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Abstract

The purpose of this report is to apply multi-scale modeling using the theory of physiologically

structured populations (PSP) to develop a mathematical model for antimicrobial resistance

based on a heterogeneous distribution of receptors and affinities among bacterial cells. The

theory has been tested on data obtained from an in vitro static time-kill infection model ana-

lyzing the pharmacodynamics of polymyxin B against Gram-negative bacteria. The drug

binding parameter KD (dissociation equilibrium constant) is assumed to vary between the

bacterial cells. The PSP model describes the time course of the density distribution of KD

upon exposure to cytotoxic drug concentrations. The drug increases the hazard of cell death

as a function of receptor occupancy. The initial distribution of KD is described by the Weibull

function. Time-kill data were used for model qualification. In vitro static time-kill experiments

to evaluate the rate and extent of killing due to polymyxin B against two Klebsiella pneumo-

niae clinical isolates with differing susceptibilities to polymyxin B were performed over 48 h.

The time-kill kinetics data of bacterial load cfu (colony forming units)/mL was used for model

qualification. The resistant bacterial population is determined by the balance between

growth rate and hazard of cell death controlled by polymyxin B concentrations. There exists

a critical KD value below which cells continue to grow. Estimates of shape parameters for

distributions of KD yielded unimodal distributions with the modes at 0 nM and the right tails

containing approximately 25% of the bacteria. Our findings support a hypothesis that resis-

tance of Klebsiella pneumoniae to polymyxin B can be at least partially attributed to a drug-

induced selection of a subpopulation due to heterogeneity of polymyxin B receptor binding

in the bacterial population.

Introduction

Prevalence of Gram-negative bacteria resistant to almost all currently available antibiotics is

rapidly escalating at an alarming rate. This poses a serious clinical challenge as it limits our
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treatment options against infections due to resistant Gram-negative pathogens. Mechanisms

of bacterial resistance have been classified into three categories: intrinsic, acquired, and adap-

tive [1]. Intrinsic resistance comprises all the inherent mechanisms that restrain the effects of

antimicrobials by reducing the intracellular drug concentration (such as Gram-negative outer

membrane that is impermeable to several antimicrobial classes and the increased expression of

numerous efflux pumps). Acquired resistance refers to the acquisition of new genes by the

incorporation of genetic material or a result of spontaneous mutations enabling bacteria to

withstand higher antibiotic concentrations. Adaptive resistance is a temporary increase in the

ability of bacteria to survive drug pressure with alterations to the gene and/or protein expres-

sion in response to the environmental trigger. Adaptive resistance, in contrast to intrinsic or

acquired resistance, is triggered in response to the selective pressure exerted by the use of anti-

biotics. Bacterial phenotype can contain a high degree of molecular heterogeneity. An example

of adaptive drug resistance is a drug-induced selection of a resistant bacterial subpopulation

that were present in the original bacterial population [2].

Polymyxin B is a polycationic cyclic antimicrobial peptide with a molecular mass 1,200 Da

carrying five positively charged residues of diaminobutyric acid. Polymyxin B binds to lipo-

polysaccharide (LPS) expressed on the outer membrane of Gram-negative bacteria such as

Escherichia coli and Klebsiella pneumoniae by displacing divalent cations Mg2+ and Ca2+ that

cross-bridge between adjacent negatively charged phosphate groups [3]. Upon biding to LPS,

polymyxin B forms a complex with LPS that penetrates the outer membrane of the bacteria.

The bactericidal effect of polymyxin B is attributed to its interaction with the cytoplasmic

membrane that alters its functions such as active transport and respiration [4].

Gram-negative bacteria alter their LPSs to protect themselves against the bactericidal effects

of polymyxin B. One of the most common modifications of LPS resulting in reduced binding

affinity to polymyxin is the cationic substitution of its phosphate groups by 4-amino-4-deoxy-

L-arabinose (L-Ara4N) causing a decrease in the net negative charge of lipid A, a constituent

moiety of LPS [5–6] and hence resulting in resistance to polymyxin B. The other common

method resulting in the modification of lipid A, is the addition of phosphoethanolamine

(PEtN) resulting in a decrease in the net negative charge causing a shift towards cationicity

with decreased binding affinity for polymyxin B, resulting in eventual resistance to polymyxins

[5–6]. The synthesis and transfer of L-Ara4N and PEtN to lipid A resulting in polymyxin resis-

tance is triggered by the activation of PhoP/PhoQ and PmrA/PmrB, the two-component

systems (TCS) due to environmental stimuli like drug concentrations, changes in growth con-

ditions or specific mutations occurring within TCS will result in the upregulation of operons

that facilitate [6–8].

