
genes
G C A T

T A C G

G C A T

Article

Unmasking Intra-Tumoral Heterogeneity and Clonal
Evolution in NF1-MPNST

Chang-In Moon 1,†, William Tompkins 2,†, Yuxi Wang 1, Abigail Godec 3, Xiaochun Zhang 1,
Patrik Pipkorn 4,5 , Christopher A. Miller 5,6, Carina Dehner 7, Sonika Dahiya 5,7 and
Angela C. Hirbe 1,5,*

1 Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis,
MO 63110, USA; moonchangin@wustl.edu (C.-I.M.); yuxi.w@wustl.edu (Y.W.); zhang.x@wustl.edu (X.Z.)

2 Washington University School of Medicine, St. Louis, MO 63110, USA; wtompkins@wustl.edu
3 College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; godecabi@msu.edu
4 Department of Otolaryngology, Division of Head and Neck Surgery, Washington University School of

Medicine, St. Louis, MO 63110, USA; ppipkorn@wustl.edu
5 Siteman Cancer Center, St. Louis, MO 63110, USA; c.a.miller@wustl.edu (C.A.M.); sdahiya@wustl.edu (S.D.)
6 McDonnell Genome Institute, Division of Oncology—Stem Cell Biology, Department of Medicine,

Washington University School of Medicine, St. Louis, MO 63110, USA
7 Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110,

USA; cdehner@wustl.edu
* Correspondence: hirbea@wustl.edu; Tel.: +1-314-747-3096
† These authors contributed equally.

Received: 6 March 2020; Accepted: 30 April 2020; Published: 1 May 2020
����������
�������

Abstract: Sarcomas are highly aggressive cancers that have a high propensity for metastasis, fail to
respond to conventional therapies, and carry a poor 5-year survival rate. This is particularly true for
patients with neurofibromatosis type 1 (NF1), in which 8%–13% of affected individuals will develop a
malignant peripheral nerve sheath tumor (MPNST). Despite continued research, no effective therapies
have emerged from recent clinical trials based on preclinical work. One explanation for these failures
could be the lack of attention to intra-tumoral heterogeneity. Prior studies have relied on a single
sample from these tumors, which may not be representative of all subclones present within the
tumor. In the current study, samples were taken from three distinct areas within a single tumor
from a patient with an NF1-MPNST. Whole exome sequencing, RNA sequencing, and copy number
analysis were performed on each sample. A blood sample was obtained as a germline DNA control.
Distinct mutational signatures were identified in different areas of the tumor as well as significant
differences in gene expression among the spatially distinct areas, leading to an understanding of
the clonal evolution within this patient. These data suggest that multi-regional sampling may be
important for driver gene identification and biomarker development in the future.

Keywords: NF1; MPNST; genomics; heterogeneity

1. Introduction

Malignant peripheral nerve sheath tumor (MPNSTs) is the sixth most common soft tissue
sarcoma [1] and has an incidence rate of 0.1–0.2 per 100,000 persons per year [2]. MPNSTs are often
associated with neurofibromatosis type 1 (NF1). The incidence rate of MPNSTs in patients with NF1 is
much higher than that of the general population, estimated to be 1.6 per 1000 per year, or a lifetime
risk of 8–13% [3]. Approximately 50% of MPNSTs occur in patients with neurofibromatosis [4–7],
and the other 50% of MPNSTs occur sporadically or in the setting of previous radiation therapy [4,6].
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In the setting of NF1, MPNSTs often arise within a pre-existing benign nerve sheath tumor (plexiform
neurofibroma) [4,7].

Prognosis remains poor for patients with MPNST despite multi-modality therapy [2,5–10]. In the
setting of metastatic disease, treatment is limited to cytotoxic chemotherapy, typically consisting of
single agent doxorubicin or a combination of doxorubicin and ifosfamide [11–13].

