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INTRODUCTION 
 
Smoking cessation and advancements in early 
detection and treatment [1], have resulted in a 

continuous decline in cancer death rates worldwide 
from 1991 to 2018, a total decline of 31%, 
particularly for lung cancer [2]. Lung cancer, on the 
other hand, remained the leading cause of cancer 
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ABSTRACT 
 
The biological functional network of tumor tissues is relatively stable for a period of time and under different 
conditions, so the impact of tumor heterogeneity is effectively avoided. Based on edge perturbation, functional gene 
interaction networks were used to reveal the pathological environment of patients with non-small cell carcinoma at 
the individual level, and to identify cancer subtypes with the same or similar status, and then a multi-dimensional 
and multi-omics comprehensive analysis was put into practice. Two edge perturbation subtypes were identified 
through the construction of the background interaction network and the edge-perturbation matrix (EPM). Further 
analyses revealed clear differences between those two clusters in terms of prognostic survival, stemness indices, 
immune cell infiltration, immune checkpoint molecular expression, copy number alterations, mutation load, 
homologous recombination defects (HRD), neoantigen load, and chromosomal instability. Additionally, a risk 
prediction model based on TCGA for lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) was 
successfully constructed and validated using the independent data set (GSE50081). 
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death in 2020, with an estimated 1.8 million deaths 
(18%) [3]. As is well known, NSCLC is the leading 
cause of cancer death in patients with lung cancer [4]. 
Thus, further investigation of disease biology, 
pathological type, genotype, application of predictive 
biomarkers, and treatment improvements for NSCLC 
are required. 
 
Tumor heterogeneity is prevalent and plays a significant 
role in the progression of the disease [5, 6]. This 
heterogeneity can manifest itself in the uneven 
distribution of tumor cell subpopulations across the 
tumor (spatial heterogeneity) [7], or in the temporal 
variation in the molecular composition of cancer cells 
(temporal heterogeneity) [5, 8], both of which present 
difficulties for clinical research [9]. It has been 
suggested that expression profiles measured at different 
time points or under different conditions may exhibit 
significant temporal heterogeneity [5, 8, 9]. However, 
the biological functional network of tumor tissues 
remains relatively stable over time and under a variety 
of conditions, effectively avoiding the effects of tumor 
heterogeneity [10–14]. 
 
Based on edge perturbation [15–18], functional gene 
interaction networks were used to deduce the 
pathological environment of NSCLC patients at the 
individual level [19–22], and to identify cancer subtypes 
with the same or similar status, followed by a multi-
dimensional and multi-omics comprehensive analysis 
for validation [23–26]. 
 
MATERIALS AND METHODS 
 
Published data sets 
 
Lung adenocarcinoma (LUAD) and Lung squamous cell 
carcinoma (LUSC) expression data of the TCGA 
database, including clinical characteristics and survival 
information, were downloaded from the UCSC Xena 
website (https://xenabrowser.net/datapages/). Copy 
number variation (CNV) information was downloaded 
by R package RTCGA, while mutation data was 
downloaded by R package TCGAbiolinks. 986 
(497/489) cancer samples with expression data, clinical 
characteristics, and survival information were prepared 
for the subsequent analysis. The basic clinical 
information of cancer samples from the TCGA dataset 
was displayed in Table 1. The flow diagram was 
provided in (Supplementary Figure 1). 
 
The expression data of 288 lung control samples from 
the GTEX database were gotten from the UCSC Xena 
website (https://xenabrowser.net/datapages/). 181 
NSCLC samples with survival information of the 
GSE50081 data cohort were downloaded from the GEO 

database (https://www.ncbi.nlm.nih.gov/geo/) and used 
as the validation set for model verification. 
 
Data preprocessing 
 
In order to keep the data consistency, 70% of the genes 
with 0 expression level in the three data cohorts 
(TCGA-LUAD, TCGA-LUSC, GTEX-LUNG) were 
filtered out first, and then the R package sva was used 
for batch calibration. 
 
Construction of the background interaction network 
and edge-perturbation matrix 
 
The Cytoscape plug-in ReactomeFIPlugIn was used to 
download the gene affiliation data of pathway coding in 
Reactome, and the functional gene interaction network 
in the database was constructed based on the existing 
gene or protein interaction information. Specifically, the 
background interaction network is a gene interaction 
network based on the pathway in Reactome, including 
protein-protein interaction, gene co-expression, protein 
domain interaction, GO (Gene Ontology) annotation, 
and proteins interaction data obtained from the text data 
mining analyses. The ReactomeFIPlugIn plug-in was 
used to download all genetic interaction pairs in the 
pathway and then merged into a large background 
network. The construction process of the edge 
disturbance matrix mainly included the following three 
steps [15]. 
 
