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Despite efficient suppression of plasma viremia in people living with HIV (PLWH) on

cART, evidence of HIV-induced immunosuppression remains, and normally benign

and opportunistic pathogens become major sources of co-morbidities, including

virus-induced cancers. In fact, cancer remains a primary cause of death even in virally

suppressed PLWH. Natural killer (NK) cells provide rapid early responses to HIV infection,

contribute substantially to disease modulation and vaccine protection, and are also major

therapeutic targets for cancer immunotherapy. However, much like other lymphocyte

populations, recent burgeoning evidence suggests that in chronic conditions like HIV,

NK cells can become functionally exhausted with impaired cytotoxic function, altered

cytokine production and impaired antibody-dependent cell-mediated cytotoxicity. Recent

work suggests functional anergy is likely due to low-level ongoing virus replication,

increased inflammatory cytokines, or increased presence of MHClow target cells. Indeed,

HIV-induced loss of NK cell-mediated control of lytic EBV infection has been specifically

shown to cause lymphoma and also increases replication of CMV. In this review, we

will discuss current understanding of NK cell modulation of HIV disease, reciprocal

exhaustion of NK cells, and how this may impact increased cancer incidences and

prospects for NK cell-targeted immunotherapies. Finally, we will review the most recent

evidence supporting adaptive functions of NK cells and highlight the potential of adaptive

NK cells for cancer immunotherapy.
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NK CELLS HAVE THERAPEUTIC POTENTIAL TO ENHANCE
CONTROL OF BOTH HIV AND HIV-RELATED CANCERS

While efficient suppression of plasma viremia by combination antiretroviral therapy (cART)
has substantially decreased mortality of people living with HIV (PLWH), burgeoning evidence
suggests a higher occurrence of a vast range of comorbidities linked to long-term treatment
and aging among PLWH, including cancers. The incidence of AIDS-defining cancers such as
Kaposi Sarcoma, Non-Hodgkin lymphoma, and cervical cancer, has substantially decreased with
access to cART. However, cART-treated PLWH still have a higher susceptibility to non-AIDS
defining cancers (NADCs) compared to the general population, and NADCs currently represent
a major cause of mortality among PLWH (1, 2). In particular, lymphomas, including Burkitt and
classical Hodgkin lymphomas, have been reported at a significantly higher frequency in PLWH,
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yet many other cancers associated with infections (i.e., anus,
oropharynx, liver) and some cancers associated with cigarette
smoking (i.e., lung, kidney) were also found to be elevated
among PLWH (3). Several mechanisms have been proposed to
explain the predisposition of cART-treated PLWH to NADCs
(4). Nevertheless, as cART treatment only partially prevents
HIV-induced chronic inflammation and immune senescence,
it is very likely that immune dysregulation in PLWH is an
important determinant of NADCs and explains why most
cancers predominantly found in PLWH are related to viral
infections (4, 5).

NK Cell Subpopulations
Natural killer (NK) cells are large granular leukocytes that
play a central role in the control of viral infections and
neoplasms. Human NK cells are defined as CD3negCD56pos

lymphocytes (6) and can be subdivided into functionally distinct
subpopulations based on expression levels of CD56 and CD16
(7). CD56brightCD16neg NK cells have a high proliferation
potential and the ability to secrete a large amount of cytokines,
notably IFN-γ in response to IL-12, with limited cytotoxic
functions (8), while CD56dimCD16pos NK cells display strong
cytolytic activity as well as a significant capacity to secrete
cytokines upon triggering of activating receptors (6, 9). In
addition, a subset of CD56negCD16pos NK cells appears to expand
in chronic viral infections including HIV and might represent an
exhausted/anergic subset of NK cells (10–12).

Our understanding of human NK cells has essentially been
acquired while studying peripheral blood NK cells, yet it is
now clear that subsets other than CD56bright and CD56dim

NK cell subpopulations can be found in peripheral tissues.
Tissue-resident NK cells differ from circulating NK cells and
are found not only in secondary lymphoid organs but also in
many peripheral tissues including the uterus, lung, and liver
where they represent up to 50% of lymphocytes (13–15). Findings
from recent studies have allowed reliable identification of tissue-
resident NK cells based on their expression of CD69, CD49a,
or CD103, three markers functionally involved in the retention
of lymphocytes in tissues. Besides the uterus, lung and liver,
NK cells have been characterized in many additional tissues
such as the intestinal mucosa, skin, and kidneys. However, in
a majority of older studies it is not clear if those NK cells
represent tissue-resident NK cells, NK cells circulating between
tissues and blood, or innate lymphoid cells (ILCs). Indeed, ILCs
can express markers associated with NK cells such as CD56,
NKp46, or NKp44, and it was only lately appreciated that a
deeper analysis of expressed transcription factors and produced
cytokines is required to discriminate NK cells and ILCs. Until
recently, NK cells were even considered as part of ILC group
1 due to the common innate lymphoid progenitors. However,
NK cells are now distinguished from other ILCs because of their
unique development and cytotoxic functions (16). In summary,
tissue-resident NK cells likely play a crucial role in select tissues
or organs involved in cancer and HIV disease, yet due to the
scarcity of data on the contribution of tissue-resident NK cells
in HIV infection or cancer development, herein we will focus
primarily on circulating NK cells.