A number of different genes have been implicated in the development of MPNSTs. One of the
most commonly used models for preclinical testing was developed by Cichowski et al. and Vogel et al;
they demonstrated that mice with germline variants in Nf1 and Tp53 develop MPNSTs, supporting a
cooperative and causal role for these tumor suppressors in the context of MPNST formation [14,15].
Other groups have found a reduction in expression of PTEN, a tumor suppressor in the PI3K/AKT/mTOR
pathway, in MPNSTs compared to benign nerve sheath tumors in a manner that is not regulated by
NF1 [16]. Keng et al. went on to demonstrate the cooperative roles of Pten and Nf1 in the tumorigenesis
of MPNSTs in vivo with transgenic mouse models [17]. Gregorian et al. further elucidated the
cooperative relationship between k-ras activation and Pten deletion, showing that both variants in
combination led to 100% penetrable development of MPNSTs [18]. Another gene implicated in MPNST
pathogenesis is INK4A, a tumor suppressor encoding both p16 and p19. Deletions in this gene have
been identified in MPNSTs but not in benign neurofibromas [19]. Lu et al. demonstrated a difference in
aberrant expression of ATRX, a DNA helicase that plays a role in chromatin regulation and maintenance
of telomeres, between MPNSTs and benign neurofibromas [20]. Additionally, variants in EED and
SUZ12 have been observed in MPNST. These genes code for components of the PRC2 complex which is
involved in transcriptional repression. Lee et al. showed loss-of-function somatic alterations of PRC2
components in 92% of sporadic, 70% of NF1-associated and 90% of radiotherapy-associated MPNSTs.
Further, introduction of the lost PRC2 component in a PRC2-deficient MPNST cell line decreased cell
growth [21]. Others have found alterations such as structural alterations of PDGFRA (platelet-derived
growth factor-α) in 26% of MPNST samples [22]; increased expression of EGF-R (epidermal growth
factor receptor) by immunohistochemistry in MPNSTs [23]; and IGFR1 gene amplification in 24% of
MPNSTs [24].

Despite all of this research, no effective therapies have emerged from recent clinical studies based
on this genomic data and subsequent preclinical studies. Intra-tumoral heterogeneity is a possible
reason for these shortcomings. Prior studies have relied on a single sample from these tumors. All the
subclones within a tumor may not be captured by this approach. Our aim in this study is to investigate
intra-tumoral heterogeneity more thoroughly through analysis of samples taken from multiple sites of
the same MPNST.

2. Materials and Methods

2.1. Study Approvals

Blood and tumor were obtained from an individual diagnosed with NF1 according to established
criteria [25] and treated for a MPNST at Washington University/St. Louis Children’s Hospital NF
Clinical Program (St. Louis, MO, USA). The human tumor samples were collected under an approved
IRB protocol (#201203042) at Washington University, and the patient was appropriately consented.

2.2. Sample Collection

Samples were taken from three distinct areas within a single tumor from a patient with an
NF1-MPNST immediately after surgical resection with guidance from a pathologist (SD). While area
“1” represented solid, tan homogeneous tumor lacking hemorrhage and/or necrosis, areas “2” and
“3” of the tumor grossly appeared necrotic and hemorrhagic respectively. 20 g of tissue was taken
from each area. Each area was then divided to be used for RNA extraction, DNA extraction, and slide
preparation to analyze the histology. A gross image of the tumor was taken at this time and is shown
as Figure 1.
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51 microscope using an Olympus DP71 digital camera, and DP Controller software. Tumor purity 

was estimated based on morphologic review of the entire hematoxylin-eosin stained section 

estimating the number of tumor cells, stromal cells, lymphocytes, and extravasated red blood cells. 

Two pathologists reviewed these slides independently providing an estimated percentage of total 

tumors cells per slide. 