First, according to the inconsistency of the expression 
levels of genes in the background interaction network 
between cancer and normal samples, the ranks of gene 
expression in cancer and normal samples were obtained 
separately (ranked from small to large, the smaller value of 
the expression level ranked in the front of the queue, while 
the bigger value of the expression level ranked in the back 
of the queue), and then the gene expression matrix was 
converted into a gene expression rank matrix. 
 
Second, according to the interaction relationship of gene 
pairs in the background of interaction network, if two 
genes interaction existed, there would be an edge in the 
network that connected the two genes, then the 
difference between the ranks of this edge in the two 
genes was calculated. In this way, the delta rank matrix 
of each edge among all the samples were obtained. The 
calculation formula was displayed in the followings: 

 

, , ,e s i s j sr rδ = −  
 

In the formula, “ri,s” represents the rank of gene “i” in 
sample “s”, “δe,s” represents the delta rank of edge “e” 
in sample “s”, and gene “i” and “j” are connected by the 
edge “e”. 
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Table 1. Clinical characteristic of TCGA-NSCLC patients. 

Parameter Subtype TCGA (LUAD + LUSC) 
Age ≥60 240 

<60 746 
Stage I 506 

II 274 
III 163 
IV 32 

Unknown 11 
Gender Female 396 

Male 590 
Smoke_year 1 89 

2 249 
3 210 
4 403 
5 9 

Unknown 26 
EGFR_mutation NO 458 

YES 100 
Unknown 428 

M M0 733 
M1 31 
MX 214 

Unknown 8 
N N0 634 

N1 220 
N2 109 
N3 7 
NX 15 

Unknown 1 
T T1 277 

T2 553 
T3 112 
T4 41 
TX 3 

 
Third, the average expression level of genes in 
normal samples was converted into a normal sample 
gene expression rank matrix, and the average delta 
rank matrix (Benchmark delta rank vector) of normal 
samples was established according to the background 
interaction network. Then, the delta rank matrix and 
the average delta rank matrix of the normal samples 
were used to construct the edge-perturbation matrix. 
The calculation formula was displayed in the 
followings: 

 

, ,e s e s eδ δ∆ = −  

In the formula, “δe,s” represents the delta rank value of 
the edge “e” in the sample “s”, and δe  represents the 
average delta rank of the delta rank matrix and the 
normal sample, which was the eigenvalue of the edge in 
the edge disturbance matrix. 
 
Finally, the specific edge perturbation matrix in the 
cancer sample was screened. According to the Kruskal-
Wallis test, the difference of the edge disturbance 
matrix between the normal and the cancer sample was 
calculated, and the top 30,000 different edges would be 
selected according to the level of significant difference; 
At the same time, the standard deviations (SDs) of the 
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edge disturbance matrix in the cancer samples were 
calculated, and the top 30,000 different edges according 
to the SDs were selected. The intersection of the above 
two edges were considered as the specific edge 
perturbation matrix of the cancer samples, which was 
named as the characteristic edge. The feature logarithm 
conversion formula between cancer sample and feature 
sample was listed as follows: 

 

2log ( 1)esfeatures = ∆ +  
 

In the formula, “∆es” is the eigenvalue of the edge in the 
edge disturbance matrix. 
 
Clustering and survival analysis of features of edge 
disturbance matrix 
 
According to the feature edge of the edge perturbation 
matrix specific to the cancer sample, the R package 
ConsensusClusterPlus was used to perform the 
consistent clustering analysis. The distance used for 
clustering is spearman, the clustering method is pam, 
and 100 repetitions are performed to ensure the stability 
of the classification. 
 
Log-rank test was used to explore the difference in 
survival time among subtypes, and R package survival 
was used to draw the KM survival curve of patients 
subtypes. The R package clusterRepro and independent 
data sets were used to verify the efficacy of clustering 
of the feature edge perturbation matrices. Then, the 
intra-group proportion (IGP) of each subtype would be 
calculated, which the larger IGP indicated the better the 
consistency in the clustering group. 
 
Feature analysis of edge disturbance feature 
subtypes 
 
Based on the known literature or calculated various 
feature indicators, statistical tests were used to explore 
the correlation between edge disturbance feature 
subtypes and known feature indicators. Tumor purity 
and ploidy were derived from TCGA data pan-cancer 
analysis [27]. 
 
The homologous recombination defect score (HRD 
score), neoantigen load, and genome alteration 
frequency were derived from previous studies on the 
analysis of immune characteristics of TCGA data [28]. 
Based on previous studies, the patient's stemness index 
(mRNAsi) and epigenetically regulated-mRNAsi 
(EREG-mRNAsi) were obtained [11]. 
 