Most of the mathematical models to date describe the emergence of resistance in response

to drug pressure as a mixture of bacterial subpopulations with differing degrees of antibiotic

susceptibilities [9–10]. Drug effects depend on the degree of susceptibility of the bacterial

subpopulations, and the composition of the total bacterial population exposed to the drug con-

centration can change over time as bacterial subpopulations which are less susceptible can

become dominant. Such models typically assume acquired resistance due to bacterial muta-

tions which determine the initial (prior to drug treatment) partition of the total bacterial popu-

lation into susceptible subpopulations.

Physiologically structured population (PSP) models were first introduced in ecology to

describe the behavior of a population of individual organisms sharing and interacting in a

common environment [11]. A key concept of structure as the unique subject characteristics

can be extended to cell protein expression, DNA, and RNA content [12–13]. A PSP model

describes dynamics of a structure within a bacterium and quantifies its distribution within the

bacterial population. The environment can affect both a bacterium and the entire bacterial
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population. For describing in vitro bacteria, the growth media constitutes the environment. In

particular, the drug concentration is the most relevant environmental variable determining the

dynamics of bacterial population. In the context of Gram-negative bacteria resistance to poly-

myxin B, a structure of interest will be the expression of LPS on the outer membrane. PSP

models are designed to quantify heterogeneity of the bacterial structure and the impact of the

environment on the dynamics of bacterial populations.

Our leading hypothesis is that resistance of Klebsiella pneumoniae to polymyxin B can be at

least partially attributed to a drug-induced selection of a subpopulation due to the heterogene-

ity of LPS binding in the bacterial population. We apply a PSP model to describe the time-kill

kinetics data for two clinical strains with differing susceptibilities to polymyxin B with infor-

mation regarding the distribution of binding affinities, maximal efficacies, and critical concen-

trations of polymyxin B necessary for the emergence of resistant bacterial subpopulations.

First, we briefly introduce a general framework for PSP models. Next we apply the pharmaco-

logical principles of receptor occupancy to introduce binding structures and define the bacteri-

cidal effect of the drug. The resulting model is fitted to the experimental time-kill kinetics data

and furthermore the parameter estimates were used to simulate the process of selection of

resistant subpopulations by exposure to the drug.

Materials and methods

In vitro static time-kill study

Klebsiella pneumoniae Carbapenemase (KPC) producing Klebsiella pneumoniae clinical strains

BAA1705™ (obtained from ATCC1) and KP619 (obtained from a patient treated for bacterae-

mia at the Kingman Regional Medical Center, Kingman, Arizona) were used. MICs (mini-

mum inhibitory concentrations) were determined in triplicate by broth microdilution as per

the Clinical and Laboratory Standards Institute guidelines (Clinical and Laboratory Standards

Institute. 2014. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-

Fourth Informational Supplement. CLSI document M100-S24. Clinical and Laboratory Stan-

dards Institute, Wayne, PA).

Mueller-Hinton broth (Becton, Dickinson and Company, Sparks, MD) supplemented with

calcium and magnesium (CAMHB; 25.0mg/L Ca2+, 12.5mg/L Mg2+) was used for susceptibil-

ity testing and in vitro time-kill models. Stock solutions of polymyxin B (Sigma-Aldrich,

St. Louis, MO, Lot. WXBB4470V) were freshly prepared in sterile water prior to each experi-

ment. All drug solutions were filter sterilized using a 0.22μm filter (Fisher Scientific). Static

time-kill experiments were performed over 48 h to evaluate pharmacodynamic activity of poly-

myxin B monotherapy against the two K. pneumoniae clinical strains. The rate and extent of

killing polymyxin B 0.5, 1, 2, 4, 8, and 16 mg/L was assessed. Polymyxin B was added to the

logarithmic-phase broth culture prepared prior to each experiment by adding fresh bacterial

colonies from overnight growth to pre-warmed CAMHB (37˚C) to achieve the desired initial

inoculum of ~106 cfu/mL. Serial samples were obtained at 0, 1, 2, 4, 6, 8, 24, 28, 32, and 48 h

for bacterial quantification.