2.4. Sequencing and Bioinformatics Analysis 

Whole exome sequencing (WES), RNA sequencing (RNA-Seq), and copy number analysis 

(CNVkit) [26] were performed on each sample and compared to a blood sample as a germline DNA 

control. Both Illumina Whole Genome Sequencing (eWGS) of 3 tumor samples and 1 PBMC normal 

sample, and Illumina RNA Sequencing of the 3 tumor samples were generated from the sampled 
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2.4.1. Library Construction and Sequencing 

Each tumor had 2 enriched libraries constructed (n = 6), and the PBMCs had a single enriched 

library constructed (n = 1). Exome libraries were captured with an IDT exome reagent, then pooled 

with a WGS library for sequencing on an Illumina HiSeq4000 with at least 1000x coverage. RNA was 

prepared with a TrueSeq stranded total RNA library kit, then sequenced on an Illumina HISeq4000 
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2.4.2. IDT Exome Sequencing Variant Detection 

Genomic data were aligned against reference sequence hg38 via BWA-MEM [27] with Base 

Quality Score Recalibration (BQSR). Structural variants (SVs) and large indels were detected using 

manta [28]. SNVs and small indels were detected using VarScan2 [29], Strelka2 [30], MuTect2 [31], 

and Pindel [32] via the somatic pipelines available at https://github.com/genome/analysis-workflows, 

Figure 1. Malignant peripheral nerve sheath tumor (MPNST) sampled areas. Area 1 shows an area
centrally located in MPNST, Area 2 an area of hemorrhage, and Area 3 an area of necrosis.

2.3. Histology

Images of the hematoxylin-eosin sections were taken (20X magnification) using an Olympus BX-51
microscope using an Olympus DP71 digital camera, and DP Controller software. Tumor purity was
estimated based on morphologic review of the entire hematoxylin-eosin stained section estimating the
number of tumor cells, stromal cells, lymphocytes, and extravasated red blood cells. Two pathologists
reviewed these slides independently providing an estimated percentage of total tumors cells per slide.

2.4. Sequencing and Bioinformatics Analysis

Whole exome sequencing (WES), RNA sequencing (RNA-Seq), and copy number analysis
(CNVkit) [26] were performed on each sample and compared to a blood sample as a germline DNA
control. Both Illumina Whole Genome Sequencing (eWGS) of 3 tumor samples and 1 PBMC normal
sample, and Illumina RNA Sequencing of the 3 tumor samples were generated from the sampled areas.

2.4.1. Library Construction and Sequencing

Each tumor had 2 enriched libraries constructed (n = 6), and the PBMCs had a single enriched
library constructed (n = 1). Exome libraries were captured with an IDT exome reagent, then pooled
with a WGS library for sequencing on an Illumina HiSeq4000 with at least 1000x coverage. RNA was
prepared with a TrueSeq stranded total RNA library kit, then sequenced on an Illumina HISeq4000
with 72M reads per sample.

2.4.2. IDT Exome Sequencing Variant Detection

Genomic data were aligned against reference sequence hg38 via BWA-MEM [27] with Base Quality
Score Recalibration (BQSR). Structural variants (SVs) and large indels were detected using manta [28].
SNVs and small indels were detected using VarScan2 [29], Strelka2 [30], MuTect2 [31], and Pindel [32]
via the somatic pipelines available at https://github.com/genome/analysis-workflows, which includes
best-practice variant filtering and annotation with VEP (Variant Effect Predictor, version 95) [33].

https://github.com/genome/analysis-workflows
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Manual review was used to remove additional sequencing artifacts. Germline variants and somatic
variants reported on variant detecting pipeline were compared to see any intersection of variants.
Any intersecting variants were removed from the somatic variant gene list, thus filtering out the
germline variants. Common variants with 1000 genome MAF (minor allele frequency) > 0.05 were
filtered out. Waterfall somatic variant plots were created with GenVisR [34] by including somatic
variants that occurred in each area. Variants reported on the waterfall plot are most likely to be
pathogenic, which is reported via VEP. These variants were not reported as a somatic variant in
COSMIC (Catalogue Of Somatic Mutations In Cancer) [35] and ClinVar [36] archive, thus these variants
are best classified as variants with unknown significance. In order to predict clinical significance and
predictions of the functional effects of these variants, each variant was reviewed on SIFT [37] and
Polyphen [38]. IMPACT rating was determined by VEP for each non-coding variant.

