, this approach would result in extremely low sensitivity and MCC.

String distances have for long been applied to measure similarity of DNA or protein
sequences [36]. We found that the length of the flanking sequence was an important parameter
to obtain a high specificity of the predictions.We used a combination of edit and Hamming
distances, with the latter beingmore conservative as it only allows substitutions. Interestingly,
the Hamming distance contributed most to the sequence similarity in mouse and human,
whereas the more flexible edit distance also became important in the fruit fly. This indicates
that A-to-I RNA editing is more highly conserved in mouse and human than in fruit fly.

Table 5. (Continued)

Chrom Position dbSNP ID Ref Alt Alu

repeats

Non-Alu

repeats

Non-

repetitive

Signs of editing using

RNA-seq alone

Signs of editing using Exome-

seq and RNA-seq

Y 59354363 A G No No Yes Yes Lack of coverage

Chrom: Chromosome. Ref: reference allele. Alt: alternative allele. All alleles refer to forward strand. Low confidence means that reads per base are smaller

than 8.

doi:10.1371/journal.pone.0164962.t005
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By scanning the whole human genome, it was surprising to find a large number of 41nt-
length sequence segments, using 26 228 human editing-sequence contexts as seeds.With a
maximum of 3 nucleotide mismatches and no indel, we found 25 487 374 matched segments,
revealing that RNA editingmay be very frequent in humans. Considering that this number
largely exceeds the number of currently known A-to-I RNA editing events and that there
might be tissue-specific editing events, it is likely that currently unknownmechanisms control
RNA editing. A prediction using only exactly matched sequences yielded 203 202 potential A-
to-I RNA editing events. Among those, most were located in noncoding regions. At this point,
the role of RNA editing in these regions remains unclear. We also predicted several thousands
A-to-I RNA editing events in long non-coding RNA (lncRNA). Further investigations on these
specific RNA editing events would be attractive as lncRNA plays an important role in cellular
regulation, such as pre-mRNA processing and splicing, transport, translation, and degradation.

As previously reported, A-to-I RNA editing events were rarely found in human pancreatic
islets. Nevertheless, we were able to validate 35 A-to-I RNA editing events in this tissue, based
on newly analyzed Exome- and RNA- seq data from 12 batches of human islets not included in
a previous report from our centre [28]. It is clear that more editing events will be found when
the quantity/number of human tissues and samples is increased. This may explain the differ-
ence in number of A-to-I RNA editing events reported.We additionally found that the base
quality of editing sites in repetitive regions were frequently low or in no-call sites. This is prob-
ably due to misalignment of short reads of RNA-seq. Finally, we noticed that several A-to-I
events occurred at sites of SNPs. This indicates that RNA editing should be considered as a fac-
tor in genome-wide association studies.

In conclusion, we have shown that A-to-I RNA editing events can be predicted by the flank-
ing genome sequences. The very large number of putative editing sites identified in the whole
human genomemay become a resource, which can be further investigated and validated using
targeted deep sequencing or PCR.
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