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Abstract

Risk assessment regarding the distribution of malaria vectors and environmental variables

underpinning their distribution under changing climates is crucial towards malaria control

and eradication. On this basis, we used Maximum Entropy (MaxEnt) Model to estimate the

potential future distribution of major transmitters of malaria in Nigeria—Anopheles gambiae

sensu lato and its siblings: Anopheles gambiae sensu stricto, and Anopheles arabiensis

under low and high emissions scenarios. In the model, we used mosquito occurrence data

sampled from 1900 to 2010 alongside land use and terrain variables, and bioclimatic vari-

ables for baseline climate 1960–1990 and future climates of 2050s (2041–2060) and 2070s

(2061–2080) that follow RCP2.6 and RCP8.5 scenarios. The Anopheles gambiae species

are projected to experience large shift in potential range and population with increased distri-

bution density, higher under high emissions scenario (RCP8.5) and 2070s than low emis-

sion scenario (RCP2.6) and 2050s. Anopheles gambiae sensu stricto and Anopheles

arabiensis are projected to have highest invasion with 47–70% and 10–14% percentage

increase, respectively in Sahel and Sudan savannas within northern states in 2041–2080

under RCP8.5. Highest prevalence is predicted for Humid forest and Derived savanna in

southern and North Central states in 2041–2080; 91–96% and 97–99% for Anopheles gam-

biae sensu stricto, and 67–71% and 72–75% for Anopheles arabiensis under RCP2.6 and

RCP8.5, respectively. The higher magnitude of change in species prevalence predicted for

the later part of the 21st century under high emission scenario, driven mainly by increasing

and fluctuating temperature, alongside longer seasonal tropical rainfall accompanied by

drier phases and inherent influence of rapid land use change, may lead to more significant

increase in malaria burden when compared with other periods and scenarios during the cen-

tury; especially in Humid forest, Derived savanna, Sahel and Sudan savannas.

Introduction

With nearly half of the world’s population at risk in 2017 [1], malaria continues as one of the

highest killer infectious diseases in the world after lower respiratory tract infections, diarrhoeal
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diseases, human immunodeficiency virus / acquired immunodeficiency syndrome (HIV/

AIDS) and tuberculosis, particularly among countries in the tropical region of the world [2].

According to World malaria report 2018 [3], an estimated 435,000 people died from malaria

in 2017 from 219 million estimated global cases, with highest vulnerability among under-fives.

Almost half of all global cases were accounted for by five tropical countries: Nigeria (25%),

Democratic Republic of the Congo (11%), Mozambique (5%), India (4%) and Uganda (4%)

[1,3]. With much efforts and considerable investments towards malaria control and eradica-

tion notwithstanding, some of the most plagued countries including Nigeria, India, Niger,

Ethiopia, Madagascar, Myanmar, and Sudan (all within the tropical region), are reportedly

below the operational universal coverage target of one insecticide treated nets (ITN) per two

persons at malaria risk, together with lack of access to effective malaria treatment by large per-

centage of their population at risk, predominantly those living in rural remote settlements [3].

Malaria burden driven by poor vector control and inadequacy / inaccessibility of preventive

material is expected to increase under changing world climates. Especially climate change

resulting from the enhanced greenhouse effect [4] together with the direct effect of increased

urbanisation / land use [5] and population drivers, is expected to produce changes in species

distribution including that of malaria vectors in tropical ecosystems [6–9]. Shifts and increased

prevalence induced by anthropogenic drivers [10,11] on vectors distribution may exacerbate

human exposure to malaria infection [12].

The anthropogenic greenhouse gases (GHG) emission which indirectly impact species distri-

bution is expected to continue throughout the 21st century in the absence of climate change

policy, giving rise to what is described as ‘high emission scenario’ under the Representative

Concentration Pathway 8.5 (RCP8.5) [13,14]. Basically, there are four RCP scenarios describing

GHGs emissions and concentrations up to 2100 based on radiative forcing levels associated

with assumptions around different combinations of land use, economic, technological (energy),

demographic, policy, and institutional futures [15]. Among two stabilisation scenarios (RCP4.5

and RCP6), are one mitigation (low emissions) scenario (RCP2.6) and the high emissions sce-

nario (RCP8.5) [15]. RCP 2.6 assumes global annual GHG emissions peak by 2020 and decline

substantially, as global population peaks mid-century, and the use of non-fossil fuel increases

with high global economic growth, resulting in low GHG emissions in the presence of climate

policy [15–18]. Both low and high emissions scenarios are expected to lead to noticeable varia-

tions in regional (and sub-regional) temperatures and precipitation, which may impel changes

in geographic distributions of malaria vectors and malaria risk pattern [19–22]. Within the trop-

ical region, temperature is projected to rise by 3–6˚C under RCP8.5 in West Africa by the end

of the 21st century, just as total precipitation will change slightly with longer rainy season

accompanied by drier phases [23]. This is predicted to be more diverse within regions and sub-

regions of West African countries, especially in Nigeria due to ecosystem diversity in its regional

and ecological zones [20,23]. A general decline in precipitation is predicted for Sudan, Sahel

and Guinea savanna areas of North West, North East and North Central subregions, and a rela-

tively large increase in precipitation in the coastal south [19], Humid Forest (within South

South, South East and South West subregions), Derived savanna (within North Central, South

east, South West and North East subregions), and highlands within Mid Altitude zone (see Fig

1 for the ecological and regional zones) [20,23–25]. Overall, temperature is projected to rise

across the country by about 4.9˚C with hotter nights and high humidity under RCP8.5 and lim-

ited to about 1.4˚C under RCP2.6 on average from 1990 to 2100 [8,19,23]. The temperature in

Humid Forest and Derived savanna under RCP8.5 is projected to increase by 3˚C–4˚C, and

between 3˚C and above 5˚C in Guinea, Sudan and Sahel savannas in the north [20].