NK Cell Function
NK cells can efficiently discriminate between transformed or
virally-infected cells and normal cells without the need for
prior sensitization, and have the capacity to kill abnormal
cells before adaptive immunity develops, thereby containing
viral replication or tumor development. NK cells can clear
cellular targets by a number of different mechanisms, including
(i) exocytosis of cytotoxic granules containing perforin and
granzyme that results in cell lysis, (ii) signaling through Fas ligand
or TRAIL death receptors which induces apoptosis, (iii) release
of cytokines with potent anti-viral and anti-tumor activities, and
(iv) antibody-dependent cellular cytotoxicity (ADCC), triggered
through binding of the FcγRIIIA receptor (CD16) on NK cells
by the constant (Fc) domain of IgG antibodies. NK cells also
play major roles in tuning and controlling adaptive immune
responses (17).

NK Cell Receptors
Unlike other lymphocytes, NK cells lack antigen-specific
receptors but lyse target cells following the integration of
inhibitory and activating signals. These signals are generated
by an arsenal of germline encoded cell surface molecules, with
effector functions taking place when activating signals overcome
inhibitory ones (18). The major NK cell receptors, which
allow NK cells to discriminate between “self ” and a variety
of pathological cell states belong to three main categories: (i)
natural cytotoxicity receptors (NCRs) such as NKp46, NKp30,
and NKp44, which can bind to several viral or tumor-associated
molecules (19, 20), (ii) NKG2A/C/E-CD94 heterodimers and
NKG2D homodimers, which are c-type lectins binding to the
non-classical Human Leukocyte Antigen E (HLA-E) molecule
and stress-induced ligands, respectively, and (iii) the killer-
cell immunoglobulin-like receptors (KIRs), which primarily
recognize HLA class Ia (HLA-Ia) and Ib (HLA-Ib) molecules and
related surface molecules (21).

The classical HLA-Ia group includes the highly polymorphic
and ubiquitously expressed HLA-A, -B and -C antigens. Non-
classical HLA-Ib antigens comprise HLA-E, -F, and -G molecules
which are expressed in a tissue-specific manner, display low
genetic diversity, and limited peptide repertoire (22). While
the biological function and clinical relevance of most HLA-Ia
and -Ib antigens have been investigated in detail, HLA-F was
only recently recognized for its important immune-regulatory
functions in cancer (23–26) and potentially in HIV infection
(27). Besides their role in mediating recognition and elimination
of unhealthy cells, a direct interaction between inhibitory KIRs
and their HLA class I ligands during NK cell development is
necessary for NK cells to acquire self-tolerance and functionality
through an education process termed “licensing.” Besides NK
cell licensing, which involves engagement of self-HLA class Ia
molecules by their inhibitory ligand, non-classical HLA class I
as well as non-HLA class I molecules also contribute to NK cell
education (28).

While NKp30, NKp46, NKG2D, and NKG2C are expressed
at relatively comparable levels on circulating CD56dim and
CD56bright NK cells, other major NK cell receptors are
differentially expressed on distinct subsets of NK cells (11).
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Peripheral blood CD56bright NK cells have been proposed to
represent a mixture of immature NK cells that are direct
precursors of CD56dim NK cells (29, 30), and mature NK
cells, including CD56dim NK cells that have upregulated CD56
and lost CD16 upon activation in peripheral tissues (31).
Immature CD56bright NK cells lack expression of KIRs, which
are sequentially acquired during the differentiation process into
mature CD56dim NK cells, a process that occurs in parallel with a
progressive decrease in NKG2A expression and acquisition of the
marker of terminal differentiation CD57 (32). NKp44 is usually
not expressed on peripheral blood NK cells and up-regulated
upon IL-2- or IL-15-mediated NK cell activation (33).

Other groups of receptors have received attention because
their expression on NK cells is modulated in HIV and/or
cancer and impacts NK cell function. These include Signaling
Lymphocyte Activation Molecule (SLAM)-related receptors such
as 2B4 (34–37) that displays co-stimulatory functions on NK cells
and binds to CD48, or sialic acid-binding immunoglobulin-type
lectins (Siglec), which are HLA class I-independent inhibitory
receptors that recognize sialic acid-containing carbohydrates
(38, 39). T cell immunoglobulin and mucin-domain containing-
3 (Tim-3), which can binds to galectin-9, carcinoembryonic
antigen cell adhesionmolecule 1 (Ceacam1), high-mobility group
box 1 (HMGB1) or phosphatidylserine (PtdSer), is another
immunoregulatory molecule highly expressed on NK cells with
relevance for NK cell function in both HIV and cancer (40–
47). NK cells also express members of the immunoglobulin (Ig)
superfamily such as the activating receptor DNAM-I (48–51),
which has been shown to recognize CD112 (PVR) and CD155
(Nectin-2), two ligands expressed on tumor cells.

NK Cell Control of Cancers and HIV
Infection
NK cells were originally defined as immune cells capable of
lysing tumor cell lines. Since then, their capacity to kill primary
cancer cells in vitro as well as their ability to prevent growth and
metastasis of certain tumors in vivo, principally hematological
cancers, has been clearly established (52–54). In particular,
protection against development of cancer has been associated
with higher NK cell cytotoxicity (55) and increasing evidence
has highlighted the implication of NK cells in defense against
leukemia. Importantly, in the context of hematopoietic stem cell
transplantation (HSCT), it has been demonstrated that allogeneic
NK cells from the donor can prevent relapse of myeloid leukemia
via graft-vs.-leukemia effect (56, 57). However, thus far clinical
trials aimed at harnessing NK cell anti-tumor activity have
shown marginal therapeutic efficacy (58–61), with beneficial
effects reported mainly against hematologic malignancies (62).
Development of therapeutic strategies to enhance NK cell activity
against tumor cells in vivo has therefore become a major field
of investigation.