The three indicators of chromosomal instability (LST 
score, TAI score, and LOH score) were derived from 
previous studies based on the correlation analyses 

between genome damage and homologous 
recombination defects [29]. The R package 
CIBERSORT was used to calculate the infiltration 
scores of 22 immune cell types. The expression level of 
immune checkpoint molecules is the RNAseq level of 
cancer samples currently used. 
 
In the significance analysis between various values 
(expression, infiltration ratio, mutation count, etc.), the 
Wilcoxon test was used to compare the differences 
between the two sets of samples. In the graphical 
display, ns (no significance) represents p > 0.05, 
*represents p ≤ 0.05, **represents p ≤ 0.01, ***represents 
p ≤ 0.001, and ****represents p ≤ 0.0001. 
 
Copy number variant (CNV) analyses 
 
The GISTIC method was used to detect the common 
copy number alteration area in all samples based on the 
SNP6 CopyNumber segment data. The parameters of 
the GISTIC method were set as follows: Q ≤ 0.05 was 
taken as the significance standard of the alteration. 0.90 
was adopted as the confidence level, when the peak 
interval was determined. The analysis was performed 
through the corresponding MutSigCV module of the 
online analysis tool GenePattern (https://cloud.gene 
pattern.org/gp/pages/index.jsf) developed by Broad 
Research Institute. 
 
TIDE (tumor immune dysfunction and exclusion) 
prediction 
 
The TIDE (http://tide.dfci.harvard.edu/) analysis tool 
was developed by researchers from Harvard University 
and used to evaluate the clinical effects of immune 
checkpoint suppression therapy. A higher tumor TIDE 
prediction score was corresponded to a lower immune 
checkpoint suppression therapy efficacy and poor 
prognosis. The prediction for the prognosis of immune 
checkpoint inhibitor (ICI) treatment in this analysis was 
completed by the TIDE score. 
 
Subtype-specific characteristic clusters and pathway 
enrichment of feature clusters 
 
The unique biological functions and pathways of the 
subtype were analyzed by identifying the unique 
characteristic clusters of the subtype, and Z-score was 
used to standardize the characteristic values of the 
characteristic edges, and then the characteristic clusters 
were screened through the following steps. 
 
The first step is to perform hierarchical clustering based 
on the normalized characteristic values of the 
characteristic edges, and the clustering method was 
“complete linkage”. The number of clusters is 100, and 

https://cloud.genepattern.org/gp/pages/index.jsf
https://cloud.genepattern.org/gp/pages/index.jsf
http://tide.dfci.harvard.edu/
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clusters with fewer than 30 characteristic edges would 
be filtered out. Second, for each remaining cluster, the 
percentage of “characteristic edges”, whose “absolute 
value” of the perturbation mean was greater than 0.5 to 
all the “characteristic edges”, would be calculated. 
Third, the cluster with an average percentage greater 
than 0.7 in a subtype would be considered as the 
characteristic cluster of that subtype, and all genes in 
the characteristic edge corresponding to the 
characteristic cluster would be used for pathway 
enrichment analysis. Online software Metascape 
(http://metascape.org) would be used for enrichment 
analysis of KEGG and Reactome pathways, setting the 
parameter P < 0.01. 
 
Differential expression analysis and differential 
methylation site recognition 
 
The R software package limma would be used for 
analyzing the expression profile and methylation level 
of the subtype samples. According to the fold change 
(|logFC|) and significant False Discovery Rate (FDR), 
the genes and methylation sites that were differentially 
expressed in the subtype samples were screened. 
 
Prognostic analysis 
 
Univariate Cox regression analysis would be used for 
determining the hazard ratio (HR) and prognostic 
significance of different expressed genes, and genes 
with p < 0.01 would be screened as prognostic-related 
genes. The Kaplan-Meier method was used to generate 
the survival curve for prognostic analysis, and the log-
rank test was used to determine the significance of the 
difference. The receiver operating characteristic curve 
(ROC) was used to evaluate the risk model’s prediction 
of the score, and the area under the curve (AUC) was 
quantified by the R package survivalROC. 
 
Ethics statement 
 
No interaction with human subjects of the study was 
involved, no ethical issues were encountered, and no 
ethical approval was needed. 
 
RESULTS 
 
Background interaction network construction and 
gene expression extraction 
 
The Cytoscape plug-in ReactomeFIPlugIn was used to 
download the gene affiliation data of pathway encoding 
in Reactome. According to the existing gene or protein 
interaction information, including protein-protein 
interaction, gene co-expression, protein domain 
interaction, GO annotation and protein interaction data 

based on text mining, integrating all interaction 
information, the functional background interaction 
network would be constructed. A total of 7,360 nodes 
and 169,710 edges were included in the background 
interaction network. 
 