Altered rainfall pattern and elevated temperatures are expected to exacerbate climate

extreme events and disasters such as flood, drought, sea level rise, landslides, strong winds,
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and proliferation of infectious disease vectors / disease transmission [9,19,26,27]. Over the

course of the 21st century, several models have been used in predicting the impact of climate

change across a variety of sectors and regions for risk analysis and adaptation strategies [28–

31]. With respect to malaria risk assessment, several studies have been carried out on the

impact of changing climate scenarios on the occurrence and distribution of malaria vectors

across the world. Most of these studies focused on Anopheles gambiae sensu stricto (s.s.) and

Anopheles arabiensis which are major siblings of the species complex—Anopheles gambiae
sensu lato (s.l.) [12,32,33–37]. An. gambiae s.s. and An. arabiensis are dominant most efficient

vector species of human malaria in the Afrotropical Region [38–41]. Tonnang et al. [35] used

CLIMEX simulation model to predict possible shifts in An. gambiae s.s. and An. arabiensis
boundaries southward and eastward of Africa rather than jumps into quite different climatic

environments under climate change scenarios. This was previously observed by Peterson [34]

who applied ecological niche model, Genetic Algorithm for Rule-set Prediction (GARP) to

predict potential distributional shift from west to east and west to south of Africa for An. gam-
biae s.s. and An. arabiensis, respectively [12]. Drake and Beier [37] used Low Bias Bagging for

One-Class-Classification (LOBAG-OC) to project extensive reductions in An. arabiensis

Fig 1. Map of Nigeria with georeferenced sampling points of Anopheles gambiae species, showing topographic relief, ecological, regional and state boundaries.

Anopheles species sampling points reprinted for illustrative purposes only from Okorie et al. [48] under a CC BY 4.0 license, with permission from PLOS ONE [38].

https://doi.org/10.1371/journal.pone.0218523.g001
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habitat (as a result of climate change) in Western and Central Africa, and parts of some East-

ern, North-eastern and Southern African countries. Also, under three climate scenarios, Ren

et al. [32] used maximum entropy algorithm (MaxEnt) to predict prospective changes

(increases) in future distribution of the four dominant vectors in China, different in each cli-

mate change scenario.

Previous studies demonstrated the distribution of Anopheles species under changing cli-

mate scenarios more in terms of general spatial distribution across bioclimatic domains within

areas of interest, with little or no consideration of the influence of ecological subregions

[12,32,33–37]. In this study we estimate future spatial distribution of dominant malaria vectors

and relative climate impacts under low and high emissions scenarios that may affect malaria

risk pattern under different ecosystem in tropical region, using a case study of Nigeria. This

study builds on an earlier study [38] by assessing prospective changes in the distribution of An.

gambiae sensu lato and its two major siblings: An. gambiae sensu stricto, and An. arabiensis
across bioclimatic domains within ecological zones and administrative regions in the country,

in relation to elemental conditions under both low and high emissions scenarios in 2041–2060

and 2061–2080, respectively. The choice of low and high emissions scenarios may have impli-

cations for policies towards the type and level of preparedness and intervention needed to

reduce malaria burden caused by malaria vectors within states and regions along ecological

gradients, in a world with and without climate policies [15,28,29]. MaxEnt, a well-established

and successful method for species distribution modelling [42] was used based on its reliable

usage and high performance among other modelling methods [43] for estimating disease vec-

tors distribution and disease transmissions [32,44–47].

Materials and methods

Study area and mosquito occurrence data

Georeferenced An. gambiae species data (Fig 1) sampled between 1900 and 2010 across Nigeria

(study area) was obtained from Nigeria Anopheles vector database (https://doi.org/10.1371/

journal.pone.0028347.s001) [48]. Nigeria is located in the tropical region within Latitudes 4o

and 14o north of the Equator and between Longitudes 2o 2’ and 14o 30’ east of the Greenwich

Meridian (Fig 1) [20,38]. It has 36 regional states with Federal Capital Territory, Abuja within

six broad geopolitical regions (Fig 1). Species distribution is distinctively defined by ecological

zones on the basis of combinations of soil, landform and climatic characteristics in the country

[38,49,50]. Climates are tropical at the coastal south within Humid forest and Derived savanna,

sub-tropical further inland within Derived and Guinea savannas, semi-arid in the far north

within Sudan and Sahel savannas, and temperate within Mid Altitude zone of Jos and Mam-

billa plateaus (Fig 1) [38,51]. Mean annual temperature ranges from 26˚C to 33˚C [20,23,50],

contingent on climate zone. The north records rainfall between 500 mm and 750 mm annu-

ally, while the south records between 1,200 mm and above 4000 mm [23,38,51]. Mean eleva-

tion within the south is about 150 m above sea level, 600–700 m in the north, and 1,500–2,100

m within Mid Altitude zone (Fig 1) [20,38,52]. The country has over 190 million people [53]

with about 90% at risk of malaria [54], estimated to be approximately 411 million and 794 mil-

lion people in 2050 and 2100 [53,55] with 95% and above 97% of the populations projected to

be at the risk of malaria, respectively [8]. Its urban population is expected to increase from

51.9% in 2019 to 72% in 2050 [55], with deforestation rate of about 3.5% per year [56].

Environmental variables

To model impact of climate change under low and high emissions scenarios on malaria vector

species distribution in Nigeria, nineteen bioclimatic variables with about 1 km2 spatial

An. gambiae species under low and high emissions scenarios in Nigeria
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resolution were obtained for 1960–2080 from WorldClim (http://www.worldclim.org)—

Global Climate Data, the global climate models (GCM)—community climate system model

version 4 (CCSM4) based on RCP2.6 and RCP8.5 [57]. The bioclimatic variables were: annual

mean temperature (bio1), mean diurnal range (bio2), isothermality (bio3), temperature sea-

sonality (bio4), maximum temperature of warmest month (bio5), minimum temperature of

coldest month (bio6), temperature annual range (bio7), mean temperature of wettest quarter

(bio8), mean temperature of driest quarter (bio9), mean temperature of warmest quarter

(bio10), mean temperature of coldest quarter (bio11), annual precipitation (bio12), precipita-

tion of wettest month (bio13), precipitation of driest month (bio14), precipitation seasonality

(coefficient of variation) (bio15), precipitation of wettest quarter (bio16), precipitation of dri-

est quarter (bio17), precipitation of warmest quarter (bio18), and precipitation of coldest quar-

ter (bio19). The climate data was based on three climate periods: the baseline time period

1960–1990 which observed data interpolations is referred to as current conditions [57–59],

and future climate periods 2041–2060 (2050s) and 2061–2080 (2070s) [57]. The 1960–1990

Climate Normals used in this study from WorldClim [57] serves as an implicit predictor of the

conditions characteristic of the future up to 2005 when it was created. It also serves as a stable

benchmark against which changes in climate observations in 2041–2060 and 2061–2080 are

compared [59]. Also incorporated in the model were land use land cover (lulc) data obtained

from U.S. Geological Survey data release [60], and Digital Elevation Model (DEM) obtained

from the Consultative Group on International Agricultural Research—Consortium for Spatial

Information (CGIAR-CSI) [38,61].