Besides NK cell anti-metastatic properties, numerous studies
have emphasized the early and pivotal role of NK cells in the
control of HIV infection. Notably, particular KIR genes expressed
in conjunction with their HLA ligands are associated with
significantly slower HIV disease progression and lower viral set-
point (63, 64), elite control of HIV (65), and protection against
disease acquisition (66, 67). In particular, activating KIR3DS1

has been associated with delayed HIV disease progression in
individuals with specific HLA-B alleles since a first study by
Martin et al. (63), yet a ligand for KIR3DS1 was only recently
described, underscoring the relevance of HLA-F in regulating
immunity to HIV (27). Indeed, HLA-F open conformers (OCs),
which constitute heavy chains not bound to β2-microglobulin,
can be recognized by several KIRs but have the highest affinity
for KIR3DS1 (27, 68). HLA-F OCs trigger polyfunctional
responses by KIR3DS1pos NK cells, which efficiently suppress
HIV replication in vitro. HLA-F is expressed on activated CD4pos

T cells and may act as a marker of cellular stress in specific
conditions including viral infections and cellular transformation.

Control of HIV infection has also been associated with NK
cells displaying potent cytotoxic function and IFN-γ expression
after stimulation (69) as well as with polyfunctional CD8αpos

NK cells (70). Moreover, it has been demonstrated that NK
cells expand in the peripheral blood during early acute HIV
infection, can inhibit HIV replication in vitro, and can mediate
in vivo immune pressure in infected individuals, resulting in
viral escape (71–77). Finally, indirect NK cell-mediated ADCC
has been linked to vaccine-induced protective immunity against
HIV infection (78), elite control of HIV (79–81) and slower
HIV disease progression (82, 83). Therefore, in cART-treated
PLWH, therapeutic interventions targeting NK cells might result
in improved control of HIV and other viral infections as well as
in decreased incidence of cancers.

ABERRANT EXPRESSION OF KEY NK
CELL RECEPTORS MAY CONTRIBUTE TO
DECREASED CONTROL OF
PRE-CANCEROUS CELLS IN PLWH

NK cell-mediated immunosurveillance is decreased in PLWH,
mostly as a long-term consequence of chronic HIV infection.
While administration of suppressive cART partly restores
NK cell properties, NK cells undergo many HIV-associated
functional and phenotypic alterations, which are likely to severely
impair NK cell-mediated control of viruses as well as of
pre-cancerous cells.

Engagement of the well-described NCRs, NKG2D, and CD16
receptors represent major pathways to promote potent NK cell
activation and cytotoxic responses. In both chronic HIV infection
and cancer, NK cell recognition of abnormal cells through those
activating receptors is defective, mainly as a result of chronic
exposure to the respective ligands, which results in persistent
down-modulation of NCRs, NKG2D, and CD16 on NK cells.
In this section, we will review known effects that malignancies
and HIV infection have on the expression of key NK cell
receptors (Figure 1, left panel). It is important to note that a
simplified definition of NK cells as CD3negCD56pos lymphocytes
or different gating strategies to identify the major NK cell
subsets represent a caveat of some older studies, precluding
any definite conclusions on phenotypic alterations specifically
affecting individual NK cell subsets.

NCRs represent a particularly important family of activating
receptors in NK cell-mediated elimination of tumor cells, with a
few tumor-associated ligands described for those molecules thus
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FIGURE 1 | Rescuing and harnessing NK cell potency in PLWH developing cancers. Left: HIV-infected and cancer cells share common NK cell escape mechanisms.

1. Over-engagement of inhibitory receptors (i.e., NKG2A, inhibitory KIRs, PD-1...) blocks killing abilities of NK cells. 2. Down-modulation (blocking expression of ligand

or shedding of ligand) or over-exposure (constant expression of ligands or release of soluble ligands) induce down-expression of activating receptors (NKG2D, NCRs,

DNAM-1…) on NK cells. Right: Novel immunotherapies are being develop to harness NK cell potency and target HIV-infected and cancer cells. 1. Monoclonal

antibodies (mAb) release engagement of inhibitory receptors, unleash NK cell cytotoxicity and engage Fc receptors (CD16) to induce ADCC. Several clinical trials are

in progress. 2. Engineered proteins, Bi-specific or Tri-specific Killer engagers (BiKEs or TriKEs) and Chimeric Antigen Receptors (CARs), act as a link between NK cells

and target cells to induce cytotoxicity. BiKEs or TriKEs induce ADCC by engaging CD16 receptors and bind to antigen on target cells. 3. Adaptive features of NK cells,

defined by a higher expression of CD57, NKG2C, and/or absence of FcR-γ, could be harnessed to elicit specific killing of target cells.

