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Transaminases that promote the amination of ketones into amines are an emerging

class of biocatalysts for preparing a series of drugs and their intermediates. One of the

main limitations of (R)-selective amine transaminase from Aspergillus terreus (At-ATA)

is its weak thermostability, with a half-life (t1/2) of only 6.9min at 40◦C. To improve

its thermostability, four important residue sites (E133, D224, E253, and E262) located

on the surface of At-ATA were identified using the enzyme thermal stability system

(ETSS). Subsequently, 13 mutants (E133A, E133H, E133K, E133R, E133Q, D224A,

D224H, D224K, D224R, E253A, E253H, E253K, and E262A) were constructed by

site-directed mutagenesis according to the principle of turning the residues into opposite

charged ones. Among them, three substitutions, E133Q, D224K, and E253A, displayed

higher thermal stability than the wild-type enzyme. Molecular dynamics simulations

indicated that these three mutations limited the random vibration amplitude in the two

α-helix regions of 130–135 and 148–158, thereby increasing the rigidity of the protein.

Compared to the wild-type, the best mutant, D224K, showed improved thermostability

with a 4.23-fold increase in t1/2 at 40◦C, and 6.08◦C increase in T10
50. Exploring the

three-dimensional structure of D224K at the atomic level, three strong hydrogen bonds

were added to form a special “claw structure” of the α-helix 8, and the residues located

at 151–156 also stabilized the α-helix 9 by interacting with each other alternately.

Keywords: amine transaminase, thermostability, enzyme thermal stability system, site-directed mutagenesis,

molecular dynamics simulations

INTRODUCTION

Chiral amines are important components of many significant bioactive compounds,
pharmaceutical intermediates and agrochemical industry products (Bornscheuer et al., 2012;
Mathew and Yun, 2012a; Ghislieri and Turner, 2014; Park et al., 2014; Fuchs et al., 2015; Ferrandi
and Monti, 2017; Dawood et al., 2018; Cai et al., 2020). In addition to optical rotation, enantiomers
of chiral drugs have the same physical properties, but they are absorbed, activated or degraded
by the metabolic system of the human body in different ways during the pharmacological action,
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resulting in different efficacies and toxicities (Burke and
Henderson, 2002). Because of their broad-spectrum biological
activities and high purity in the synthesis of enantiomeric amines,
they can act as chiral building blocks for the synthesis of more
complex structural drugs (Breuer et al., 2004; Nugent, 2010). For
instance, aromatic chiral amine derivatives are intermediates of
the highly potent KCNQ2 opener (Wu et al., 2004), rivastigmine
agents to treat Alzheimer’s disease (Hua et al., 2018), and anti-
arthritic drugs (Dyckman et al., 2011). Unfortunately, synthetic
routes for these compounds are still challenging.

Many enzymes have been employed for the synthesis
of chiral amines, including transaminases, imine reductases,
amine dehydrogenases, and reductive aminases (Turner and
Truppo, 2010; Łyskowski et al., 2014; Godwin et al., 2017;
Gomm and O’Reilly, 2018; Jiang et al., 2020). Among them,
the coenzyme PLP of transaminase can be recycled, unlike
many expensive coenzymes, which gradually deplete the amino
products synthesized in situ (Paul et al., 2014). In particular,
amine transaminases (ATAs) have many industrial advantages
and chemical properties over conventional chemical synthesis of
optically pure chiral amines, including excellent stereoselectivity
(Svedendahl et al., 2010) and broad substrate spectrum (Guo
and Berglund, 2016). More importantly, ATAs can achieve
continuous flow biotransformations under mild conditions
(Andrade et al., 2014) as an alternative technology to replace
toxic, non-recyclable chemical catalysts and reduce the use of
high- temperature and high-pressure conditions in the chemical
production process.