Modelling procedures and data analysis

Using Maximum entropy algorithm (MaxEnt) model version 3.3.3k [62], model operation was

performed following the procedures in our previous study [38]. As a general-purpose machine

learning technique of ecological niche modelling, MaxEnt estimates potential species distribu-

tion using species presence-only records and environmental layers [42,63]. In order to predict

future occurrence and distribution of the Anopheles species, projected bioclimatic / environ-

mental variables representing 2041–2060 (2050s) and 2061–2080 (2070) were added to projec-

tion directory in MaxEnt. Using all available data without having an independent dataset

under sub-sample replicated run type, occurrence data for each species was split twenty-one

times into training (75%) and testing (25%) subsets; performed to test the predictiveness / per-

formance of the MaxEnt model specified by Area Under the Receiver Operating Characteristic

(ROC) Curve (AUC) [38]. The AUC measures the ability of the model to discriminate between

sites where a species is present (y = 1) against where it is absent (y = 0), given as a plot of sensi-

tivity against specificity [38,64–66]. The AUC was considered more in terms of model’s predic-

tiveness, which according to Lobo et al. [67], the value of AUC tells of the degree to which a

species is restricted along the range of predictor conditions in the study area, in order that

presences can be told apart from absences [43]. To guard against bias in datasets, following

large ranges of the documented species [64] relative to the study area (especially in the North

Eastern part of the country) (Fig 1) [38], a bias layer was created to provide MaxEnt with back-

ground samples (pseudo-absences) [43,68–70]; defining locations with documented Anopheles
species as 1, and “no data” in the grid of unsampled pixels [71]. More environmentally distant

pseudo-absences from the presences (as applied in this study) increases the rate of well-pre-

dicted absences and the AUC scores [67]. Over-prediction / under-prediction of the relation-

ships by the model was controlled by increasing maximum iterations from 500 (default) to

5000, allowing the model to have adequate time for convergence; and regularization was left at

1 (default) to minimise model over-fitting [38,43,65].

An. gambiae species under low and high emissions scenarios in Nigeria
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The combined environmental variables predicted the probability of species occurrence by

producing a point-wise mean (model images), created by MaxEnt model based on maximum

entropy of optimal conditions of included environmental variables that match the threshold

value within species occurrence records [38,65]. These images were classified in ArcMap for

distributions of the studied mosquito species, and reclassified into suitable and unsuitable hab-

itats using 10 percentile training presence logistic threshold provided by MaxEnt. Suitable hab-

itat was defined to include 90% of the data used to develop the model, to take care of some

errors inherent in the datasets [38,65]. The mean distribution density of each Anopheles species

was determined from zonal statistics in ArcGIS, across ecological and geopolitical zones, and

in each state [38]. Prevalence (distribution density in percent) was derived from the mean dis-

tribution density according to the equation, px = (yx/ymax)100; where px represents species

prevalence in year x, yx represents predicted mean distribution density of species in year x,

and ymax represents maximum mean distribution density of species estimated by zonal statis-

tics. Mean distribution density less than or equal to one (equivalent to�50% prevalence)

defines the probability of the species not occurring, greater than one (equivalent to>50%

prevalence) defines species presence, and equal to two (equivalent to 100% prevalence) repre-

sents maximum prevalence of species within a zone or state [38]. Percentage change (y) of spe-

cies between baseline and future climates was derived from the equation y = ((yx-y0)/y0)100,

where y0 represents species prevalence under baseline climate, yx represents species prevalence

in year x. The contribution of environmental variables to the delineation of suitable environ-

ments for the Anopheles species were examined using jackknife test of variable importance and

analysis of percent contribution of each variable [38,45]. In Jackknife test the training gained

by each variable is estimated as if the model was run with one variable, and then compare it to

the training gain involving all variables [38,65]. Logical assessment of variables contributions

was achieved by evaluating estimates of relative contributions of the environmental variables

alongside jackknife plots produced for training gain, test gain and AUC (S1 File) [38,64].

Results

Potential future distributions of An. gambiae species under RCP2.6 and

RCP8.5

Noticeable changes have been projected to occur in potential distribution of the dominant

malaria vector species complex, An. gambiae s.l. and its two major siblings under the chosen

climate change scenarios within bioclimatic and ecological domains in the tropical country—

Nigeria. The ‘business as usual’ high emissions scenario (RCP8.5) without large investments

threatens to increase the future geographic range, distribution density and prevalence of An.

gambiae species more than the mitigation (low emissions) scenario (RCP2.6). An. gambiae s.l.,

a species complex of eight reproductively isolated species [40,41] is projected to increase across

all bioclimatic domains in the country with total percentage increase of 26.53% and 32.20%

under RCP8.5, and 15.20% and 14.89% under RCP2.6 in 2050s and 2070s, respectively (Fig 2).

This is expected to translate into large range expansions and high prevalence with increased

distribution density within Humid forest (36.51% and 39.70% under RCP8.5) and (19.19%

and 23.30% under RCP2.6), Derived savanna (48.60% and 52.26% under RCP8.5) and (43.69%

and 43.03% under RCP2.6), Sudan savanna (37.66% and 44.31% under RCP8.5) and (28.02%

and 26.66% under RCP2.6), and Sahel savanna (47.725 and 54.13% under RCP8.5) and

(24.99% and 22.96% under RCP2.6) in 2050s and 2070s, respectively (Table 1; Fig 3). The

Southern Guinea savanna from Oyo state through Kwara state to Niger state (Fig 1) which

appears less suitable for An. gambiae s.l. under current climates [38], is projected to experience

large invasion with increased distribution density especially under RCP8.5 in 2050s (by