far (19). Accordingly, strategies to escape immune recognition
by NCRs have been reported in both HIV infection and
cancer, and have been associated with dysfunctional NK cells
expressing lower levels of NCRs than NK cells from control
subjects in many studies. Upon HIV infection, a population of
dysfunctional CD56negCD16pos NK cells expands at the expense
of the CD56dimCD16pos NK cell subset and is progressively
eliminated with cART treatment. In PLWH, decreased NK cell
expression of NKp30 and NKp46 receptors has been reported,
and appears to be a characteristic of CD56negCD16pos NK cells,
reducing their cytokine production and cytotoxicity, notably
against tumor target cells, as well as their ability to interact
with other immune cells (84–86). Similarly, decreased NK cell
cytotoxicity in patients with acute or chronic myeloid leukemia
(AML or CML) correlates with lower levels of NKp30 andNKp46
expression on NK cells compared to healthy individuals (87–
89). NCRs downregulation on NK cells is induced by cell-to-
cell contact with AML blasts and linked to poor survival in
AML patients (87), whereas high levels of NKp30 and NKp46
expression on NK cells at AML diagnostic are predictive of
better outcomes (90, 91). In AML, high expression of the
immunosuppressive glycoprotein CD200 on tumor cells has been
shown to directly impair NK cell anti-tumor responses and is
associated with downregulated expression of NKp44 and NKp46
receptors on NK cells (92).

As overexposure to their ligands promotes decreased NCRs
expression on NK cells, it is not surprising that shedding of
NCR ligands is a hallmark of tumor escape, underscoring further
the importance of this family of receptors in anti-metastatic
NK cell functions. The A disintegrin and metalloproteinase
ADAM-10 and ADAM-17 can cleave B7–H6, a ligand for NKp30,
from the surface of tumors, likely leading to reduced NKp30
expression on NK cells surrounding the tumor (93, 94). Shedding
of NKp30 ligands has also been described in chronic lymphocytic
leukemia (CLL), in which exosomal expression of BAG6mediates
NK cell activation, whereas soluble BAG6 suppresses NK cell
cytotoxicity (95). Galectin-3 is another molecule released by
tumor cells that can serve as ligand for NKp30 and prevent
NK cell activation (96). As another immune escape mechanism,
catabolites specifically generated in tumor microenvironments,
such as L-kynurenine, can also directly down-modulate NKp46
expression on NK cells (97). Whether HIV infection-associated
NCR ligands are shed from the surface of infected cells remains
to be fully determined, but likely contributes to impaired NCRpos

NK cell function in HIV infection.
Altogether, these data suggest that fully restoring and even

enhancing NCR-mediated signaling in NK cells might be crucial
to efficiently control pre-cancerous cells in PLWH. Of note,
B7–H6 is the only NCR ligand expressed on tumors that
has been characterized so far. Identification of NCR ligands
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specifically expressed in cancer or HIV infection would represent
a milestone in the development of therapeutic interventions
aimed at maintaining NCR-mediated NK cell function in PLWH.
Finally, given the crucial role played by NCRs in regulating NK
cell function in both blood and tissues, therapeutic interventions
to enhance tumor surveillance by NK cells and targeting NCR
signaling are currently being explored (20).

NKG2D is one of the most important NK cell activating
receptor in terms of recognition and elimination of abnormal
cells expressing stress-induced ligands. Similarly to NCRs,
tumors and HIV evolved immune escape mechanisms to
specifically circumvent NKG2D-mediated recognition by NK
cells. In HIV infection, reduced NKG2D expression on NK cells
and dampened NK cell function have been linked to elevated
levels of the soluble form of its major histocompatibility complex
I-related chains A (MICA) ligand in patient sera (98). MICA is
likely released by HIV-infected CD4pos T cells based on their
increased expression levels of matrix metalloproteinases MMP-2
and -7, a family of enzymes previously described for their role
in proteolytic shedding of NKG2D ligands in human tumors
(99, 100). UL16 binding proteins (ULBP) also serve as ligands for
NKG2D and their expression is induced on HIV-infected cells
(34), yet levels of ULBP-1 and -2 is down-modulated by the HIV
accessory proteinNef, thereby dampeningNKG2D-mediatedNK
cell cytotoxicity (101).

Tumor progression has been associated with lower levels of
NKG2D (as well as NKp30 and NKp46) expression on NK cells
from patients with cervical cancer (102), and defective NK cell
function owing to NKG2D downregulation has been linked to
high-risk myelodysplastic syndrome (MDS) (103). Shedding of
NKG2D ligands also plays a central role in tumor escape. In AML
patients, chronic exposure to MICA/B decreases expression of
NKG2D on NK cells (104) and the concentration of NKG2D
soluble ligands in the peripheral blood correlates with reduced
NK cell cytotoxicity in AML and CML (105). MICA is released in
multiple myeloma (106, 107), and MICA/B as well as ULBP-6 are
shed from leukemic cells (108). NKG2D ligand shedding is also
involved in Hodgkin lymphoma, in which lymph node stromal
cells express proteases that shed MICA and ULBP-3 from the
surface of the lymphoma cells (109). Thus, NKG2D and its well-
described ligands represent additional promising therapeutic
target to enhance immunosurveillance by NK cells in PLWH.
Accordingly, it has been recently demonstrated that antitumor
responses by NK cells can be efficiently promoted by antibodies
against MICA by blocking MICA/B shedding and coating
MICA-expressing tumor cells, rendering them susceptible to
ADCC (110).