Transaminases have been extensively studied during the
past few years for the synthesis of chemically pure chiral
amines (Hhne and Bornscheuer, 2009; Zhu and Hua, 2009;
Hailes et al., 2010; Nugent, 2010; Tufvesson et al., 2011; Malik
et al., 2012; Mathew and Yun, 2012b; Kroutil et al., 2013).
However, transaminases usually require better reaction rates,
higher temperature adaptability in industrial production, and
reduce risk of microbial contamination. Protein engineering
plays a vital role in enhancing the thermal stability of (R)-
selective At-ATA to expand its applicability in industrial
processes (Liu et al., 2019). To date, the rational design of
protein engineering involves many factors, such as surface
electrostatic interactions, hydrophobic interactions, B-factor
values, consensus mutagenesis, disulphide bridges, coevolution
networks, and hydrogen bonding interactions (Pace et al., 2011;
Wang et al., 2014; Zhang et al., 2014, 2020; Huang et al., 2017; Xie
et al., 2018, 2019; Moon et al., 2019; Zhu et al., 2019; Cao et al.,
2020). All of these have been employed to develop stable proteins.

Recently, the enzyme thermal stability system (ETSS), a
suite of computational programs based on TK-SA model
calculation and surface charge-charge interaction analysis was
released (Zhang et al., 2014). The TK model was constructed
by Tanford and Kirkwood in 1957 (Tanford and Kirkwood,
1957), based on the charge-charge interaction to describe the
electrostatic properties of the whole protein (Matthew et al., 1985;
Matthew and Gurd, 1986a,b). After solvent accessibility (SA) was
introduced to refine the TK-SA model, Bashford and Karplus
majorized the TK-SA model with the effects of partition function
(Sanchez-Ruiz et al., 1999) and Gibbs free energy (Matthew et al.,

1979; Richmond, 1984; Bashford and Karplus, 1991), which has
been successfully applied in protein modification engineering
(Elcock, 2001; Sanchez-Ruiz and Makhatadze, 2001; Ibarra-
Molero and Sanchez-Ruiz, 2002; Makhatadze et al., 2003, 2004;
Strickler et al., 2006; Gribenko et al., 2009; Schweiker and
Makhatadze, 2009).

In this work, the potential mutation sites were replaced with
electrically neutral amino acids on the protein surface based
on the TK-SA model, which was used to construct the mutant
with enhanced thermostability. Subsequently, the prospective
stabilizing effects of these mutations were verified by thermal
inactivation experiments, and basic-amino-acid scanning was
more accurate in finding the most thermal-stability-improved
mutation at each site. In addition, these variants at each
site were analyzed by molecular dynamics (MD) simulation
(Purmonen et al., 2007), with the aim of exploring the improved
thermostability and catalytic activity of the mutants at the
atomic level.

MATERIALS AND METHODS

Materials
The At-ATA cDNA from Aspergillus terreus sequence, including
the NcoI and XhoI restriction sites, was synthesized by General
Biosystems (Chuzhou, China), and the plasmid pET-28a(+) was
used for gene cloning and DNA sequencing. All PCR primers
were synthesized by Qingke Biology Co., Ltd. (Hangzhou,
China). PrimeSTAR R© Max DNA polymerase was obtained from
Takara Biotechnology (Dalian, China) for the polymerase chain
reaction (PCR). Dpn I, Yeast extract and tryptone were obtained
from Thermo Fisher Scientific (Shanghai, China). Dimethyl
sulfoxide (DMSO), 1-(R)-PEA and pyruvate were obtained
from Aladdin Biochemical Technology Co., Ltd. (Shanghai,
China). NaCl, NaH2PO4, Na2HPO4, NaOH, DNA ladder, protein
marker, protein loading buffer, kanamycin sulfate, isopropyl-β-
d-thiogalactoside (IPTG), Ni-NTA Sefinose (TM) Resin (Settled
Resin) kit, SDS-PAGE gel kit, and Modified Bradford Protein
Assay Kit were obtained from Sangon (Shanghai, China). E.
coli BL21(DE3) Chemically Competent Cell, EasyPure R© HiPure
Plasmid MaxiPrep Kit, EasyPure R© Quick Gel Extraction Kit and
EasyPure R© PCR Purification Kit were purchased from TransGen
Biotech (Beijing, China).