An. gambiae species under low and high emissions scenarios in Nigeria
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43.14%) and more increasingly so in 2070s (by 51.97%); increasing by 28.44% under RCP2.6

in 2050s but declines to 25.09% in 2070s (Table 1; Fig 3; S1 Fig). This scenario is projected to

trigger a north-eastward species shift, making Kaduna state within Northern Guinea savanna

least suitable for An. gambiae s.l. in 2050s and 2070s, against Yobe state within Sudano-Sahel-

ian zone under current climates (Fig 4; S1 Fig). The north-eastward species shift is expected to

cause An. gambiae s.l. invasion in the less suitable Sahel savanna especially in Sokoto and

Katsina states, and parts of Yobe and Borno states. The less suitable north-eastern region land-

mass (currently) is projected to become more suitable for An. gambiae s.l. in 2050s and 2070s,

especially under RCP8.5 (Fig 3; Table 2; S1 Fig). However, the Mid Altitude zone is projected

to become less suitable for the An. gambiae complex under RCP2.6 with percentage decrease

of 1.58% in 2050s and 1.44% in 2070s, and 0.66% in 2050s under RCP8.5, particularly the Mid

Altitude areas of Jos plateau, Mambilla plateau and highlands in Adamawa, Borno and Cross

River states (Table 1; Fig 3; S1 Fig). The An. gambiae s.l. may likely increase in population

across the Mid Altitude zone by 6% in 2070s under RCP8.5 (Table 1). Also, highlands within

Ondo, Ekiti, Edo, Kogi, Enugu and Anambra states are projected to be less suitable for An.

gambiae s.l. between 2041 and 2060; but are projected to experience An. gambiae s.l. invasion

between 2061 and 2080 under RCP8.5 (Fig 3; S1 Fig). By administrative regions (geopolitical

zones), the South East and South West are projected to hit species maximum prevalence in

2070s under RCP8.5 (Table 2). Other regions are estimated to experience large increased mean

distribution density in 2050s and larger in 2070s under RCP8.5. Prevalence is projected to be

larger in 2050s in the three northern regions than in 2070s under RCP2.6 (Table 2). According

to the model projections, fourteen states will hit maximum prevalence of An. gambiae s.l. in

both 2050s and 2070s under high emission scenario (Fig 4). These states are: Abia, Akwa

Ibom, Bayelsa, Benue, Ebonyi, Imo, Jigawa, Kwara, Lagos, Ogun, Osun, Oyo, Rivers and

Sokoto (Fig 4). Other states are projected to experience a sequential increase in mean distribu-

tion density of An. gambiae s.l., with observed anomaly in Kaduna, Katsina and Kano states,

Fig 2. Prevalence of An. gambiae species under low and high emissions scenarios and percentage change across all

bioclimatic domains in Nigeria. RCP2.6 represents low emissions scenario and RCP8.5 represents high emissions

scenario.

https://doi.org/10.1371/journal.pone.0218523.g002
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where either current climates record higher density than 2050s/2070s, or 2050s record higher

density than 2070s (Fig 4).

The mean distribution density of An. gambiae s.s. is projected to increase from current cli-

mates across all bioclimatic domains in the country by 10.48% and 14.49% in 2050s and 2070s

under high emissions scenario, and by 5.03% and 5.95% under low emission scenario, respec-

tively (Fig 2). This is expected to lead to large geographic range expansion and increased preva-

lence (percentage increase) within Derived savanna (41.82% and 43.09% under RCP8.5) and

(39.45% and 39.93% under RCP2.6), Humid forest (44.34% and 47.22% under RCP8.5) and

(35.18% and 41.85% under RCP2.6), and mostly west of Sudan savanna (47.48% and 59.24%

under RCP8.5) and (29.83% and 29.68% under RCP2.6) in 2050s and 2070s, respectively

(Table 1; Fig 5; S2 Fig). An. gambiae s.s. is expected to maintain its maximum prevalence even

beyond 2080 in all states within South Western and South Eastern regions (Tables 1 and 2).

Like An. gambiae s.l. under high emissions scenario, An. gambiae s.s. is projected to experience

shift in composition and geographic range in Niger state; as boundaries (areas) along Zamfara,

Kaduna, Bauchi and Plateau states within Northern and Southern Guinea savannas, and Mid

Altitude seem less suitable for An. gambiae s.s. in 2050s, and less so in 2070s (Fig 5; S2 Fig).

Table 1. Prevalence of An. gambiae species within ecological zones and percentage change under RCP2.6 and RCP8.5.

Ecological zone Climate period / Prevalence (%) Climate period / Percentage change (%)

Baseline: 1960–1990 RCP2.6 RCP8.5 RCP2.6 RCP8.5

2050s 2070s 2050s 2070s 2050s 2070s 2050s 2070s

(a) An. gambiae s.l.

Sahel savanna 59.38 74.22 73.01 87.72 91.52 24.99 22.96 47.72 54.13

Sudan savanna 67.21 86.04 85.13 92.52 96.99 28.02 26.66 37.66 44.31

Northern Guinea savanna 61.96 70.06 67.40 74.78 83.33 13.07 8.79 20.69 34.50

Southern Guinea savanna 60.06 77.14 75.13 85.97 91.28 28.44 25.09 43.14 51.97

Mid Altitude 58.45 57.53 57.61 58.06 61.96 -1.58 -1.44 -0.66 6.00

Derived savanna 65.18 93.66 93.23 96.86 99.25 43.69 43.03 48.60 52.26

Humid forest 71.47 85.18 88.12 97.56 99.83 19.19 23.30 36.51 39.70

(b) An. gambiae s.s.