Function of additional NK cell receptors is modulated by HIV
infection and play an important role in NK cell responses to
cancerous cells, including the activating receptor DNAM-1 that
is expressed on the majority of peripheral blood NK cells (111–
115). The CD155 ligand for DNAM-I has been shown to be
present on HIV-infected T cells and, although discrepant results
were obtained based on the cell culture model used, some studies
found CD155 to be counter-regulated by the HIV proteins Nef
and Vpu, thereby preventing NK cell activation (50, 51, 116).
Many tumors also express ligands for DNAM-1, triggering NK

cell cytokine production and cytotoxicity (117, 118). Tumor
escape from DNAM-1 has been described and associated with
DNAM-1 downregulation onNK cells isolated from patients with
cancer (119–124).

Siglec receptors, and particularly Siglec-7 and -9, have also
gained a lot of attention in the past decade for their involvement
in immune evasion of tumor and virus-infected cells. Siglec-7
and Siglec-9 are constitutively expressed on all peripheral blood
NK cells and on a mature subset of cytotoxic CD56dim NK cells,
respectively (125). Reduced Siglec-7 expression marks a subset
of dysfunctional NK cells that appears in early stages of HIV
infection, prior to downmodulation of CD56, in subjects with
elevatedHIV replication, and also characterizes the dysfunctional
CD56neg NK cell subset in chronic HIV infection (126, 127).
Interestingly, an association between downregulation of Siglec-
7 and dysfunction of NK cells has also been described in HIV-2
infection (128).

Siglec-7 and -9 ligands are widely expressed on distinct
tumor cells and shield them from Siglec-7pos and Siglec-9pos

NK cells (125). Siglec-10, another member of the Siglec family
expressed by NK cells, is associated with decreased survival
and impaired NK cell function in hepatocellular carcinoma
(129). Therefore, targeting Siglec molecules on NK cells, or
their ligands on malignant cells, might prove an attractive
immunotherapeutic strategy to augment NK cell antitumor
immunity (130). Supporting this hypothesis, a Siglec-7neg NK-
92 cell line exhibited high cytotoxicity against leukemia cells
in vitro (131).

Overall, interactions between ligands and major activating
receptors on NK cells are impaired in both HIV and cancer,
with some common underlying mechanisms such as cleavage
of membrane-bound receptor molecules by zinc-dependent
endopeptidases such as MMPs and ADAMs. Therefore, drugs
that prevent shedding of NK cell-activating ligands or receptors
may enhance protection against development of cancer in
PLWH. Several inhibitors of the metalloproteinase ADAM17, for
instance, have already entered clinical trials and are being tested
in combination with other therapeutics against cancer (132).
Metalloproteinase inhibitors would also prevent CD16 shedding
form the surface of NK cells, a mechanism that naturally
occurs following CD16 ligation (133, 134) yet is dysregulated
in HIV infection and cancer, thereby decreasing ADCC activity
and cytotoxicity against HIV-infected or tumor cells. Moreover,
increased levels of inhibitory receptors such as inhibitory KIRs
or TIGIT on NK cells further contribute to decreased NK cell
functions in PLWH (135, 136). Finally, unresolved inflammation
is a hallmark of chronic HIV infection and is widely accepted
to elicit malignant transformation of cells and carcinogenesis
(137, 138). Several inflammatory mediators, such as TNF-α,
IL-6, tumor-derived transforming growth factor β (TGF-β),
and IL-10 have been shown to play a role in carcinogenesis.
For instance, TGF-β is a cytokine endowed with immune-
suppressing and anti-inflammatory properties that plays a key
role in promoting NK cell dysfunction and is found elevated in
both the tumor microenvironement and plasma of PLWH. In
addition, TGF-β has been shown to elicit production of vascular
endothelial growth factor by NK cells, thereby promoting tumor
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growth along with other cytokines chronically found elevated in
PLWH (137, 139).

Altogether, these observations show that the ability of
NK cells to eliminate tumor cells is impaired by the tumor
microenvironment and further constrained in HIV infection,
and that NK cell dysfunction in cART-treated PLWH may
significantly contribute to their enhanced susceptibility to
develop malignancies.

RECENT ADVANCES IN DEVELOPMENT
OF NK CELL-BASED STRATEGIES FOR
THE TREATMENT OF CANCER

NK cell-based immunotherapies rely on enhancement of
endogenous NK cell activities in the tumor microenvironment
or on adoptive transfer of NK cells with improved function.
Strategies so far have included blockade of inhibitory NK
cell receptors or immunosuppressive processes in the tumor
microenvironment as well as enhancement of NK cell activation
via cytokine stimulation or chimeric receptor expression (140).
In this section, we will focus on strategies that could be of
particular benefit in PLWH for elimination of HIV as well as
HIV-associated cancers (Figure 1, right panel).

mAb-Mediated Release of NK Cell
Inhibition
Autologous NK cells are oftentimes suppressed by self HLA class-
I molecules expressed on tumor cells that bind to inhibitory
CD94/NKG2A or KIR. This can be circumvented by adoptive
therapy of allogeneic NK cells with a KIR-HLA class I mismatch.
Alternatively, release of inhibitory signals using mAbs that target
HLA class I-binding NK cell inhibitory receptors represent
another strategy to enhance NK cell antitumor functions. This
approach might be particularly beneficial in PLWH, as HIV
infection results in downmodulation of the major activating NK
cell receptors.