PSP model

PSP models were originally introduced to describe dynamics of population of animals in their

habitat [11,14]. However, the theoretical framework applies to any population of individuals

living in a specific environment. A PSP model describes the dynamics of a population in terms
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of the behavior of its constituent individuals. It consists of i-state equations:

dx
dt
¼ gðE; xÞ; t > 0; x 2 O ð1Þ

where x is an n-dimensional vector of individual structures (i-state), O is the space containing

all individual states, and E is a vector of environmental variables influencing individual states

that is described by e-state equations:

dE
dt
¼ f ðE;cðnð�; tÞÞ; tÞ; t > 0 ð2Þ

where n(x, t) is the density distribution of the structure x at time t (p-state) and C(n(�, t)) is a

population characteristic (e.g. population size) defined by the p-state. For example, by defini-

tion of the density function, the number of subjects in the population at time t is

NðtÞ ¼
Z

O

nðx; tÞdx ð3Þ

P-state equations are central for the PSP model:

@nðx; tÞ
@t

þ divðgðE; xÞnðx; tÞÞ ¼ lðE;Cðnð�; tÞ; x; tÞÞ � mðE;Cðnð�; tÞ; xÞÞnðx; tÞ; t > 0; x 2 O ð4Þ

where λ(E, C(n(�, t), x, t)) is the density of production rate and μ(E, C(n(�, t), x)) is the mortal-

ity rate, for individuals of structure x. The p-state Eq (4) uniquely defines the density n(x, t) if

boundary and initial conditions are specified:

vðxÞ � gðE; xÞnðx; tÞ ¼ aðx; tÞ; t > 0; x � @O ð5Þ

and

Eð0Þ ¼ E0; nðx; 0Þ ¼ n0ðxÞ; x � O ð6Þ

where υ(x) is the unit inward-pointing normal vector at x �@O, and α(x, t) and n0(x) are

known functions.

Binding-structured population models of bacteria in vitro. We will consider bacteria

growing in the in vitro static time-kill model to be exposed to a polymyxin B concentration of

C. The drug concentration constitutes an environmental variable (e-state) that affect the status

of each bacterium. Since polymyxin B is stable and the degradation is minimal for the duration

of the experiment, we assume that drug concentration in the medium does not change over

time:

dC
dt
¼ 0 ð7Þ

Eq (7) is an analog of the e-state Eq (2). Based on the pharmacological principles of drug-

receptor theory, the drug effect on each bacterium is determined by the number of receptors

bound to the drug (b) [15]. The number of bound receptors b depends on the drug concentra-

tion in medium C and the number of free receptors per bacterium r, and the number of bacte-

ria N in the culture. Since the time scale for binding and receptor turnover is much smaller as

compared to the time scale for the growth of bacteria we assume that the binding is at dynamic

equilibrium. Then the bound receptor on each cell can be calculated as

b ¼
rtotC

KD þ C
ð8Þ
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where KD is the equilibrium disassociation constant and rtot describes the total number of

receptors per bacterium that is assumed to be constant:

rtot ¼ r þ b ð9Þ

Consequently, under equilibrium assumptions, we get r ¼ rtotKD
KDþC

, hence the number of free

and bound receptors on a bacterial cell is determined by rtot and KD specific for that cell. In

this context, a relevant structure determining the status of each bacterium is a vector (rtot, KD).

In this section we have x = (rtot, KD) and E = C. Since the bacterial cell binding parameters

are constant, the i-state Eq (1) becomes:

d
dt
ðrtot;KDÞ ¼ ð0; 0Þ ¼ gðC; rtot;KDÞ ð10Þ

Under these assumptions the p-state Eq (4) describing the receptor density n(rtot, KD, t)
simplifies to

@nðrtot;KD; tÞ
@t

¼ lðC; N; rtot;KD; tÞ � mðC; N; rtot;KDÞnðrtot;KD; tÞ; rtot > 0; KD > 0; t > 0 ð11Þ

with the initial condition

nðrtot;KD; 0Þ ¼ n0ðrtot;KDÞ; rtot > 0; KD > 0 ð12Þ

Cytotoxic effect. The mortality rate μ(C,N, rtot, KD) is assumed to be independent of the

bacteria population size and is stimulated by the drug:

mðC;N; rtot;KDÞ ¼ m0SðbÞ ð13Þ

where μ0 is the first-order death rate constant and S(b) is the stimulatory function. We assume

that the drug effects are characterized as power functions of b

SðbÞ ¼ 1þ kbg ð14Þ

where γ is the power coefficient describing the steepness of the stimulatory curve and κ is the

coefficient.