Location of the Mutant Sites
Based on the crystal structure of At-ATA (PDB ID: 4CE5)
obtained from the Protein Data Bank (http://www.rcsb.org),
ETSS was used to calculate the total interaction energy between
charged amino acids at points i and j (Eij) from wild-type At-
ATA. Based on these results, we selected the modification of
residues with positive Eij values, which signified an unfavorable
interaction, to enhance the At-ATA thermostability. In addition,
three principals were used to redesign At-ATA mutants: (i)
residues with high positive Eij values were priorities, (ii) residues
predicted to form hydrogen bonds with the nearby conserved
in At-ATA, and (iii) residues far from the catalytic and binding
pocket were selected to retain the activity. When negatively
charged amino acids are involved in the mutation residues, it is
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a good strategy to turn the target to be amidated to approach
electric neutrality. When both negatively and positively charged
residues located at the same position were failed to depress the
Eij values or turned to the opposite ones, the charged residues
will attempt to be alanine. All three-dimensional (3D) structures
of At-ATA were visualized using PyMOL 2.0.7 software (http://
pymol.org).

Site-Directed Mutagenesis
The At-ATA gene from A. terreus was cloned into pET-28a(+),
using Nco I and Xho I, and transformed into E. coli DH5a.
All primers used for site-directed mutagenesis are listed in
Supplementary Table 1. For themutagenic PCR, first stage: 98◦C
for 1min, one cycle; second stage: 98◦C, 15 s/55◦C, 15 s/72◦C,
2min, 30 cycles; and third stage: 72◦C for 10min, one cycle; 2×
PrimeSTAR R© Max DNA polymerase (1×, 25 µL), forward and
reverse primers (10µM, 1µL each) together with template (pET-
28a(+)-At-ATA; 0.1 ng/µL, 2 µL), and diluted with ddH2O to 50
µL. The PCR products were purified using an EasyPure R© PCR
Purification Kit. Following depuration, Dpn I (20U) was added
to the buffer, and the mixture was incubated for 3 h at 37◦C and
transformed into E. coli BL21 (DE3) bacteria by heat shock. After
screening on a Luria-Bertani (LB) plate containing 50µg/mL
kanamycin and incubated at 37◦C overnight, the sequence of the
mutated plasmid DNA was aligned and checked.

Protein Expression and Purification
The colony was designed by transferring the recombinant
plasmid into E. coli BL21 (DE3) using the EasyPure R© HiPure
Plasmid MaxiPrep Kit. Protein was expressed by adding a
colony to LB-Kan medium (5mL; 50µg/mL), and the strain
was grown at 37◦C and 200 rpm for 6 h, as the OD600 reached
∼0.6. The culture was then added to LB-Kan medium (200mL;
50µg/mL) and allowed to continue growing at 37◦C and 180
rpm for another 3 h. Thereafter, the protein expression was
induced by adding IPTG to a final concentration of 1mM and
returned to 25◦C, 150 rpm, for 20 h. Subsequently, the cells
were centrifuged at 4◦C (6,000 × g, 6min), then washed twice
with buffer A (50mM sodium phosphate buffer, and pH 8.0).
The cells were later dissolved in 55mL of buffer B (300mM
NaCl, 50mM sodium phosphate buffer, 20mM imidazole, and
pH 8.0) and disrupted using a high-pressure homogenizer (ATS,
Jiangsu, People’s Republic of China) for 1min in 140 mPa
until the mixture became clear. After the protein solution was
centrifuged at 8,000 rpm for 55min at 4◦C, the purified protein,
containing an N-terminal His6-tag, was attained using a Ni-
NTA Sefinose column and eluted with buffer C (300mM NaCl,
50mM sodium phosphate buffer, 250mM imidazole, and pH
8.0). Furthermore, SDS-PAGE (12% separating and 5% stacking
gels) and a Modified Bradford Protein Assay Kit (Sangon Biotech
Co., Ltd. Shanghai, China) were used to analyze purified proteins.
Protein concentrations were determined by the Bradford method
using BSA as a standard.