NKG2A is a c-type lectin that has been shown to mediate
NK cell suppression in both HIV infection and cancer. In
particular, elevated expression of HLA-A has been linked to
poor control of HIV (141). This deleterious effect is mediated
by NKG2Apos NK cells that are functionally suppressed by
increased levels of HLA-E; whose expression is directly regulated
by the availability of HLA class I-derived peptides. Whether
increased HLA-A also correlates with poor outcome in cancer
remains to be determined. Overexpression of HLA-E by tumor
cells has long been proposed as a mechanism of escape
from the action of NK cells (142). For instance, enhanced
expression of HLA-E in hepatocarcinomas is driven by IL-
10 released in the tumor micro-environment and is associated
with enhanced NKG2A expression, a profile that correlates
with NK cell exhaustion/anergy, as measured by low IFN-
γ intracellular production upon stimulation with IL-12, and
with a poorer prognosis (143). Failure to achieve remission
in AML patients has been linked to impaired function of NK
cells that upregulated NKG2A (144), and expression of HLA-
E in multiple myeloma cells decreases NK cell cytotoxicity
(145). Accordingly, efficacy of a specific IgG4 mAb that targets

NKG2A (Monalizumab) is currently being assessed in various
tumor settings along with other mAbs (61). Promising results
were obtained in phase II trials in combination with the anti-
EGFR antibody Cetuximab in head and neck cancers (146).
Interestingly, Monalizumab targets both T cell and NK cell
responses, promoting effector T cell responses in combination
with anti-PDL1 and enhancing NK cell effector functions,
including ADCC. Whether therapeutic blockade of HLA-
E:NKG2A interaction, potentially in combination with PD-1
signaling blockade, could significantly improve control of HIV
remains to be evaluated. NKG2A also significantly contributes
to NK cell education in the early stages of NK cell ontogenesis.
Accordingly, administration of Monalizumab has been suggested
to promote NK cell alloreactivity against malignant cells when
administered early after haplo-HSCT, thereby circumventing the
need for a KIR-mismatched donor (147).

Inhibitory KIRs represent another interesting target for
immunotherapies. For instance, Lirilumab, an IgG4 mAb that
targets KIR2DL1/2/3 and KIR2DS1/2 has been evaluated in
several clinical trials in combination with different mAbs in
AML (phase II NCT02399917), MDS (phase II NCT02599649),
lymphoma (phase II NCT01592370), and CLL (phase I
NCT02481297). However, long-term use of inhibitory KIR
blocking agents might lead to desensitization of NK cells (60).
Finally, the recent discovery of HLA-F OCs’ ability to bind KIRs,
and particularly KIR3DS1 that has a widespread influence in
human diseases including HIV, has made HLA-F a target of
significant interest for therapies to enhance anti-tumor function
of NK cells that might be particularly relevant for PLWH
with malignancies.

Numerous antibody-based immune checkpoint inhibitors
currently under investigation target the interaction of PD-1 or
CTLA-4 and their cognate ligands on tumor cells, in order to
boost the power of tumor-specific CD8pos T cells. In particular,
clinical studies assessing the blockade of PD-1 or its ligand PD-
L1 reported potent therapeutic efficacy against several cancers
such as melanoma and non-small cell lung cancer. Selective PD-
1 expression on CD56dimCD57pos mature NK cells in some but
not all healthy individuals has been reported (148) and associated
with functional defects (149). However, overall expression and
functional relevance of those markers on NK cells in health
and disease is still unclear, and recent studies suggest that
blockade of CTLA-4 and PD-1might enhance NK cell anti-tumor
activity mostly via indirect mechanisms (150). Interestingly, PD-
1 also mediates T-cell exhaustion in chronic HIV infection,
and dual immune checkpoint blockade targeting PD-1 and IL-
10 significantly enhances NK cell function through reversal
of adaptive immune exhaustion in PLWH (151). Therefore,
immunotherapeutic interventions targeting PD-1 may augment
NK cell responses against both HIV and tumors in PLWH.

Another immune checkpoint inhibitor currently tested in
clinic is a mAb targeting Tim-3, a receptor associated with
exhaustion in T cells. Tim-3 has been proposed to mark mature
NK cells, with chronic Tim-3 upregulation being associated
with NK cell dysfunction, yet the precise impact of TIM-3
expression on NK cell function require further investigations
(152). While Tim-3 has been shown to be upregulated on NK
cells in various tumors, studies dissecting the effects of Tim-3
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blockade on NK cell function in cancer settings have yielded
mixed results (150).

Finally, even though it represents a promising approach
for the treatment of cancer, administration of mAbs targeting
regulatory immune checkpoint molecules has been associated
with toxicities known as immune-related adverse events (irAEs)
(153). irAEs are mainly caused by the release of inhibitory
mechanisms that normally constrain the immune response,
leading to various local and systemic autoimmune responses.
Clinical benefit of immune checkpoint therapy is also restricted
to a subset of patients. Several mechanisms of resistance to
immune checkpoint inhibition have been described (154, 155).
Notably, cancer therapy based on administration of mAbs
promotes the induction of antibodies against such humanized
mAbs and it is not clear yet whether such antibodies do or do not
play a role by neutralizing the effects of the therapy. However, the
potential of such antibodies to induce hypersensitivity reactions
need to be considered.