Modeling bacteria growth. To accurately describe the dynamics of bacteria growth in
vitro we will adopt existing models [16]. The bacterial density growth rate λ(C,N, rtot, KD) is

assumed to slow down with an increasing bacteria population size:

lðC; N; rtot;KD; tÞ ¼
VGmax
Nm þ N

nðrtot;KD; tÞ ð15Þ

where VGmax is a maximal velocity of bacterial growth, and Nm denotes the bacterial count

that results in 50% of the maximal rate of growth. If the size of the bacteria population is much

less than Nm i.e.

N � Nm ð16Þ

then the growth rate becomes linear:

lðC;N; rtot;KD; tÞ ¼ l0nðrtot;KD; tÞ ð17Þ

Multi-scale model for adaptive bacterial resistance to polymyxin B
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where λ0 = VGmax/Nm. Integrating p-state Eq (11) one can arrive at a solution:

nðrtot;KD; tÞ ¼ n0ðrtot;KDÞexpððl0 � m0SðbÞÞtÞ ð18Þ

Where bound receptor b is determined by Eq (8). In the case of point distribution of

rtot� rtot0:

nðKD; tÞ ¼ n0ðKDÞexpððl0 � m0SðbÞÞtÞ ð19Þ

where

n0ðKDÞ ¼ N0

b

a

KD
a

� �b� 1

exp �
KD
a

� �b
 !

ð20Þ

Cell count response. The bacterial cell count in the population can be calculated by inte-

gration of the density n(rtot, KD, t) as shown in Eq (3). Integrating of Eq (18) over rtot and KD
yields:

NðtÞ ¼
Z 1

0

Z 1

0

n0ðrtot;KDÞexpððl0 � m0SðbÞÞtÞd rtotd KD ð21Þ

In the absence of the drug (S(b)� 1) the bacteria population grows exponentially:

NðtÞ ¼ N0expððl0 � m0ÞtÞ ð22Þ

with the half-life

t1=2 ¼
lnð2Þ

l0 � m0

ð23Þ

In the case of point distribution of rtot� rtot0:

NðtÞ ¼
Z 1

0

n0ðKDÞexp ðl0 � m0S
rtot0C
KD þ C

� �

Þt
� �

d KD ð24Þ

whereas all cells have the same affinity KD� KD0:

NðtÞ ¼
Z 1

0

n0ðrtotÞexp ðl0 � m0S
rtotC

KD0 þ C

� �

Þt
� �

d rtot ð25Þ

Initial distribution of rtot and KD. The last part of the model to be defined is the initial

density of rtot and KD. Anticipating limited information from in vitro bacteria growth data

about the expression of receptors and bacteria affinities to drug, a parsimonious approach was

taken to describe n0(rtot, KD). A natural assumption is independence of rtot and KD distribu-

tions resulting in the product:

n0ðrtot;KDÞ ¼ N0p0ðrtotÞq0ðKDÞ ð26Þ

where p0(rtot) and q0(KD) are probability density functions (pdfs) for rtot and KD distributions,

respectively. Two type of pdfs were tested to account for extreme cases: Weibull

pðxÞ ¼
b

a

x
a

� �b� 1

exp �
x
a

� �b
� �

ð27Þ
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where α is the scale parameter and β is the shape parameter, and point distribution

pðxÞ ¼ dðx � x0Þ ð28Þ

where x0 is the center of the distribution. The point distribution assumes all cells have the

same structure value (rtot or KD).

Data analysis

The model parameters were estimated using the SAEM algorithm implemented in Monolix

4.3.3 (Lixoft). Simulations were prformed in MATLAB (R2013a, MathWorks). The numeri-

cal evaluation of the integrals was done by the MATLAB function integral available to

Monolix.