Thermostability of the At-ATA and Variants
Both the half-life (t1/2) and half-life temperature (T10

50) values
characterize the thermostability of the enzyme. t1/2 is defined as

the time when the residual activity of At-ATA and its mutants
was reduced to 50% of its original activity at 40◦C. Similarly,
T10
50 refers to the temperature at which the enzyme activity was

reduced to half of the original activity after heat treatment at a
continuous temperature for 10 min.

The purified At-ATA and its mutants were incubated for 0–
30min at 40◦C, and then cooled on ice for 10min. Enzyme
activity test was performed at 25◦C for 3min. An exponential
function model: Exp2PMod1 [formula: y = exp(-kd·t)] by
nonlinear regression was used to fit our data using Origin 8.0,
then the first-order rate constants (kd) and 50% of relative
enzyme activity were determined. In addition, the enzyme
solution was incubated for 10min at temperatures of 4, 25,
35, 37, 40, 42, 45, 50, and 55◦C, and then cooled on ice for
10min. The data were fitted to a four-parameter Boltzmann
sigmoidal function reformed with the Levenberg-Marquardt
iterative algorithm. The formula is presented in Equation (1).

R = A+
B− A

1+ e
(Tm−T)

C

(1)

Where R is the percentage of residual activity at temperature T,
A, and B are the pretransitional and posttransitional percentages
of residual activity, respectively, and C is the slope factor. In the
absence of treatment, Tm = T0.

Differential scanning fluorimetry (DSF) is a rapid and highly
efficient method for identifying protein thermostability (Niesen
et al., 2007). The protein unfolding temperature was gauged by
increased fluorescence of the dye molecules. The dye molecules
have affinity for hydrophobic portions of the protein, exposed
as the protein unfolds. The mixture consisted of 1 mg/mL
pure enzyme, 1× SYPRO Orange dye (dissolved in DMSO) and
diluted with buffer C (150mM NaCl, 50mM sodium phosphate
buffer, and pH 8.0) to 50 µL. The sample with buffer C instead of
pure enzyme was used as the negative control. Themeasurements
were performed on a StepOne Real-Time PCR System (Applied
Biosystems, USA). The temperature from 25 to 70◦Cwas scanned
in 0.7◦C increments, with each temperature maintained for 30 s.
The excitation and emission wavelengths were 490 and 605 nm,
respectively. The melting temperature Tm was calculated using
the formula shown in Equation (2):

y = UF +
NF − UF

1+ eTm−x
α

(2)

Where UF and NF are the minimum and maximum emission
fluorescence intensities, respectively, and α is the slope of the
curve within Tm.

Enzyme Activity Assay and Kinetic
Parameters
The activities of the wild-type and mutant strains were measured
as described by Schätzle et al. (2009). One unit of activity
was defined as the amount of enzyme required to release 1
µmol of acetophenone per min under the assay conditions.
The substrate pre-mixture was prepared containing 2.5mM
1-(R)-PEA, and 2.5mM pyruvate, 0.1mM PLP and 0.25%
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FIGURE 1 | Total energy of each chargeable residue. Positive value indicates the overall contribution of repulsive force to the thermal stability of protein structure,

whereas negative value represents the overall contributions from gravitation, which is beneficial to the thermostability of the protein structure.

(w/v) DMSO in 180 µL of buffer A, and 20 µL of enzyme
concentrated with buffer A. The reaction was measured in
UV 96-well microtiter plates at 25◦C and 245 nm for 3min,
and the production of acetophenone was monitored using
an MD 190 photometer (Molecular Devices, Sunnyvale, CA,
USA). The kinetic parameters of At-ATA for 1-(R)-PEA and
pyruvate were determined by measuring the activities at different
substrate concentrations when either R-MBA or pyruvate was
a fixed concentration of 2.5mM, and the other substrate was
changed at 0-3.0mMuntil substrate inhibition was observed. The
kinetic results were fitted to the Michaelis-Menten equation in
Origin 8.0.