mAb-Based NK Cell Activation
Antibody therapy that targets activating NK cell receptors is
another strategy that has shown efficacy in certain malignancies.
Elotuzumab, an antibody that targets SLAMF7, directly activates
NK cells and can simultaneously induce ADCC by coating
multiple myeloma cells, which express SLAMF7. The ability of
a therapeutic mAb to induce ADCC results in potent NK cell
activation and led to the design of bi-specific and tri-specific killer
cell engagers, BiKEs and TriKEs, respectively. These single-chain
variable fragment recombinant reagents can bind the tumor cells
and NK cells via CD16 to induce direct killing via ADCC. This
technique has been used in clinical trials where Hodgkin target
cells expressing CD30 were linked to CD16 expressed on NK
cells (156). The anti-CD16XCD33 BiKE activation can override
the inhibitory signals mediated by ligation of inhibitory NK
cell receptors and their HLA class I ligands expressed on AML
(157) and MDS (158) targets. However, BiKEs do not promote
in vivo proliferation and survival of NK cells. To overcome this
issue, TriKEs were manufactured to engage the IL-15 receptor
and are evaluated in different tumor pathologies (159–161). Use
of therapeutic mAbs with potent ADCC activity may lead to
substantial benefit in PLWHwho present high frequencies of NK
cells with enhanced antibody-dependent activation, as described
in the last section.

Activation of NK Cells via CAR
A new tool for immunotherapy is chimeric antigen receptor
(CAR)-engineered NK cells. CAR are artificial receptors
composed of an extracellular antibody-derived tumor antigen
binding domain as well as transmembrane and intracellular
domains for activating signal transduction (162). Thus far,
CAR T cells have been developed and successfully employed
in the treatment of hematological malignancies. However, use
of CAR-T cells has been limited as therapy for solid tumors
and triggered numerous severe side effects in clinical trials
that can be overcome with the use of CAR-NK cells. These
include graft-vs.-host disease, cytokine release syndrome, and
off-target toxicities. Moreover, CAR-NK cells can also eliminate

tumor cells in a CAR-independent manner through recognition
of ligands expressed on tumor cells by a range of activating
receptors such as NKp30, NKG2D, DNAM-I, providing another
advantage to use CAR-NK cells over CAR-T cells for cancer
immunotherapies (163, 164). However, safety and efficacy of
CAR-NK cells in humans need to be fully evaluated as only few
clinical trials have been using CAR-NK cells up to now. One issue
pertaining to CAR-NK cells is their limited in vivo persistence.
To circumvent this restriction, a phase II trial is currently
assessing the persistence and anti-tumor activity of IL-15- and
caspase-9 suicide gene-transduced CD28-CAR-NK cells in B
cell lymphoma (NCT03056339). Alternatively, CAR expression
in adaptive NK cell subsets discussed in the next section may
overcome expansion and persistence issues while simultaneously
boosting anti-tumor activity. Finally, implementation of CAR-
based strategies optimized for NK cells is warranted. For instance,
induced pluripotent stem cell (iPSC)-derivedNK cells transduced
with novel CAR constructs that include NK cell-specific signaling
domains instead of CD3ζ signaling-based domains are being
evaluated and may significantly enhance their potency (165).
Importantly, while CAR-T cell-based clinical trials have failed
to provide clinical benefit and HIV viral suppression in PLWH,
advanced CAR strategies that are developed specifically for NK
cells in the cancer field can benefit PLWHas they could be applied
to efficiently redirect NK cell functions toward HIV-infected
cells (166).

Immunotherapeutic Potential of Adaptive
NK Cells
While NK cells are classically viewed as non-specific effector cells
of the innate immune system, a vast amount of independent
studies has demonstrated that subsets of murine, non-human
primate and human NK cells are capable of adaptive immune
functions, including antigen-dependent expansion and long-
lived immunological memory (167, 168). Adaptive NK cell-
based immunotherapies may circumvent many of the limitations
inherent to the various strategies tested thus far to harness anti-
tumor functions of conventional NK cells.

The best characterized adaptive NK cell subset in humans
is the one driven by HCMV infection, originally identified
as a population of NK cells expressing high levels of the
activating CD94/NKG2C receptor and the marker of terminal
differentiation CD57, which expand upon HCMV infection or
reactivation and can persist for years at high frequency in
HCMV-seropositive individuals (169–173). Corroborating the
adaptive features of this NK cell subset, it was recently shown
that expansion and differentiation of this CD94/NKG2Cpos NK
cell subset is driven by the HCMV UL40 peptide presented by
HLA-E, the ligand for NKG2C (174).

The CD94/NKG2Cpos NK cell population largely overlaps
with an FcεRIγ adaptor protein-deficient memory NK cell subset
with enhanced antibody-dependent functions (FcγR1g NK cells)
that has more recently also been characterized in HCMV-
seropositive subjects (175–184) and rhCMV-positive macaques
(185). Adaptive characteristics of FcγR1g NK cells include a
distinctive epigenetic signature close to that of memory CD8pos T

Frontiers in Immunology | www.frontiersin.org 7 August 2019 | Volume 10 | Article 1850

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Lucar et al. NK Cells and HIV/Cancer

cells, endowing these adaptive NK cells with specialized functions
such as enhanced responses to CD16 cross-linking, potent
IFN-γ production to selective stimuli and reduced activation by
innate cytokines.