In the three data sets (TCGA-LUAD, TCGA-LUSC, 
and GTEX-LUNG), 70% of the genes whose expression 
levels were 0 were filtered out, and then the R package 
sva was used for batch correction. The two datasets 
TCGA-LUAD and TCGA-LUSC were merged as the 
expression profile of cancer samples (26209 genes ×986 
samples), and the GTEX-LUNG dataset was used as the 
expression profile of normal samples (26209 genes 
×288 samples). 
 
After filtering out the nodes in the background 
interaction network that were not within the range of 
26209 genes, a new background interaction network 
was constructed, which included 6327 nodes and 
153314 edges, which would be used for subsequent 
calculation of edge disturbances Feature matrix. The 
interaction network was closely connected, and most of 
the nodes in the network had a high degree. According 
to the degree of nodes in the background interaction 
network, the nodes were sorted from large to small. 
 
Perturbation matrix (edge-perturbation matrix) 
construction and feature extraction 
 
The perturbation of the edge in the background interaction 
network would inevitably lead to the alteration of the 
interaction relationship in the network, and the 
perturbation of the gene in the network to the edge could 
be reasonably used for simulating and revealing the 
pathological environment at the individual level. In order 
to measure the degree of disturbance of the background 
interaction network at the level of a single sample, based 
on the difference in expression fluctuations between cancer 
and normal samples, the Edge-Perturbation Matrix (EPM) 
was constructed separately. In order to compare the 
difference in EPM between cancer and normal samples, 
1000 features were randomly selected, and logarithmic 
transformation was performed. It was found that the 
feature values of cancer samples were significantly higher 
than those of normal samples (Supplementary Figure 2). 
This showed that the degree of edge perturbation in cancer 
samples was greater, indicating that the degree of 
perturbation in the background network of cancer samples 
was much more obvious than that of normal samples. This 
provided reliable evidence for the subsequent use of EPM 
to reveal the heterogeneity among NSCLC samples. 
 
In order to further perform feature extraction in this 
study, we used the Kruskal-Wallis test to calculate the 
difference of edge perturbations between cancer and 

http://metascape.org/
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normal samples, and calculated the Standard Deviations 
(SDs) of the edge perturbation matrices in cancer 
samples. The top 30,000 different edges of the above 
two methods were selected respectively, and the 
intersection edges (N = 5468) were selected as the 
feature edges of the edge perturbation matrix in the 
cancer sample for subsequent analyses. 
 
Clustering and survival analyses of edge disturbance 
matrix features 
 
Based on the 5468 feature edges extracted in the 
previous step, consistent clustering analyses were put 
into practice based on their feature values. 986 cancer 
samples were divided into two different subtypes 
(Figure 1A and 1B). These two subtypes were named 
cluster 1 (N = 406) and cluster 2 (N = 580), which 
displayed significant differences in prognosis from each 
other (Figure 1C). The distance used for clustering was 
spearman, the clustering method was pam, and 100 
repetitions were performed. The hierarchical clustering 
method was used to perform cluster analysis on the 
extracted features, and it was found that there were 
obvious specific feature in subtypes (Figure 1D). 
 
In order to verify the clustering performance of gene 
interaction perturbation, we collected a set of independent 
expression data sets (GSE50081) from reported studies, 
and used the R package clusterRepro to calculate the intra-
group proportion (IGP) of each subtype. The results 
showed that both cluster 1 and cluster 2 had higher IGP 
values (Figure 1E), which indicated that the clustering 
consistency of the cluster analysis based on the edge 
perturbation matrix in this study was better. 
 
Comparative analysis of edge perturbation feature 
subtypes 
 
Genomic heterogeneity indicators were obtained from 
reported studies, and statistical tests were used to 
explore their differences in edge perturbation feature 
subtypes. The results showed that the cluster 2 subtype 
with poor prognosis displayed higher tumor purity and 
genome ploidy compared with cluster 1 (Supplementary 
Figure 3A and 3B). 
 
Based on previous analyses of TCGA samples, the 
transcriptome (mRNAsi) and epigenetic regulatory 
(EREG-mRNAsi) index of NSCLC samples were 
obtained. Through the evaluation of the stemness index 
in subtypes, it was found that the cluster 2 displayed a 
higher stemness index (Supplementary Figure 3C and 
3D). The clinical characteristics of the two subtype 
samples were statistically analyzed. Fisher’s exact test 
results were displayed in the form of Stage, T, N staging 
and Age (p < 0.05, Supplementary Figure 3E–3J).  