Molecular Dynamics Simulation
We redesigned the 3D structure of At-ATA combined with
PLP based on the crystal structure of At-ATA (PDB ID:
4CE5) from the Protein Data Bank (http://www.rcsb.org).
In view of the pretreatment of enzyme without substrate,
we had to delete the free Lys180 and PLP-amino donor
compound (PDG), and combined PLP with Lys180. According
to the experimental conditions, the protonation states of
all ionizable residues were assigned based on pKa values
from the PROPKA software in combination with visual
inspection of local hydrogen bonding networks using
Discovery Studio 2018 at pH 8.0, including the protonation
status of ionizable residues and lysine affected by the
pocket environment.

MD simulation was performed at a constant temperature
(313K) for 50 ns using the Amber 14 force field of YASARA
(version 16.4.6) software (http://www.yasara.org). The 3D
structures were filled with water with a density of 0.998 mg/L
and inserted into a cube with edge lengths of 10 Å. Sodium
and chloride ions (0.9%) were added as counter ions to form
an electrically neutral system, and the ionizable groups were
protonated according to their pKa values at pH 8.0 in the
medium. The systems were optimized by three-step energy
minimization at the molecular mechanics (MM) level to adjust
the poor interatomic interactions. First, the water molecules were
minimized while keeping the protein and substrate constrained.
Then, the side chains were allowed to relax while the main
protein chains were restrained. Finally, the entire system was
completely relaxed without any restrictions. After each energy
minimization was completed, a 1000-step conjugate gradient
iteration loop was performed. Subsequently, the optimized
system was gradually heated from 0 to 313K in a constant
volume environment for 150 ps, and then balanced for 150
ps in a constant pressure environment with the density of the
system gradually becoming 0.997 g/cm3. Finally, a 50 ns MD
simulation with a step length of 2.5 fs was completed under
constant pressure conditions, and the trajectory was collected
every 25 ps. The cutoff value of the van der Waals force
and electrostatic interaction during the simulation was handled
at 8.0 Å. Analyses of protein structures including root mean
square deviation (RMSD) of backbone atom positions, and root
mean square fluctuation (RMSF) for individual residues were
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FIGURE 2 | The thermal stability of wild-type At-ATA and its mutants by the alanine scanning: (A) the enzymatic activity of wild-type At-ATA and the four variants, (B)

the thermal deactivation of wild-type At-ATA and the four variants at various temperatures for 10min (T10
50), (C) the thermal deactivation half-life (t1/2) of wild-type

At-ATA and the three variants at 40◦C. Black, Wild-type; red, E133A; blue, D224A; and purple, E253A.

performed using YASARA (Purmonen et al., 2007; Dong et al.,
2018).

RESULTS

Selection of Mutants With Increased
Thermal Stability in silico
To predict the residue with an optimized value and analyze
the flexibility of the surrounding amino acid residues, ETSS
was used to evaluate the interaction of charged amino acids
(Zhang et al., 2014). The program was used to calculate the
interaction parameters of At-ATA, and the total Eij shown in
Figure 1 reveals that there are 95 charged amino acids in the
monomer ofAt-ATA. Thus, we selected amino acids with positive
values and far from the active center to mutate to amino acids
with opposite or neutral charges. Therefore, four high-value
residues located in different loop regions from the surface of the
protein were selected (E133, D224, E253, and E262 shown in
Supplementary Figure 1).