Results

Mechanisms of resistance for bacterial population with unrestricted

growth

The binding-structured population model offers an explanation for a mechanism of resistance

of bacteria in response to treatment with a bactericidal antibiotic based on the balance between

production and elimination rates that can vary between bacteria as a consequence of bacteria

specific binding of the drug. For the unrestricted growth of bacteria, the time course of the

density function n(rtot, KD, t) is described by the p-state equation:

@nðrtot;KD; tÞ
@t

¼ ðl0 � m0SðbÞÞnðrtot;KD; tÞ ð29Þ

which can be solved to yield Eq (11). Consequently, the curve

l0 � m0SðbÞ ¼ 0 ð30Þ

divides the plane (rtot, KD) into two regions. Bacteria in the region for which the left hand side

of Eq (30) is negative will exponentially die, whereas bacteria in the complementary region will

grow exponentially. This is a resistance mechanism where the drug selects bacteria in the initial

bacterial population n0(rtot, KD, t) for death or survival depending on their binding characteris-

tics [2]. Bacteria expressing large number of receptors or with strong binding affinity are likely

to die, while the bacteria expressing few receptors or with weak binding affinity for the drug

will survival forming a new more resistant bacterial population growing exponentially in time.

The time for the emergence of this new more resistant bacterial population depends on the

proportion of the initial distribution contained in the growing region of the (rtot, KD) plane.

According to Eq (30) there exists a critical number of bound receptors per bacterium bcrit such

that a subpopulation of bacteria expressing bound receptors b< bcrit will continue to grow.

This happens as the elimination rate of bacteria is determined by the hazard of death which is

less than the production rate of bacteria determined by λ0. While the subpopulation of bacteria

with bound receptors b> bcrit diminishes as the hazard of death is greater than the production

rate of bacteria.

l0 ¼ m0SðbcritÞ ð31Þ

Fig 1 illustrates the balance between the hazard of bacterial death and the first-order pro-

duction that defines the critical number of bound receptors available in the population for the

drug to exert its effect.
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To demonstrate this mechanism we will use an example of bacteria that differ only in terms

of their binding affinity KD while expressing the same number of receptors rtot0. Then a two

dimensional density n(rtot, KD, t) can be reduced to a one dimensional density n(KD, t). Since

the number of bound receptors is uniquely determined by bacteria binding characteristics Eq

(8), there exists a critical equilibrium dissociation constant KDcrit such that a subpopulation of

bacteria with KD> KDcrit continue to grow whereas a subpopulation of bacteria KD< KDcrit are

decreasing:

KDcrit ¼ C
m0krtot0g

l0 � m0

� �1=g

� 1

 !

ð32Þ

Eq (32) implies that necessary and sufficient condition for existence of bacteria as KDcrit is

krtot0
g >

l0

m0

� 1 > 0 ð33Þ

Fig 1. The mortality rate as a function of the number bound receptors per cell. The hazard of cell removal μ0S(b)

increases as an effect of drug action S(b) starting from the baseline value μ0. The horizontal line marks the first-order

production rate constant for cell population λ0. The interception of two lines determines the critical value of bound receptors

bcrit. Cells with b < bcrit will continue to grow whereas cells bcrit < b are destin to die.

https://doi.org/10.1371/journal.pone.0171834.g001
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In particular, Eq (33) implies that if bacteria express a low number of receptors, then KDcrit
may not exist and the original bacteria population will continue to grow exponentially, entirely

resistant to drug effect.

Resistance of Gram-negative bacteria to polymyxin B

Two clinical strains of KPC producing Klebsiella pneumoniae with differing susceptibilities to

polymyxin B were grown in Mueller Hinton broth, growth media containing escalating poly-

myxin B concentrations over 48 h. For the susceptible strain BAA1705 the minimum inhibi-

tory concentration (MIC) for polymyxin B is 0.5 mg/L whereas for the more resistant strain

KP619 MIC for polymyxin B is 64 mg/L. Time-kill kinetics for both strains are shown in Fig 2.

In time-kill studies, polymyxin B was bactericidal in a concentration-dependent manner Fig 2.

All polymyxin B concentrations evaluated resulted in a >3 log10 reduction against BAA1705

by 2–4 h and all strains regrew until they were similar to growth control or until they reached

the threshold. Against KP619, a less than 1-log10 reduction was seen at concentrations greater

than 4 mg/L that was not sustained beyond 4 h and regrowth was seen at all evaluated concen-

trations. To ensure exponential growth the control data were used to determine a threshold of

108 cfu/mL to censor the data for all treatment groups when the size of the bacteria population

increases above the threshold. The rate (or initial slope of time-kill curves) was greater and

extent of killing by polymyxin B for BAA1705 was more extensive as compared to that for

KP619, consistent with their reported polymyxin B susceptibilities. The time-kill data imply

the emergence of bacteria resistant to polymyxin beyond 4–6h of exposure to polymyxin B.