Interestingly, adaptive CD94/NKG2Cpos NK cells proliferate
not only in response to CMV reactivation or infection in patients
receiving hematopoietic transplantation (169, 172, 186–188), but
also upon de novo infection with different viruses including
HIV and upon HCMV reactivation in PLWH (171, 189, 190).
Several reports strongly suggest that HCMV-associated adaptive
NK cells improve control of HIV infection. Higher frequencies
of CD94/NKG2Cpos NK cells during primary HIV infection
are linked to lower viral set points, are predictive of higher
CD4pos T cell counts and of an overall better outcome in
treated PLWH (191, 192). In contrast, individuals with NKG2C
gene deletions are more susceptible to HIV infection and
once infected may have accelerated disease progression (193).
Finally, in HCMV-seropositive PLWH, CD94/NKG2Cpos NK
cells exhibiting adaptive signatures of FcγR1g NK cells present
conserved effector functions (190). The beneficial effect of
adaptive CD94/NKG2Cpos NK cells has also been demonstrated
in cancer settings. HCMV reactivation has been linked to longer
relapse-free survival in patients with hematological malignancies
receiving allogeneic hematopoietic cell transplantation (194).
More specifically, expansion of adaptive NKG2CposCD57pos NK
cells upon HCMV reactivation after HCT is associated with
reduced leukemia relapse (195, 196). Of note, specific phenotypic
signatures have been associated with this NK cell adaptive
subset and include lack of NKG2A expression. As a result, these
cells are intrinsically insensitive to tumor-mediated suppression
through HLA-E. Therefore, HCMV-associated adaptive NK
cells represent an attractive subset of NK cells that could be
exploited instead of conventional NK cells to limit cancer
incidence in PLWH, particularly in combination with tumor-
targeting therapeutic antibodies that efficiently promote NK cell-
mediated ADCC.

NK cell memory has been described against multiple viral,
bacterial, and tumor antigens, and can also be induced by brief
exposure to specific cytokines. Indeed, NK cells can differentiate
into cytokine-inducedmemory-like (CIML) NK cells that display
enhanced effector functions after a short pre-activation with a
combination of IL-12, IL-15, and IL-18 followed by a prolonged
rest period (197). Re-stimulation of CIML NK cells using
leukemia target cells, cytokines or FcγRIIIa ligation is associated
with increased responsiveness that can be retained for several
weeks following their initial pre-activation (197–202). CD56bright

and CD56dim NK cells both have the potential to differentiate into
CIML NK cells (197). Potent effector functions of CIML NK cells
have been linked to expression of the high-affinity IL-2 receptor
αβγ (IL-2Rαβγ), demethylation of the conserved upstream
non-coding enhancer region of the IFN-γ gene, recruitment
of anergic unlicensed NK cells, enhanced antibody-mediated
functions and release from KIR-mediated inhibition (198, 200,
201, 203). Therefore, superior functionality of CIML NK cells is
not affected by prior licensing through HLA class-I molecules.
Compared to control NK cells, CIML NK cells have been shown

to express higher levels of CD56, CD94, NKG2A, NKG2D,
NKp46, CD25, NKp30, NKp44, CD62L, CD27, TRAIL, perforin
and granzyme B, and lower levels of CD16, whereas NKG2C
expression was found similar between control and CIML NK
cells (197, 199).

The long-lived properties of CIML NK cells have tremendous
potential to be exploited for cancer immunotherapy, and
preliminary results from a first-in-human phase 1 clinical trial
have shown that NK cells pre-activated with IL-12, IL-15, and
IL-18 can expand in vivo and exert robust responses against
leukemia targets, leading to remission in a subset of AML patients
(199). A better understanding of the mechanisms behind CIML
NK cell responses may lead to novel strategies to further enhance
their antitumor function. For instance, recent studies suggested
that targeting the interaction between SEMA7A, a potent
immunomodulator expressed by cytokine-activatedNK cells, and
integrin-β1 might provide a novel immunotherapeutic approach
to potentiate antitumor activity of CIML NK cells (204).

Strikingly, burgeoning evidence also supports the existence
of true antigen-specific memory NK cells in humans (174,
177, 205), including a recent report of human HIV-specific
memory NK cells (168). While further studies are warranted to
fully characterize human antigen-specific NK cells and define
the mechanisms underlying NK cell memory formation and
maintenance, it is possible that adaptive NK cells that can
specifically recognize tumor-associated antigens and efficiently
eliminate cancerous cells develop in cancer patients. Vaccines
including components to boost tumor-specific NK cells or
infusion of expanded tumor-specific NK cells represent attractive
avenues for the development of novel therapeutic interventions.

Overall, the immunotherapeutic potential of adaptive NK cells
is expected to exceed that of conventional NK cells as they
may overcome some of the major limitations faced in NK cell-
based cancer therapies that have been evaluated so far in pre-
clinical or clinical studies. For instance, adaptive NK cells can
be expanded ex vivo, are long-lived and persist in vivo, are
less sensitive to regulatory T cells-mediated suppression (206)
or myeloid-derived suppressor cell inhibition (207) and can
achieve significantly enhanced antibody-dependent functions
(194) or antigen-specific cytotoxicity (168). Importantly, HCMV-
dependent adaptive NK cells are increased 7-fold (181) and
confer protection in PLWH (191, 192). Therefore, exploitation
of adaptive NK cells may represent an attractive strategy to
efficiently prevent or treat malignancies in PLWH.
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