Thermostability Analysis of the Mutant
At-ATA by Alanine Scanning
Wild-type was scanned for alanine by site-directed mutagenesis
and successfully expressed in E. coli BL21(DE3). As shown

in Supplementary Figure 2, the four purified variants (E133A,
D224A, E253A, and E262A) showed a single band with an
apparent molecular mass of 35-45 kDa as the wild-type enzyme
(36.1 kDa). Except for the mutant E262A, other mutants showed
an increased thermostability and activity comparable to that
of the wild-type enzyme (data shown in Figure 2A), and its
t1/2 and T10

50 values were measured. Among them, the D224A
mutant showed a significant 3.05-fold increase in t1/2 at 40◦C and
withstood a higher temperature value (T10

50) of 43.1
◦C, compared

to the wild-type enzyme with a t1/2 of 6.9min and T10
50 of 38.5

◦C
(Figures 2B,C and Supplementary Table 2). The results indicate
that eliminating the charge of acidic residues on the At-ATA
surface may improve the thermostability.

Thermostability Analysis of the Mutant
At-ATAs by Basic-Amino-Acid Scanning
Suitable basic amino acids were selected as targets, and nine
mutants (E133H, E133K, E133R, E133Q, D224H, D224K,
D224R, E253H, and E253K) were obtained to analyze the change
rule of thermostability affected by the electrostatic interaction
combined with the results of alanine scanning. The new mutant
consistently showed higher activity at 40◦C. Their stabilities were
then compared at the preference temperatures. As shown in
Figure 3 and Table 1, the T10

50 values for the E133Q, D224K,
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FIGURE 3 | The thermal stability of wild-type At-ATA and its mutants in each site. (A–C) the thermal deactivation of wild-type At-ATA and the 12 variants at various

temperatures for 10min (T10
50), (D–F) the thermal deactivation half-life (t1/2) of wild-type At-ATA and the 12 variants at 40◦C.

and E253A mutants, which is the best one in each mutation
group, were 41.12, 44.59, and 40.69◦C, respectively, compared
with that of the wild-type (38.5◦C). The three mutants had
consistently higher residual activity at 40◦C, which may keep
half of the activity 1.71-fold, 2.17-fold, and 4.24-fold higher than
the wild-type. The melting profiles of the four enzymes were
determined by monitoring the fluorescence of SYPRO Orange
dye using DSF over the temperature range of 25–70◦C, as a
method for enzyme thermostability (Zhu et al., 2019). A melting
temperature (Tm) of 47.6 ± 0.2◦C was obtained with the fitting
data for D224K (Table 1 and Supplementary Figure 3), with
R2 > 0.99 in both cases. The data indicate the consistency of
thermodynamic stability.

Kinetics of At-ATA and Its Mutants
The At-ATA fit the single-substrate Michaelis-Menten kinetics
at 25◦C when pyruvate or 1-(R)-PEA was used as the single
variable. Kinetic parameters were measured at 25◦C by carrying
out 3min reactions over a range of pyruvate or 1-(R)-PEA from
0.125 to 3.0mM giving the kinetic values shown in Table 2. The
k
pyruvate
cat values for E133Q, D224K, and E253A were 2.72-fold,
2.60-fold, and 2.17-fold higher than the wild-type, and for 1-(R)-

PEA, the k
1−(R)−PEA
cat values for the E133Q, D224K, and E253A

were 1.82-fold, 1.01-fold, and 2.20-fold higher than that of the
WT, respectively, showing lower reaction energy requirements
for both substrates. The K

pyruvate
m for three mutants were 0.50,

0.35, and 0.69mM, which were 2.17-fold, 1.52-fold, and 3.00-fold

TABLE 1 | The stability of the wild-type and stabilized mutant At-ATAs.

Name T10
50 (◦C) t1/2 (min) Tm (◦C)

WT 38.5 ± 0.5 6.9 ± 0.6 41.3 ± 0.2

E133Q 41.1 ± 0.2 15.0 ± 0.5 42.6 ± 0.2

D224K 44.5 ± 0.2 29.2 ± 0.2 47.6 ± 0.1

E253A 40.7 ± 0.5 11.8 ± 0.6 42.4 ± 0.2

higher than that of the wild-type. In contrast, the K
1−(R)−PEA
m

values for the three mutants were decreased to 0.16, 0.14, and
0.17mM compared with that of the wild-type (0.23mM). Thus,
the kcat/Km values of the E133Q, D224K, and E253A mutants
were 2.74, 3.76, and 2.51 L/(s·mmol) for 1-(R)-PEA, and 7.46,
4.64, and 8.38 L/(s·mmol) for pyruvate, respectively.