Sahel savanna 57.71 75.78 76.82 90.14 98.62 31.30 33.10 56.18 70.87

Sudan savanna 58.96 76.55 76.46 86.95 93.89 29.83 29.68 47.48 59.24

Northern Guinea savanna 60.22 72.27 71.53 76.55 87.17 20.02 18.79 27.12 44.75

Southern Guinea savanna 61.88 78.57 77.60 85.06 93.75 26.98 25.41 37.47 51.51

Mid Altitude 59.02 61.83 60.33 63.44 75.54 4.76 2.21 7.49 28.00

Derived savanna 69.26 96.59 96.92 98.23 99.11 39.45 39.93 41.82 43.09

Humid forest 67.59 91.37 95.87 97.56 99.50 35.18 41.85 44.34 47.22

(c) An. arabiensis
Sahel savanna 56.12 60.61 60.90 62.76 63.97 8.01 8.52 11.84 13.99

Sudan savanna 58.08 61.69 61.91 62.16 64.14 6.22 6.59 7.02 10.44

Northern Guinea savanna 58.57 58.19 58.16 59.64 59.59 -0.64 -0.69 1.84 1.75

Southern Guinea savanna 59.82 60.75 60.83 61.95 64.52 1.56 1.69 3.57 7.86

Mid Altitude 57.90 56.87 56.93 58.98 56.87 -1.78 -1.68 1.87 -1.78

Derived savanna 68.24 70.51 71.10 73.66 75.47 3.32 4.19 7.93 10.59

Humid forest 67.79 67.33 68.56 71.62 74.08 -0.68 1.13 5.65 9.27

Note: Species prevalence = 50% represents unsuitable zone and species absence, designated with a green square; >50% represents suitable zone and species presence;

and 100% represents highly suitable zone with maximum prevalence of species, designated with a red square [38]. RCP2.6 represents low emissions scenario and RCP8.5

represents high emissions scenario.

https://doi.org/10.1371/journal.pone.0218523.t001
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North-eastward species shift is expected to lead to widespread of An. gambiae s.s. in the less

suitable Sahel savanna by 56.18% and 70.87% under RCP8.5, and 31.30% and 33.10% under

RCP2.6 in 2050s and 2070s, respectively, with less suitable east of Sudan savanna experiencing

high prevalence of An. gambiae s.s. in 2070s under RCP8.5 (Table 1). This will lead to species

invasion and increased distribution density in the less suitable North-Eastern landmass, espe-

cially within Lake Chad areas of Borno state (Table 1; Fig 5; S2 Fig). All other states are esti-

mated to experience sequential increases in mean distribution density of An. gambiae s.s. in

2050s and 2070s, respectively. Observed anomaly is estimated to occur in Kaduna, Sokoto and

Zamfara states under RCP8.5, just as it occurs in many other states under RCP2.6, either from

higher distribution density under current climates than 2050s/2070s, or in 2050s than 2070s

(Figs 4 and 5).

The mean distribution density of An. arabiensis is projected to increase across all biocli-

matic domains in the country by 4.43% in 2050s and 8.16% in 2070s under high emissions sce-

nario, and by 2.03% and 2.72% under low emissions scenario, respectively (Fig 2). This

projected increase may lead to large geographic expansion range and increased prevalence of

An. arabiensis within ecological zones; Derived savanna (7.93% and 10.59% under RCP8.5)

and (3.32% and 4.19% under RCP2.6), Humid forest (5.65% and 9.27% under RCP8.5) and

(-0.68% and 1.13% under RCP2.6), Sudan savanna (7.02% and 10.44% under RCP8.5) and

(6.22% and 6.59% under RCP2.6), Sahel savanna (11.84% and 13.99% under RCP8.5) and

(8.01% and 8.52% under RCP2.6), and Southern Guinea savanna (3.57% and 7.86% under

RCP8.5) and (1.56% and 1.69% under RCP2.6) in 2050s and 2070s, respectively (Table 1; Fig

Fig 3. Potential occurrence and distribution of An. gambiae s.l. in Nigeria. (a) baseline climate 1960–1990, (b) low emissions scenario

(RCP2.6) 2041–2060, (c) low emissions scenario (RCP2.6) 2061–2080, (d) high emissions scenario (RCP8.5) 2041–2060 and (e) high

emissions scenario (RCP8.5) 2061–2080. Anopheles species sampling points reprinted for illustrative purposes only from Okorie et al. [48]

under a CC BY 4.0 license, with permission from PLOS ONE [38].

https://doi.org/10.1371/journal.pone.0218523.g003
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Fig 4. Mean distribution density of An. gambiae species in each Nigerian state under baseline climates 1960–1990 and low emissions

scenario (RCP2.6) / high emissions scenario (RCP8.5) in 2041–2060 (2050s) and 2061–2080 (2070s). Note: red boundary line on the graph

defines presence and absence conditions for each Anopheles species from zonal statistics; if 1� 0 (species does not occur),>1 = species occur,

and 2 = maximum species prevalence [38].

https://doi.org/10.1371/journal.pone.0218523.g004

Table 2. Prevalence of An. gambiae species within regional zones under RCP2.6 and RCP8.5.

Anopheles species Climate period Regions / prevalence (%)

South South South East South West North Central North East North West

An. gambiae s.l. Baseline: 1960–1990 69.10 71.94 71.29 61.75 59.79 67.16

RCP2.6: 2050s 82.53 95.73 94.49 86.24 71.52 85.39

RCP2.6: 2070s 85.16 96.95 94.44 84.87 70.17 83.97

RCP8.5: 2050s 96.37 98.82 99.10 93.59 81.87 86.52

RCP8.5: 2070s 99.59 100.00 100.00 97.39 88.71 90.05

An. gambiae s.s. Baseline: 1960–1990 64.46 71.12 78.28 64.85 58.48 60.07

RCP2.6: 2050s 88.76 98.78 100.00 91.44 70.29 78.20

RCP2.6: 2070s 94.11 100.00 100.00 91.51 69.99 77.80

RCP8.5: 2050s 96.57 99.41 100.00 93.74 80.40 86.36

RCP8.5: 2070s 98.77 100.00 100.00 96.79 94.02 89.97

An. arabiensis Baseline: 1960–1990 64.65 70.75 79.70 62.51 57.05 58.95

RCP2.6: 2050s 64.63 70.02 81.59 64.48 58.69 61.82

RCP2.6: 2070s 65.76 72.13 81.96 64.85 58.98 61.77

RCP8.5: 2050s 69.63 77.21 86.00 65.50 59.00 60.00

RCP8.5: 2070s 70.70 78.96 86.79 69.07 61.99 63.03

Note: Species prevalence = 50% represents species absence, designated with a green square; >50% represents species presence; and 100% represents maximum

prevalence of species, designated with a red square [38]. RCP2.6 represents low emissions scenario and RCP8.5 represents high emissions scenario.