The infiltration scores of 22 immune cell types were 
calculated by the R package CIBERSORT, and the 
differences among subtype samples were further 
explored. The results showed that immune cells such as 
B cells naive, Plasma cells and Mast cells resting were 
significantly different in the two subtypes (p < 0.05, 
Figure 2A and 2B). On the other hand, the expression 
differences of important immune checkpoint molecules 
of the two subtypes were also analyzed, and it was 
found that multiple immune checkpoint molecules, such 
as PDCD1, CD4, and LAG3, were significantly 
different between the two subtypes (Figure 2C). 
Furthermore, based on online verification 
(http://gepia.cancer-pku.cn/detail.php?gene), CD276, 
CXCR4, and BTLA were found to be significantly 
related to the prognosis of LUAD, while CCL2 was 
significantly related to the prognosis of LUSC. 
 
TIDE was used to evaluate the clinical efficiency of two 
subtypes receiving immune checkpoint inhibitors. There 
was no significant difference in TIDE scores between 
the two subtypes, but there were significant differences 
for the expression of IFNG immune checkpoints (Figure 
2D and 2E). 
 
Comparing the edge perturbation feature subtypes with 
the reported subtypes of NSCLC, the fish results 
showed that the distribution of cancer subtypes 
corresponding to the edge perturbation feature subtypes 
were different (Figure 2F and 2G). To further explore 
the molecular differences between the two sample sets, 
the R package maftools was used for somatic mutations 
analysis. Among the top 20 genes with mutation 
frequencies in the two groups, the distribution of the 15 
common mutation genes that appeared in both of them 
were shown in (Figure 3A and 3B). In order to observe 
the proportion of high-frequency mutation genes in the 
subtypes in detail, a line chart of the proportions of 
these 15 genes between the two subtypes was drawn 
and displayed in (Figure 3C). The distribution of CNV 
in the two sets of samples was shown in (Figure 3D and 
3E), which indicated that the CNV frequency of the two 
sets was significantly different (p < 0.05, Figure 3F). 
 
In order to further investigate the correlation between 
the innate immune escape mechanism and subtypes, we 
compared some potential factors that determine tumor 
immunogenicity of the two subtypes, including tumour 
mutational load (TML), homologous recombination 
deficiency (HRD), and neoantigen load, chromosome 
instability (Supplementary Figure 4). The functional 
enrichment results of the two subtype-specific clusters 
were further analyzed. The cluster 1 was found to be 
significantly enriched in those pathways such as Peptide 
chain elongation and Translation initiation complex 
formation, while the cluster 2 was significantly enriched 

http://gepia.cancer-pku.cn/detail.php?gene
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Figure 1. Clustering and survival analysis of feature edge perturbation matrix. (A) Based on the extracted 5468 feature edges, a 
consistent cluster analysis was performed according to their feature values, and 986 cancer samples were divided into two different 
subtypes. (B) Cumulative Distribution Function of Consistent Cluster Analysis. The abscissa axis represents the K value; the ordinate axis 
represents the relative change in area under CDF curve. (C) The prognostic survival curves of the two cluster subtypes. The abscissa axis 
represents the overall survival time; the ordinate axis represents the survival probability corresponding to different survival time points. (D) 
Z-score heatmap of eigenvalues of feature edges: Using hierarchical clustering method to perform cluster analyses on the extracted feature 
values, it is found that there are obvious specific feature differences between the two subtypes. (E) Validation of clustering performance of 
gene interaction perturbation: Using an independent data set (GSE50081) to verify the clustering performance of edge perturbation 
features. The larger IGP corresponds to the better consistency of the clustering group.  
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in Fc epsilon receptor (FCERI) signaling, Fcgamma 
receptor (FCGR) dependent phagocytosis and other 
pathways (Supplementary Figure 5A and 5B). 
 
Identification of differential methylation sites among 
characteristic subtypes 
 
The TCGA-LUAD and TCGA-LUSC methylation 
value matrices were merged, and the samples (N = 797) 
that appeared in the two subtypes would be retained, 
and then more than 70% of the samples with NA sites 
were filtered out and filled with 0. Finally, after filtering 
out and filling, 395786 methylation sites were collected 
for differential analyses. 
 
According to the fold change (|logFC|>0.1) and the 
significance threshold (FDR<0.01), a total of 7304 
differentially methylated sites were screened in the two 

subtype samples by the R package limma. The |logFC| 
values of the differentially methylated sites were sorted 
from big to small, and the top 200 differentially 
methylated sites were plotted (Supplementary Figure 
5C). 
 