Conformation and Energy Change
Revealed by Molecular Dynamics
Simulation
The stability structure of At-ATA and its mutants at 313K was
established by MD simulation and further analyzed. Analysis
of the residual level fluctuations demonstrated that the wild-
type enzyme is more flexible than mutants at the 130-135 site
(belonging to α-helix 8) and 148-158 site (belonging to α-helix 9)
(Figures 4a,b and Supplementary Figures 4A,B). In particular,
the largest fluctuations at residue Arg131 in the D224K model
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TABLE 2 | Steady-state kinetic constants of wild-type and stabilized mutant At-ATAs.

Name k
pyruvate
cat K

pyruvate
m kcat/K

pyruvate
m k

1−(R)−PEA

cat K
1−(R)−PEA

m kcat/K
1−(R)−PEA

m

(s−1) (mM) (L/(s·mmol)) (s−1) (mM) (L/(s·mmol))

WT 0.50 ± 0.01 0.23 ± 0.02 2.22 0.64 ± 0.01 0.23 ± 0.03 2.82

E133Q 1.36 ± 0.03 0.50 ± 0.01 2.74 1.17 ± 0.01 0.16 ± 0.01 7.46

D224K 1.30 ± 0.02 0.35 ± 0.02 3.76 0.65 ± 0.02 0.14 ± 0.01 4.64

E253A 1.73 ± 0.02 0.69 ± 0.01 2.51 1.41 ± 0.01 0.17 ± 0.02 8.38

FIGURE 4 | MD analysis of At-ATA and D224K using YASARA at 313K in the last 20 ns. (a) The RMSF values of At-ATA and D224K; (b) the detail RMSF values of

α-helix 8 and α-helix 9; (c,d) 3D view of two α-helix structures. The hydrogen bonds were displayed by dotted line with red and blue.

was 2.81 nm which was 1.09 less than that of the wild-type as
simulated using the RMSF. The reason for this increased stability
is likely to be the powerful hydrogen bond formed by Ile135
and Arg131, Pro132, and Glu13 from the α-helix 8, which are
2.6, 2.8, and 3.4 Å in length, respectively (Figure 4c). More
importantly, these strong hydrogen bonds reduce the distance
between α-helix 8 and α-helix 6 as shown in Figure 5, which
shorten from 12.7 to 6.5 Å in the D224K model. At the same
time, three new hydrogen bond interactions were also added at
α-helix 9, as shown in Figure 4d (Ala 276 and Val 149; Pro 152
and Met 154; Pro152 and Gln155 shown in red). In addition,
the distance of two hydrogen bonds (the NH in Met154 and
the O in Glu151, the NH in Arg156 and the O in Pro152,
shown in blue) were reduced to 1.9 and 2.3 Å, respectively,
compared with that of the wild-type. These strong hydrogen
bonds reduce the flexibility of α-helix 8 and α-helix 9 and greatly

stabilize the structure of the protein in the D224K mutant.
The RMSF shown in Figures 4a,b reveals that both E133Q and
E253A mutants are less flexible than the wild-type, although not
as stable as D224K, especially the region at α-helix 8 and α-
helix 9. Supplementary Figures 4C–F show four newly added
(red) and four shortened (blue) hydrogen bond interactions
acting on α-helix 8 and α-helix 9 in the E133Q mutant. For
the E253A mutant, five newly added (red) and two shortened
(blue) hydrogen bond interactions directly affected the activity
of α-helix 8 and α-helix 9, reducing the radius of the helix
(Supplementary Figures 4G,H).