https://doi.org/10.1371/journal.pone.0218523.t002
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6). The probability of suitable areas for An. arabiensis in the less suitable Sahel and Sudan

savannas is estimated to be high in 2050s, and higher in 2070s, especially under high emissions

scenario (Table 1; Fig 6; S3 Fig). The model predicted that under high emissions scenario, An.

arabiensis may likely go extinct in Kaduna South and parts of Kaduna North and Central

within Northern Guinea savanna in 2050s, and shift towards north of Kaduna state, where

environmental conditions may favour its occurrence around Kaduna boundary with Kano

state in 2070s (Fig 6; S3 Fig). This species shift results in prevalence anomaly in Kaduna state

under both RCP2.6 and RCP8.5 (Fig 4). Anomaly is also observed in Akwa Ibom, Ekiti, Kebbi

and Rivers states under RCP8.5; and in Kano, Kebbi, Lagos and Ogun states under RCP2.6

(Fig 4). Mid Altitude zone of Jos and Mambilla plateaus, and highlands along Cameron

boundary are projected to experience more presences of An. arabiensis in 2050s under RCP8.5

with percentage increase of 1.87%, but record less presences in 2070s with percentage decrease

of 1.78% (Table 1; Fig 6; S3 Fig). Similarly, the An. arabiensis is projected to decrease in popu-

lation within the Mid Altitude zone under RCP2.6 by 1.78% and 1.68% in 2050s and 2070s,

respectively (Table 1; Fig 6; S3 Fig). The Fresh water and Mangrove swamp forests (within

Humid forest) of the Niger Delta region are projected to remain less suitable for An. arabiensis
under both RCP2.6 and RCP8.5 in 2050s and 2070s Especially in Bayelsa state where environ-

mental variables least favour the occurrence of An. arabiensis (Fig 4). By regions, the model

predicted that An. arabiensis will continue its highest prevalence in South West, followed by

South East, South South, North Central, North West; and lowest in North East (Table 2).

Generally, large increase in population is projected for the studied An. gambiae species

under RCP8.5 between 2050s and 2070s. With less than one percentage increase in prevalence,

Fig 5. Potential occurrence and distribution of An. gambiae s.s. in Nigeria. (a) baseline climate 1960–1990, (b) low emissions

scenario (RCP2.6) 2041–2060, (c) low emissions scenario (RCP2.6) 2061–2080, (d) high emissions scenario (RCP8.5) 2041–2060

and (e) high emissions scenario (RCP8.5) 2061–2080. Anopheles species sampling points reprinted for illustrative purposes only

from Okorie et al. [48] under a CC BY 4.0 license, with permission from PLOS ONE [38].

https://doi.org/10.1371/journal.pone.0218523.g005
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a decline or a likely state of dynamic equilibrium in vectors population is expected to be the

case under RCP2.6 (Fig 2). Also, model projections show that sympatric species—An. gambiae
s.s. and An. arabiensis [46,56] do not always occur together, nor with other members of the

An. gambiae complex such as An. coluzzii, An. melas, etc. (Figs 2 and 4; S1–S3 Figs). An. gam-
biae s.s. is estimated as the most prevalent species of the An. gambiae complex. It is predicted

to occur in many areas least suitable for other members of the complex, resulting in its higher

prevalence than the An. gambiae s.l. In this study, An. gambiae s.l. is predicted as a complex

species in areas suitable for one or more of its siblings other than only An. gambiae s.s. and/or

An. arabiensis (Figs 2 and 4).

Contributions of environmental variables to future distributions of An.

gambiae species under RCP2.6 and RCP8.5

MaxEnt predicted that annual mean temperature (bio1), 33˚C which may rise by about 4.9˚C

on average under RCP8.5 and 1.4˚C under RCP2.6 [8,20,24], will greatly regulate (in isolation)

the total energy inputs in the ecosystem towards high prevalence of An. gambiae s.l. between

2041 and 2080 in Nigeria (S1 File). Cold temperature anomalies throughout the year (bio6) is

also projected to greatly influence year-round widespread of An. gambiae s.l. between 2041

and 2080, especially under RCP8.5 when combined with precipitation of driest quarter (bio17)

(December–February, projected to decline by 18 mm, 15 mm and 10 mm in December, Janu-

ary and February, respectively, in the Humid forest and Derived savanna) [20] (S1 File). This

is also estimated to be complemented by mean temperature of the wettest quarter (bio8)

Fig 6. Potential occurrence and distribution of An. arabiensis in Nigeria. (a) baseline climate 1960–1990, (b) low emissions

scenario (RCP2.6) 2041–2060, (c) low emissions scenario (RCP2.6) 2061–2080, (d) high emissions scenario (RCP8.5) 2041–2060 and

(e) high emissions scenario (RCP8.5) 2061–2080. Anopheles species sampling points reprinted for illustrative purposes only from

Okorie et al. [48] under a CC BY 4.0 license, with permission from PLOS ONE [38].

https://doi.org/10.1371/journal.pone.0218523.g006
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(June–August), temperature annual range (bio7) of more than 28˚C–36˚C by 3˚C–5˚C [20],

mean temperature of the warmest quarter (bio10) (March–May), mean temperature of driest

quarter (bio9), maximum temperature of warmest month (bio5) (about 35˚C in February in

the south and above 40˚C in April in the north) [20,38], changes in land use land cover (lulc),

and terrain surface (DEM) (S1 File). However, the occurrence and seasonal distribution pat-

tern of An. gambiae s.l. is expected to be altered if precipitation of coldest quarter (bio19)

(June–August, about 211 mm in the arid north and above 2000 mm in the coastal south) is

omitted, because bio19 contains the most information absent in other variables.

Mean diurnal range (bio2) between 7˚C and above 16˚C [20,72] is projected to greatly regu-

late (in isolation) the distribution and prevalence of An. gambiae s.s. between 2041 and 2080

under both low and high emissions scenarios (S1 File). This is estimated to be complemented

by precipitation (bio17) and mean temperature (bio9) of driest quarter, and precipitation of

coldest (bio19) and warmest (bio18) quarters when used alongside all other environmental

variables including terrain surface (DEM) (S1 File). Changes in land use and land cover

dynamics (lulc) is estimated as the variable with the most information that is not present in the

other variables, regarding the distribution and prevalence of An. gambiae s.s. as well as An.

arabiensis in 2050s and 2070s (S1 File). Precipitation of driest quarter (bio17) is projected to

highly influence (in isolation) the widespread and seasonal distributions of An. arabiensis
between 2041 and 2080 under both low and high emissions scenarios (S1 File). Precipitation of

coldest quarter (bio19), precipitation seasonality (bio15), mean diurnal range (bio2), mean

temperature of driest quarter (bio9), precipitation of warmest quarter (bio18), precipitation of

driest month (bio14), and temperature annual range (bio7) are expected to combine with all

other environmental variables to greatly influence year-round occurrence and distribution of

An. arabiensis in 2050s and 2070s, respectively (S1 File).