According to the assumption of heterogeneity in polymyxin B affinities of the receptors

expressed by the bacteria populations evaluated here, the time-kill kinetics data were fitted by

the model Eq (23). The resulting fits are shown in Fig 2 and parameter estimates and their 95%

CIs are presented in Table 1. Two model parameters could not be estimated based on the avail-

able data and hence they were fixed. The bacterial natural death rate constant (baseline haz-

ard), μ0 was set to the value 0.3 day-1 reported elsewhere [17]. The scale parameter α, for the

initial distribution was set at the value of 380 nM, the equilibrium dissociation constant for

polymyxin B binding to LPS [18]. The estimated shape factors β were< 1 implying right-

skewed distributions with singularity at KD = 0. Since 95% CIs corresponding to BAA1705 and

KP619 strains are disjoint, the KD distributions are significantly different which is confirmed

by Fig 3. The dimensional analysis revealed that parameters κ and rtot0 can be estimated only

as a part of the term vrtot0γ. The latter can be interpreted as the drug effect corresponding to

100% receptor occupancy, a maximal stimulation for the given number of receptors per

bacterium.

Distribution of affinities to polymyxin B

The model structure and parameter estimates allows one to make inferences about the initial

distribution of KD among the bacteria and the shape of the hazard function for escalating drug

concentrations. Fig 3 reveals the inferred KD density distributions after initiating treatment

with polymyxin B against both clinical isolates evaluated. The estimated shape factors β
were< 1 implying right-skewed distributions with singularity at KD = 0. The cumulative dis-

tribution functions yield the following quartiles Q1 = 1.06 nM, Q2 = 67 nM, and Q3 = 1788 nM

(BAA1705), and Q1 = 17.4 nM, Q2 = 154 nM, and Q3 = 853 nM (K619). This implies that

more than half of both bacterial isolates have stronger affinity for polymyxin B than reported

380 nM. Also, about quarter of the bacteria bind to polymyxin B in the micro molar range. As

expected, BAA1705 isolate has more polymyxin B susceptible bacteria with KD< 100 nM as

compared to the more resistant KP619 isolate (53% vs. 44%).
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Fig 2. Time-kill data for BAA1709 (upper panel) and KP619 (lower panel) strain. Symbols represent the

measurements and lines are model fitted curves. The dashed line marks the limit of quantification of 1 cfu/mL.

The triangle symbols are measurements below limit of quantification.

https://doi.org/10.1371/journal.pone.0171834.g002
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Cytotoxic effect of polymyxin B

The estimates of γ and κrtot0γ are sufficient to generate plots of the hazard μ0S(b) as functions

KD shown in Fig 4:

m0SðbÞ ¼ m0 1þ krtot0
g C
KD þ C

� �g� �

ð34Þ

At KD = 0 nM the maximum hazards of bacteria death were 18.7 day-1 and 3.3 day-1 for

BAA1705 and KP619, respectively. The hazards decreased with increasing KD and were depen-

dent on the polymyxin B concentration. Higher polymyxin B concentrations resulted in higher

hazards of death. The sensitivity of the hazard to drug concentration was higher for BAA1705

compared to that for KP619, consistent with values of γ parameter as the power of the receptor

occupancy C/(KD + C).

Selection of resistant cell population

The affinity of bacteria to polymyxin B, KDcrit determines its fate, when it is exposed to the

cytotoxic effect of drug. Bacteria with KD> KDcrit will grow, whereas bacteria with KD< KDcrit
are destined to be killed by the drug. This is the basic mechanism of selection for resistant bac-

teria based on their affinity to drug. Fig 5 shows the density n(KD, t) at various times for KP619

exposed to polymyxin B concentration of C = 8 mg/L to illustrate the emergence of resistant

bacteria subpopulation with KD> KDcrit = 6003 nM. At time t = 0 h, only 4.7% of N(0) = 1.2

x106 cfu/mL bacteria had KD> KDcrit. At t = 2 h, this fraction increased to 52.7% of N(2) = 3.2

x105 cfu/mL, and by t = 4 h almost the entire bacteria population 95.5% of N(4) = 9.1x105 cfu/

mL became resistant, and the process of growth dominated the killing. At t = 8 h more than

99.9% of N(8) = 7.8 x107 cfu/mL bacteria had KD> KDcrit, and consequently the population

size increased exponentially with time. This suggests that bacteria with weak binding affinity

to the drug become resistant, while bacteria with strong binding affinity to the drug are elimi-

nated. Another observation is that the drug concentration, C is also a determinant of the

emergence of resistant bacterial population. The time scale for emergence of the resistant pop-

ulation depends on the percentile of the initial distribution cut off by KDcrit. The smaller the

tail is, the longer it takes for the resistant bacteria population to emerge. Lastly, over time as

the total bacteria population becomes resistant, the KD values shifts to higher values or KD. val-

ues tend to increase. The mode at t = 8 h was 40,306 nM whereas at t = 10 h it was 51,042 nM.