DISCUSSION

Transaminase is a biocatalyst which can efficiently catalyze
the synthesis of chiral amines. It has become an important
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FIGURE 5 | 3D view of the surrounding structure of α-helix 8 surrounding on

the wild type (blue) and D224K (green).

research topic to improve the thermal stability of transaminase
by site-directed mutagenesis to expand its application in
industry. At present, different protein engineering strategies have
been used to improve the thermal stability of transaminases.
Among them, some good protein engineering strategies
can reliably predict mutants with improved stability, and
are easy to implement (Jones et al., 2017). In this work,
the results showed that the combination of computer-aided
rational design and amino acid scanning proved to be
promising for finding mutation candidates with enhanced
thermal stability.

In this study, four key residues of At-ATA, E133, D244,
E253, and E262, were identified to redesign by site-directed
mutagenesis combined with the open-source software
ETSS. Among them, the alanine scanning results showed
that three mutants (E133A, D224A, and E253A) could
enhance the thermostability of transaminase. Based on
the above results, we screened the most suitable charged
amino acids for each site. Finally, E133Q, D224K, and
E253A were confirmed to have positive effects on the
stability of transaminase. Viewed in PyMOL 2.0.7, Glu133
is located at helix 5, whereas Asp224 belongs to the
loop area connected to β-sheet 12 and β-sheet 13, and
Glu253 is located at a loop area between helix 8 and
β-sheet 12.

To further study the results of the experiment, a virtual
mutation model was built by Discovery Studio 2018, and
recalculated by YASARA and ETSS. Intermolecular interactions,
such as hydrogen bonds, hydrophobic interactions, van der
Waals forces, ionic bonds and disulphide bonds play a decisive
role in stabilizing the tertiary structure of proteins (Fan et al.,
2018; Xie et al., 2019). MD simulation results also support
the key role of substitution of positively charged amino acids
(glutamine, lysine, histidine, and arginine) or neutral amino acids

(alanine) in thermal stability. As shown in Figure 4c, a special
“claw structure” was found in D224K mutant, in which Ile135
combined with Arg131, Pro132, andGlu133 three residues. These
three hydrogen bonds were formed compared with the wild-
type, resulting in the great stability of α-helix 8. The “claw” was
connected between α-helix 8 and α-helix 6, thus it would be more
inward and closer to the center of the mutant than the wild-type
(Figure 5). In addition, the O atom in the main chain of Pro152
formed a hydrogen bond with the N atom in the main chain of
Met154, Gln155, and Arg156, which led to the Pro152 firmly
catching hold of the center of α-helix 9. Further, a hydrogen
bond is formed between Val149 and Ala276 with 2.3 Å, thus
approaching the β-sheet 15 and 16 with Ala276 to avoid large
fluctuation (Figure 4d). For E133Q, the interactions between
Thr146 and Glu155 shortened the distance between α-helix 9 and
β-sheet 7 and 16, respectively (Supplementary Figures 4C–F).
Similar to the structure of D224K, the strategy of alternating
hydrogen bonding reduces the fluctuation range of α-helix 9
in E253A (Supplementary Figures 4G,H). In addition, based
on the ETSS analysis, when Asp224 was mutated to Lys224,
the Eij value was decreased from 22.16 to 17.37 kJ/mol in
the D224K mutants. For E133Q and E253A mutant, the Eij
values were decreased by 2.17 and 2.28 kJ/mol, respectively,
compared with that of the wild-type. This indicates that the
entire energy contribution is transferred from an unfavorable to
favorable state, which improves the thermal stability significantly.
Furthermore, it was found that the effect of oppositely charged
residues on the charged amino acids at different positions
was different.

CONCLUSION

In this study, we obtained three stable mutants, E133Q, D224K,
and E253A, according to the ETSS strategy based on the TK-
SA algorithm. The mutant D224K not only improved the
thermal stability, but also increased the enzyme activity to
a certain extent. At the same time, we analyzed hydrogen
bond interactions in the two helix regions (α-helix 8 and
α-helix 9) by MD simulation, and these were significantly
different from the wild type. This study explored the important
influence of charge interaction on the structure of transaminase,
and provided a feasible strategy for improving the thermal
stability of transaminase and promoting its application in
industrial production.
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