Discussion

In relation to climate drivers, the potential future distribution of An. gambiae s.l. and its two

major siblings: An. gambiae s.s. and An. arabiensis in Nigeria is highly worrisome. Climate

change under both high and low emissions scenarios is expected to cause large geographic

range expansions with increased distribution density, species shifts and invasions in areas pre-

viously too cool for the Anopheles species population [34,35]. Higher prevalence of the malaria

vectors projected for high emission scenario corroborates with the prediction of ecological

models about shift in the distribution of world biomes in response to changes in climate sys-

tem associated with increased greenhouse gases [38,73]. Confirming earlier claim that areas

with low presence of the studied Anopheles gambiae species will possibly experience high prev-

alence with species migration and invasion, in response to changes in environmental variables

fundamental to their distribution patterns [38]. This is evidenced in the scenario that the less

suitable areas of Sudan, Sahel, Northern and Southern Guinea savannas within Gombe, Bau-

chi, Yobe, Adamawa and Borno states in North Eastern region [38], are becoming more suit-

able for the occurrence and distribution of these Anopheles species under the changing climate

regimes. This is expressed in longer rainy season and warmer nights that promote vectors pro-

liferation in a continuous high emissions 21st Century’s world [20,25]. The general decline or

near dynamic equilibrium in vector species population between 2050s and 2070s under the

mitigation scenario—RCP2.6 is assumed to follow indirect effect of mitigation scenario, where

increase in global mean temperature is limited to 2˚C as regional mean temperature within the

tropical country is limited to about 1.4˚C [8,15,16]. Nevertheless, low environmental suitability

has been projected to continue in some areas for An. gambiae s.l., An. gambiae s.s., and An.

arabiensis based on topography and other ecological gradients [74,75]. This is of course highly
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noticeable in some high elevation areas of Kaduna, Zamfara, Kebbi, Niger, Bauchi, Gombe

and Borno states within Northern and Southern Guinea savannas, and parts of Plateau, Ada-

mawa, Bauchi, and Taraba states within Mid Altitude zone [38]. The projected scenario also

supports the assertion by Siteti et al. [75], that, topographic and human settlement patterns

affect the spatial distribution of malarial mosquitoes [38,76]. It is also apparent from this study

that An. gambiae s.s. and An. arabiensis are likely to be more widespread with higher relative

probability of occurrence in lowlands and areas with human settlements [77]. An. arabiensis
exhibits low probability of occurrence in Fresh water and Mangrove swamp forests [12,33,35]

along humid Atlantic coast of the Humid forest within South South region, either based on

landforms [73,74], soil or climatic characteristics [38,49,50]; corroborating with Ayala et al.
[77] who classified these zones unsuitable for An. arabiensis in Cameroon. However, An. gam-
biae s.s. is expected to continue its highest prevalence amongst other species, in line with

Okwa et al. [78] that, An. gambiae s.s. is the most efficient and most widespread within the

gambiae complex [38]. According to Olayemi et al. [79], the epidemiological success of An.

gambiae s.s. is largely dependent on its highly dynamic ecological behaviour, which it evolved

over a long time to take advantage of certain tropical weather conditions that encourage mos-

quito proliferation and human / vector contact.

The projected An. gambiae s.s. and An. arabiensis expand largely in range and shift in sym-

patric coexistence under changing future climates [12,46,56], in agreement with Peterson [34]

whose future projections on suitable areas for these vectors in Africa match the suitability/

occurrence patterns in bioclimatic domains within Nigeria. The distribution of these highly

anthropophilic members of Anopheles gambiae complex appears relative to ecological zones

within the tropical region [40]. The prediction of their dominant occurrence in humid and

sub-humid (Derived and Guinea savannas) zones of Nigeria in West Africa (in this study) cor-

responds to the prediction of their environmental suitability in sub-humid zone in East Africa,

from west of Mount Kilimanjaro to the coastal plain of northern Tanzania [47]. It similarly

corresponds to their wide distribution in humid and sub-humid domains in Madagascar

within the southeast coast of Africa [80]. Their distribution within these ecological zones in

Nigeria also corresponds closely to expert-based predictions of Lindsay et al. [40], Levine et al.
[46] and Moffett et al. [44], who presented climate suitability zones for these species. While the

projected distribution of An. gambiae s.s. agrees with Tonnang et al. [12] regarding the region

(Nigeria) in a similar study on Africa as Peterson [34], especially under their chosen climate

scenario 1 (similar to RCP8.5), the proposed distribution of An. arabiensis does not. Tonnang

et al. [12,35] projected An. arabiensis to reduce in range and population within Humid forest

and Derived savanna in Nigeria, and concentrate more in Sahel, Sudan and Guinea savannas.

Also, Drake and Beier [37] projected An. arabiensis to lose suitable habitats in Nigeria within

Africa in 2050, instead of gaining. Although our projections agree with Tonnang et al. [12]

regarding increased prevalence of An. arabiensis in Sahel, Sudan and Guinea savannas result-

ing from species invasion, they do not agree with reduction in suitable areas within Humid

forest and Derived savanna, modelled to experience pervasive distribution of An. arabiensis in

2050s and more in 2070s [38,44]. Discrepancies of this sort, apart from the type of climate sce-

nario used, may sometimes be attributed to differences in data sources, the general lack of the

vector’s distributional data within area of interest, and the type of model used together with

computational approaches [44,67,80,81]. Nevertheless, our model predictions of these Anophe-
les species’ fundamental niche characteristically conform to the realised geographical niche in

Nigeria based on confirmed occurrence records [48]. MaxEnt model was able to use the

included environmental variables to distinguish between presences and potentially unsampled

locations [43,67] of the studied Anopheles species with average AUC of 0.7 (S1 File). This value

of AUC score associated with the widespread of the species confirms the assertion of Lobo
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et al. [67] that, low AUC values denote the true generalist nature of the species distribution in

a widespread species, which the probability of presence increases steadily with predictor values

[38].