Construction and verification of risk scoring models 
based on differentially expressed prognostic-related 
genes 
 
According to the fold change (|logFC|>0.585) and the 
significance threshold (FDR<0.01), a total of 945 
differentially expressed genes were screened from the 
two subtype samples by the R package limma 
(Supplementary Figure 5D and 5E). Univariate cox 
regression analysis was performed on these 945 
differentially expressed genes. When P value was less 
than 0.01, 9 differentially expressed genes were found

 

 
 

Figure 2. Comparison and analysis of feature subtypes of edge perturbation. (A) Infiltration scores of 22 immune cells in different 
samples: Different colors represent different immune infiltrating cells. The abscissa axis represents different samples; the ordinate axis 
represents the proportion of different immune cells. (B) Comparison of the differences of 22 immune cell infiltration scores among 
different cluster subtypes: The abscissa axis represents different types of immune cells; the ordinate represents the proportion of 
infiltrated immune cells. (C) Comparison of the expression levels of important immune checkpoint molecules among different cluster 
subtypes. (D) TIDE comparison between cluster 1 and cluster 2: The abscissa axis represents different clusters; the ordinate axis represents 
TIDE. (E) IFNG comparison between cluster 1 and cluster 2: The abscissa axis represents different clusters; the ordinate axis represents 
IFNG. (F) Comparison of mRNA expression levels among different subtypes: The different colors represent the known pathological types of 
NSCLC. The abscissa axis represents different clusters, and the ordinate axis represents the expression level of mRNA. (G) Comparison of 
DNA methylation levels among different subtypes: The different colors represent the levels of DNA methylation. The abscissa axis 
represents different clusters, and the ordinate axis represents the proportion of samples with different levels of DNA methylation.  
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to be related to the prognosis, and a forest plot was 
shown in (Figure 4A). 
 
The LASSO method was further used to screen out 8 
key prognostic genes (Figure 4B–4E), and after 
weighting the expression of these 8 genes by the 
LASSO regression coefficient, a risk scoring model for 
predicting the survival of the sample was constructed 
(“exp” represents gene expression level, “coef” 
represents LASSO regression coefficient). 

 

RiskScore exp coef= ×∑  
 

The risk score of each cancer sample was calculated 
based on the risk model. The surv_cutpoint function in 
the R package survminer was used to determine the 
classification threshold (1.1254), and further divide the 
cancer samples into high and low risk groups (N = 
193/793), while significant prognosis differences were 
found in the two groups (Figure 5A). ROC was used to 
evaluate the predictive efficiency of the model, the 
AUC of cancer samples at 1, 3, and 5 years were 0.635, 
0.659, and 0.605 (Figure 5B–5D). 
 
It was verified in the independent data set GSE50081, 
and a similar analysis result trend was obtained (Figure 
6A). The ROC predictive efficiency AUC values at 1, 3 
and 5 years were 0.659, 0.554 and 0.555 (Figure 6B–6D). 

DISCUSSION 
 
Our understanding of cancer has promoted further with 
the advancement of sequencing technology and 
advances in cancer genome research [27, 28], 
particularly for lung cancers [27, 29–31]. These 
advances in genome research also enabled us to gain a 
comprehensive understanding of the temporal and 
spatial heterogeneity of lung cancer cells [29, 32], 
indicating that cancer's heterogeneity was unavoidable. 
However, recent research on biological functional 
networks has discovered that heterogeneity can be 
avoided or minimized to a certain extent through the use 
of sequencing and bioinformatics analysis technology 
[10–14]. Thus, using the R language-based 
bioinformatics analysis technology, we designed the 
following research to re-evaluate the alterations in the 
NSCLC genome after excluding tumor heterogeneity: 
Based on edge perturbation [15–18], functional gene 
interaction networks were used to deduce the 
pathological environment of individual patients with 
NSCLC [19–22], and to identify cancer subtypes with 
the same or similar status, followed by a multi-
dimensional and multi-omics comprehensive analysis 
for validation [23–26]. 
 
After successfully constructing a background 
interaction network and extracting gene expression 

 

 
 

Figure 3. Comparison of genome alterations between cluster 1 and cluster 2. (A) The distribution of 15 mutated genes in cluster 1 
among the co-occurring genes with mutation frequencies in the top 20 of the two clusters. (B) The distribution of 15 mutated genes in 
cluster 2 among the co-occurring genes with mutation frequencies in the top 20 of the two clusters. (C) Comparison of the mutation ratios 
of 14 genes in the two clusters. (D) Distribution of concentrated copy number amplification and deletion regions in the cluster 1. (E) 
Distribution of concentrated copy number amplification and deletion regions in the cluster 2. (F) Frequency distribution of copy number 
variation among subtype samples.  
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(Figure 1A and 1B), it was found that the characteristic 
value of the cancer sample was significantly higher than 
that of the normal sample (Figure 2A and 2B). This 
indicated that the degree of edge perturbation in cancer 

samples was greater, implying that the degree of 
perturbation in the background network of cancer 
samples was significantly greater than in normal 
samples [15], providing reliable evidence for the 

 

 
 

Figure 4. Construction and verification of the prognostic-related gene risk scoring model. (A) The forest plot of prognostic genes 
(univariate cox analysis result). (B) Confidence interval of each Lambda corresponding to LASSO regression. (C) The change trajectory of the 
independent variable in LASSO regression; the abscissa represents the logarithm of the independent variable Lambda, and the ordinate 
represents the coefficient of the independent variable. (D) LASSO regression coefficient of key prognostic genes. (E) Z-score heatmap of key 
prognostic genes expression levels.  
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subsequent use of EPM to reveal the heterogeneity of 
NSCLC samples.  
 