The process of selection resistant population for BAA1705 strain was qualitatively similar to

that for KP619 strain.

Table 1. Parameter estimates of model Eq (24) obtained by fitting the time-kill data for BAA1705 and KP619 strains shown in Fig 2.

Parameter Estimate (%RSE) BAA1705 95% CI BAA1705 Estimate (%RSE) KP619 95% CI KP619

λ0, day-1 3.27 (22) [1.80,4.74] 2.02 (9) [1.63;2.41]

μ0, day-1 0.3* 0.3*

κrtot0
γ 61.2 (35) [18.4,104.0] 10.1 (8) [8.34,11.6]

γ 0.186 (32) [0.0657,0.306] 0.831 (29) [0.335,1.33]

log10N0, cfu/mL 5.92 (5) [5.35,6.49] 6.07 (1) [5.93,6.21]

α, nM 380* 380*

β 0.211 (13) [0.154,0.268] 0.404 (9) [0.334,0.474]

%RSE stands for percent relative standard error of the estimate.

*—parameter was fixed.

https://doi.org/10.1371/journal.pone.0171834.t001
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Discussion

Existing in vitro models of infection account for resistance in response to drug pressure by

describing the total bacterial population by considering a discrete number of bacterial subpop-

ulations with varying degrees of susceptibility to the antibiotic(s) being evaluated (see for

example [9]). The approach presented here fundamentally differs from assuming a priori

existence of several bacterial subpopulations as opposed to one that evolves in time upon expo-

sure to drug resulting in the emergence of a resistant population eventually. The discrete sus-

ceptibilities of bacteria to drug is explained by a continuous distribution of drug binding

Fig 3. Initial KD density distributions (upper panel) and cumulative distribution functions (lower

panel) for BAA1705 and KP619 strains. Estimated parameter values from Table 1 were used to simulate

n0(KD) and corresponding cdfs based on Eq (20).

https://doi.org/10.1371/journal.pone.0171834.g003
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characteristics within the bacterial population. A resistant population is determined by the bal-

ance between the growth and death processes altered by the drug. As such, the distribution

will change in time where the concentration of the drug is the forcing function.

Since resistance emerges at low bacteria counts, our model of bacteria growth was limited

to a first-order process with drug stimulating bacterial death. This simplification was inten-

tional to arrive at a mathematically simpler model allowing for explicit criteria determining

the critical binding characteristics necessary to define a resistant bacteria population. Conse-

quently, the model can be applied to the time-kill kinetics data only within the exponential

growth phase. Given the two characteristics of receptor density, rtot and affinity for drug, KD,

the model was further simplified by assuming that these characteristics do not vary between

bacteria. This was necessary since the available data did not support identifiability of these

parameters for a two-dimensional distribution. The model allowed for a rather flexible initial

distribution of binding characteristics (Weibull function), and a relatively general model of the

effect of the drug on the hazard of cell death (power function of bound receptors per cell).

The model was qualified against time-kill kinetics data for two isolates of KPC producing

Klebsiella Pneumoniae with differing susceptibilities to polymyxin B with the assumption of

the same target expression within the bacterial population. Parameter estimates revealed simi-

lar qualitative characteristics but difference in numerical values. The initial distributions of KD
for both strains were centered near the vicinity of KD = 0 with right tails extending to infinity

with about 25% of bacteria in the micro-molar range. The drug effect on the death hazard

differed in its maximal value being 6-fold stronger for the more susceptible bacteria strain,

Fig 4. Hazard as functions of KD for BAA1709 and KP619 strains. The curves μ0S(b) vs. KD were simulated

using Eq (34) for indicated drug concentrations. Parameter values used for simulations are presented in Table 1.

https://doi.org/10.1371/journal.pone.0171834.g004
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BAA1705. Also, the sensitivity of the more susceptible bacteria strain to drug concentration

was higher.