The north-eastward species shift in both RCP2.6 and RCP8.5 aligns with Peterson [34] who

predicted west to east and west to south potential distributional shift of An. gambiae s.s. and

An. arabiensis within Africa, respectively. Our model result also agrees with Tonnang et al.
[35] who predicted that shifts in An. gambiae s.s. and An. arabiensis boundaries may occur

southward and eastward of Africa rather than jumps into quite different climatic environ-

ments under climate change scenarios. The eastward shift, though tending more northward

than southward is expected to be the case in Nigeria under both low and high emissions sce-

narios between 2041 and 2080. This does not overlook potential southward shift based on the

north to south climate variation [50] and the location of the country within the tropical region.

According to predictions by Moffett et al. [44], the abundance of An. gambiae and An. arabien-
sis is highest in West Africa (where Nigeria is located), as human population density and

urbanisation are highly critical in malaria risk [34,44]. Rapid population expansion and

increased deforestation through uncontrolled urbanisation and agricultural intensification

[44] converge with energy consumption (dominated by fossil fuels) and poor or inadequate

public health / healthcare infrastructure, alongside increased temperatures with high humidity,

more recurrent temperature fluctuations from mean diurnal temperature range and longer

high seasonal rainfall [33,34,40,82], to impel future increasing prevalence of the modelled

malaria vectors in ecological subregions. Densely populated and urbanised Lagos state [83,84]

within the humid forest of South West, and many other potentially populated / urbanised

states with increased anthropogenic activities including Abia, Akwa Ibom, Anambra, Enugu,

Imo, Ogun, Ondo, Osun, Oyo and Rivers states in the humid south, and Kano and Sokoto

states within Sudan savanna in the North West are thus likely to be more vulnerable [20,76].

As the country will generally become warmer with high humidity and altered rainfall pat-

terns, particularly under high emissions scenario, seasonal malaria transmission is expected to

be higher and more unbalanced across the country [38,84,85], just as vector species prevalence

increases and varies within ecolgical and regional zones (subregions) based on varying tropical

climate conditions. This is because Anopheles mosquitoes thrive in regions with warm temper-

atures, humid conditions, and high rainfall [38,47,86,87] regulated by changes in background

climate that alter the abundance, range (both latitude and altitude), distribution, and behav-

iour of malarial mosquitoes, and the life cycle of the malarial parasite, such that patterns of

malaria changes [9,34,38,88,89]. The high magnitude of change in the species prevalence due

to future changes in tropical climates within the tropical subregions, especially under high

emissions scenario, lends credence to the proposition that, a little increase in temperature such

as half degree centigrade increase can translate into a 30% to 100% increase in mosquito abun-

dance [26,27]. This will most likely exacerbate malaria prevalence [90] by causing increases in

the population at risk in areas where malaria presence is static in the future [91]—in line with

World Health Organisation projections of more than 400 million people at risk of malaria by

2070 in Nigeria, under both high and low emissions scenarios [8,9,88].

Conclusions

Anthropogenic climate change and land use dynamics are expected to increase the population

and potential range of malaria vectors and exacerbate malaria burden. This study explored the

effect of changing climate under low and high emissions scenarios on future composition and

potential distribution of dominant malaria vector species in tropical subregions and adminis-

trative regions within the tropical country—Nigeria; using data of vectors known locations
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and environmental drivers of their occurrence and distribution, following algorithms defined

in species distribution model—MaxEnt. Results show that An. gambiae s.l. and its two major

siblings: An. gambiae s.s., and An. arabiensis will experience increased prevalence between

2041 and 2060, higher in 2061–2080 under high emissions scenario than low emission scenario

in both 2041–2060 and 2061–2080; driven mainly by increasing and fluctuating temperature,

longer seasonal tropical rainfall accompanied by drier phases, high humidity in dry season

from precipitation during warm months, and inherent influence of rapid land use change.

Humid forest and Derived savanna within all southern and most North Central states, with

highest species invasion in Sahel and Sudan savannas, particularly in north-eastern states are

likely to be most impacted. The predicted variability in species composition and distribution

based on diversity in climate conditions in the tropical subregions across the country, may

define the future spatial epidemiology of these vectors and possible malaria risk pattern. The

impending high magnitude of change in prevalence of these dominant malaria vector species

may lead to high malaria burden in 2050s, and higher in 2070s; especially under high emissions

scenario, mostly dependent on past, current and future anthropogenic emissions and natural

climate variability. Hence, there is need for more studies aimed at spatial estimation of future

malaria prevalence at a finer scale with respect to vectors dynamics and distribution within the

tropical subregions; and in relation to incremental differentials in climate and land use dynam-

ics for the development of more robust adaptation strategies under global change.
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S1 Fig. Environmental suitability for An. gambiae s.l. in Nigeria under baseline climate

1960–1990, low (RCP2.6) and high (RCP8.5) emissions scenarios 2041–2080. Anopheles
species sampling points reprinted for illustrative purposes only from Okorie et al. [48] under a

CC BY 4.0 license, with permission from PLOS ONE [38].

(TIF)

S2 Fig. Environmental suitability for An. gambiae s.s. in Nigeria under baseline climate

1960–1990, low (RCP2.6) and high (RCP8.5) emissions scenarios 2041–2080. Anopheles
species sampling points reprinted for illustrative purposes only from Okorie et al. [48] under a

CC BY 4.0 license, with permission from PLOS ONE [38].

(TIF)

S3 Fig. Environmental suitability for An. arabiensis in Nigeria under baseline climate

1960–1990 and, low (RCP2.6) high (RCP8.5) emissions scenarios 2041–2080. Anopheles
species sampling points reprinted for illustrative purposes only from Okorie et al. [48] under a

CC BY 4.0 license, with permission from PLOS ONE [38].

(TIF)

S1 File. A file containing AUCs, tables for variable percent contributions, and jackknife

test of variable importance to the MaxEnt model of Anopheles gambiae species.

(XLSX)
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