Cluster analysis was performed using the R package 
ConsensusClusterPlus, as described previously [33, 34], 
and two distinct cluster subtypes were identified: cluster 
1 (N = 406) and cluster 2 (N = 580) (Figure 3A–3D). 
Additional validation using the data set GSE50081 
revealed that the clustering consistency based on the 
characteristic clustering analysis of the edge 
perturbation matrix was improved (Figure 3E). In 
comparison to cluster 1, cluster 2 had a higher tumor 
purity, ploidy, and stemness index (Supplementary 
Figure 3A–3D). Additionally, significant differences 
between clusters 1 and 2 were observed in stage, T, N, 
age, 22 immune cell infiltration scores, and differential 
expression of immune checkpoint molecules and IFNG 

(Supplementary Figure 3E–3J, Figure 2A–2E), which 
largely correlated with patient prognosis 
(Supplementary Figure 3C) [35, 36]. When the edge 
perturbation characteristic subtypes were compared to 
the reported NSCLC subtypes, the distribution of cancer 
subtypes corresponding to the edge perturbation 
characteristic subtypes remained clearly distinct (Figure 
2F and 2G). Further examination of the molecular 
differences between the two clusters revealed obvious 
differences in either the mutation frequency (Figure 
3A–3C), or the copy number variation frequency and 
distribution for the 15 genes co-occurring in the top 20 
(Figure 3D–3F). This confirmed the molecular 
distinctions between these two cluster subtypes. Based 
on the above findings, we hypothesized that EPM-based 
clustering subtype classification could be a novel 
classification method for adenosquamous carcinoma 

 

 
 

Figure 5. The efficiency analysis results of the risk prediction model. (A) Comparison of the prognosis between high and low risk 
groups. The abscissa axis represents the survival time (days); the ordinate axis represents the survival probability. (B) AUC curve of risk 
score on 1, 3, and 5-year survival prediction efficiency. (C) Risk score curve of the two groups. The abscissa axis represents the number of 
samples; the ordinate axis represents the risk score. (D) The ranking results of risk scores from small to large. The abscissa represents the 
number of samples, and the ordinate represents the survival time. 
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that was not inferior to the traditional pathological 
classification [37, 38]. 
 
TML, HRD, neoantigen load, and chromosome 
instability all played significant roles in the 
development of cancer [39–44]. As a result, these 
potential tumor immunogenicity-related factors were 
compared between the two cluster subtypes, and it was 
discovered that these indicators demonstrated 
statistically significant differences between the two 
clusters (Supplementary Figure 4). Similar differences 
were observed in analyses of the two subtype-specific 
clusters’ KEGG pathway enrichment and methylation 
site recognition (Supplementary Figure 5A–5C). As a 
result of the above findings, we hypothesized that the 
innate immune escape mechanism between the two 

subtypes may be significantly different, confirming the 
importance of classifying NSCLC using this method. 
 
As previously reported [45–47], LASSO was used to 
construct a risk scoring model containing eight genes 
based on the differential expression of prognostic-
related genes between the two clusters (Figure 4) [48]. 
Regardless of whether it was verified in those two 
clusters (Figure 5) or in external data (GSE50081) 
(Figure 6), the risk scoring model demonstrated high 
prediction efficiency. Due to the fact that the data and 
validation data for this prediction model were derived 
from clinical sequencing results, it was believed that the 
prediction model would have a high probability of 
clinical applicability. In other words, this further 
demonstrated the feasibility and rationality of the 

 

 
 

Figure 6. The verification result of the risk scoring model in the independent data set GSE50081. (A) Comparison of the 
prognosis between high and low risk groups in GSE50081. The abscissa axis represents the survival time (days); the ordinate axis represents 
the survival probability. (B) AUC curve of risk score on 1, 3, and 5-year survival prediction efficiency in GSE50081. (C) Risk score curve of the 
two groups in GSE50081. The abscissa axis represents the number of samples; the ordinate axis represents the risk score. (D) The ranking 
results of risk scores from small to large in GSE50081. The abscissa represents the number of samples, and the ordinate represents the 
survival time.  
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clustering analysis method based on EPM for the 
classification of NSCLC. 
 