The selection of functions describing initial distributions of target within the bacteria popu-

lation and drug effects on the death hazard was parsimonious. While the Weibull probability

density function guaranteed sufficient flexibility, a scale parameter could not be identified. The

power function Eq (20) for describing the drug effect was a reduced form of the sigmoidal

Emax model recommended by the operational model of agonism [19]. Such an extension

would allow for maximal saturation of the bacteria killing when the number of bound recep-

tors per bacterium is high. This feature might be of importance for selection resistance mecha-

nisms due to the distribution of rtot within the population which have not been explored in

Fig 5. Simulated density distributions of KD at various times for KP619 bacteria population exposed

to polymyxin B concentration of C = 8 mg/L. Si The vertical line indicates KDcrit = 6003 nM. The ranges of y

axes were adjusted to best illustrate the shape of distribution. At t = 0 the distribution is equal to the initial

density n0(KD) described by the Weibull distribution Eq (16). As time progresses the density of cells with KD <
KDcrit vanishes whereas cells with KD > KDcrit form a new population that eventually grows exponentially. The

density distribution at KD = KDcrit remains constant.

https://doi.org/10.1371/journal.pone.0171834.g005
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this report. This part of our modeling approach indicates limitation of time-kill kinetics data

in order to make inferences about mechanisms of resistance and drug pharmacodynamics.

Additional information about time courses of receptor expression on bacteria exposed to drug

effect is warranted.

The mathematical framework of structured populations was applied to describe the time

courses of the KD distributions in its simplest form. Constant drug concentrations eliminated

the need of modeling the environment (pharmacokinetic model was absent). However, this

assumption might be violated if the size of bacteria population is large enough to clear drug

from the medium. The assumption of binding equilibrium between drug and receptors yielded

a trivial bacteria level model of the receptor turnover and allowed for introducing KD as a

structure. This limited the mechanism of resistance to a passive selection of bacteria by the

drug based on the distribution of rtot and KD. A more dynamic model (i-state) would allow for

description of additional mechanisms of resistance such as down-regulation of the receptor by

the bacteria in response to environmental triggers.

In summary, we applied a theory of physiologically structured populations to develop a

mathematical model of bacteria resistance to antibiotics in vitro that is based on a heteroge-

neous distribution of receptors and affinities among cells. This model can account for a mech-

anism of resistance due to selection of bacteria with favorable binding characteristics given

particular drug concentration. The model is limited to exponential growth of bacteria with

drug stimulating bacterial killing. The resistant population is determined by the balance

between growth rate and hazard of cell death. Two bacterial isolates with different susceptibili-

ties to polymyxin B were used for model qualification assuming similar receptor expression on

all bacteria. Estimates of shape parameters for distributions of dissociation equilibrium con-

stants yielded unimodal distributions with the modes at 0 nM and the right tails containing

approximately 25% of the bacteria. The maximal efficacy of polymyxin B was about 6-fold

higher for the more susceptible strain than for less susceptible one. Finally, we observed that

the time-kill experimental in vitro data contained limited information about the mechanisms

of resistance and drug pharmacodynamics, implying that additional experimental techniques

using dynamic in vitro models of infection might provide data that would allow for less parsi-

monious models than the one presented here that can be used for analysis.

Appendix

Derivation of Eq (18)

Despite of presence of many variables, the p-state Eq (11) is a linear ODE with respect to time t
that can be solved by the integrating factor method. Under the simplifying conditions Eqs (13)

and (17), the p-state Eq (11) becomes Eq (29). Multiply both sides of Eq (19) by the integrating

factor exp((−λ0 + μ0S(b))t) to arrive at

@

@t
ðnðrtot;KD; tÞexpðð� l0 þ m0SðbÞÞtÞÞ ¼ 0 ð35Þ

Hence, the initial condition Eq (12) implies

nðrtot;KD; tÞexpðð� l0 þ m0SðbÞÞtÞ ¼ n0ðrtot;KDÞ ð36Þ

and Eq (18) follows.

Multi-scale model for adaptive bacterial resistance to polymyxin B

PLOS ONE | https://doi.org/10.1371/journal.pone.0171834 March 23, 2017 15 / 17

https://doi.org/10.1371/journal.pone.0171834


Supporting information

S1 Data. This is the compressed data file containing the in vitro data for both bacterial

strains used to develop the model.
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