The EPM was constructed using the differences in 
expression fluctuations between cancer and normal 
samples, and then features for cluster analyses were 
extracted to accomplish the purpose of NSCLC 
classification. The advantage of this method is that it 
attempts to minimize the influence of tumor sample 
heterogeneity as much as possible, demonstrating some 
degree of innovation. With the rapid development of 
next-generation sequencing, for elderly patients with 
lung cancer, their blood samples can be used for next-
generation sequencing, and then this method can be 
used for pathological typing, which can effectively 
avoid the damage and risks caused by pathological 
biopsy. Regardless of the method used to classify 
NSCLC or the risk scoring model developed, additional 
clinical samples and related basic experiments are still 
need to be conducted. 
 
CONCLUSION 
 
Clustering analysis using EPM for NSCLC 
classification is a feasible typing method that minimizes 
the effect of cancer sample heterogeneity. The risk 
scoring model constructed using those two clusters and 
involving eight genes has a high prediction efficiency. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 
 

 
 

Supplementary Figure 1. The flow diagram of the study. 
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Supplementary Figure 2. Edge-perturbation matrix construction and feature extraction. (A) Box-plot diagrams of randomly 
selected 1000 features in cancer and normal samples. (B) Scatter plots of randomly selected 1000 features in cancer and normal samples. 
 

 
 

Supplementary Figure 3. (A–D) Comparative analysis results of edge perturbation feature subtypes. (A) Differences in tumor purity 
between cluster 1 and cluster 2: The abscissa axis represents the cluster group; the ordinate axis represents the percentage of tumor 
purity. (B) Differences in genome ploidy between cluster 1 and cluster 2: The abscissa axis represents the cluster group; the ordinate axis 
represents the percentage of tumor genome ploidy. (C) Differences in stemness indices of mRNA between cluster 1 and cluster 2: The 
abscissa axis represents the cluster group; the ordinate axis represents the percentage of stemness indices of mRNA. (D) Differences in 
epigenetic regulated stemness indices of mRNA between cluster 1 and cluster 2: The abscissa axis represents the cluster group; the 
ordinate axis represents the percentage of epigenetic regulated stemness indices of mRNA. (E–J) Comparison of clinical characteristics 
among different subtypes. (E) Comparison of the proportions of different stages (Stage I–IV) in different clusters: The abscissa axis 
represents different clusters; the ordinate axis represents the proportion of different stages. (F) Comparison of the proportions of different 
T stages (T1–T4) in different clusters: The abscissa axis represents different clusters; the ordinate axis represents the proportion of different 
T stages (T1–T4). (G) Comparison of the proportions of different N stages (N1–N3) in different clusters: The abscissa axis represents 
different clusters; the ordinate axis represents the proportion of different N stages (N1–N3). (H) Comparison of the proportions of different 
M stages (M0M1 or Mx) in different clusters: The abscissa axis represents different clusters; the ordinate axis represents the proportion of 
different M stages (M0M1 or Mx). (I) Comparison of the proportions of different smoking status in different clusters: The abscissa axis 
represents different clusters; the ordinate axis represents the proportion of different smoking status (little or often). (J) Comparison of the 
proportions of different age stages in different clusters: The abscissa axis represents different clusters; the ordinate axis represents the 
proportion of different age stages (younger, medium or older). 



www.aging-us.com 3173 AGING 

 
 

Supplementary Figure 4. Comparison of immune escape mechanism between the two clusters. (A) Comparison of homologous 
recombination deficiency scores between the two clusters: The abscissa axis represents different clusters; the ordinate axis represents the 
HRD score. (B) The level of chromosome instability between the two clusters: The abscissa axis represents different clusters; the ordinate 
axis represents the LST score. (C) The level of chromosome instability between the two clusters: The abscissa axis represents different 
clusters; the ordinate axis represents the TAI score. (D) The level of chromosome instability between the two clusters: The abscissa axis 
represents different clusters; the ordinate axis represents the LOH score. (E) The level of tumor mutation load between the two clusters: 
The abscissa axis represents different clusters; the ordinate axis represents the value of log10 (mutLoad nonsilent). (F) The level of tumor 
mutation load between the two clusters: The abscissa axis represents different clusters; the ordinate axis represents the value of log10 
(mutLoad silent). (G) The level of tumor neoantigen load between the two clusters: The abscissa axis represents different clusters; 
the ordinate axis represents the value of log10 (SNV neoantigen). (H) The level of tumor neoantigen load between the two clusters: The 
abscissa axis represents different clusters; the ordinate axis represents the value of log10 (Indel neoantigen). 
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Supplementary Figure 5. (A) Pathway enrichment analysis results of the cluster 1. (B) Pathway enrichment analysis results of the cluster 2. 
(C) Identification results of differential methylation sites among characteristic subtypes: z-score heatmap of the top200 differential 
methylation sites. (D) Volcano map of differentially expressed genes. (E) Z-score heatmap of differentially expressed genes. 