2.4.3. Copy Number Analysis

CNVkit was used to infer and visualize copy number from high-throughput DNA sequencing data.
Coverage for each bait position in the exome reagent was calculated, then segments of constant copy
number were identified using circular binary segmentation. Data were plotted to provide visualization
of CNVs.

2.4.4. Inference of Clonal Phylogeny

SciClone [39] and ClonEvol [40] were utilized to attempt to perform a phylogeny inference.
However, the analysis was complicated by the abundance of copy number-altered regions in these
tumors, and these standard algorithms were unable to automatically perform that inference. Manual
review of the shared and private single nucleotide variants and large copy number altered areas,
though, revealed only one possible phylogeny for this tumor.

2.4.5. RNA Sequence Preprocessing

RNA-Sequence (RNA-seq) was trimmed from 3′-end with a minimum quality Phred score of 20
and aligned against hg38—Ensembl Transcripts release 99 via BWA-MEM. Pre/post quality control
and full expectation-maximization (EM) quantification were run via Partek® Flow® [41]. Gene counts
and transcript counts were normalized by CPM (counts per million) by using edgeR [42] package.
Heatmap visualizations were created using gplots [43] R package (Warnes, G.R. Seattle, WA, USA).

2.4.6. Gene Differential Expression Analysis

The gene-specific analysis (GSA) method was used to test for differential expression of genes or
transcript between sample regions in Partek® Flow® [44]. Differential expressed genes were defined
as the following statistic parameters: p-value <= 0.05; FDR step up <= 0.05; Fold Change < −2 or >2.
From differentially expressed genes, a GO enrichment test was used to functionally profile this set of
genes, to determine which GO terms appear more frequently than would be expected by chance when
examining the set of terms annotated to the input genes, each associated with a p-value.

2.4.7. Pathway Analysis

A list of genes in copy number aberrant (CNA) regions was extracted. CNA regions were defined
as copy number regions greater than 3 or copy number regions less than 1. For each area, we intersected
the list of genes that are located in the CNA regions with the differentially expressed gene list reported
in the RNA differential expression analysis (p-value <= 0.05). PantherDB [45] was utilized to discover
GO terms and pathways that may be affected by these genes.
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3. Results

3.1. Patient Information

Patient characteristics can be seen in Table 1. The patient was a male with a history significant
for a clinical diagnosis of neurofibromatosis type 1—patient had a plexiform neurofibroma, spinal
neurofibromas, café au lait macules, and multiple first-degree relatives with neurofibromatosis type
1—and was 40 years old at the time of diagnosis of MPNST. He presented with a large tumor located
in the left neck. Resection showed a high-grade malignant peripheral nerve sheath tumor, 10.2 cm
in the largest dimension, with negative margins. The patient did not receive any adjuvant therapy
for his MPNST following initial resection due to poor performance status. He recurred 21 months
after the initial diagnosis and ultimately died secondary to complications from metastatic disease
(33 months after initial diagnosis). Samples were taken in three different locations within the primary
tumor immediately following the inititial resection for the purpose of this study.

Table 1. Patient Characteristics.

Age at
Diagnosis,

Years
Sex Tumor

Location
Tumor

Size/Grade
Surgical

Margin Status
Disease
Status Metastasis Adjuvant

Treatment
OS *,

Months

40 Male Left neck 10.2 cm,
Grade 3 1 Negative Recurred Lung None 33

1 By French Federation of Cancer Centers Sarcoma Group Grading System (FNCLCC) [46]; * OS = Overall
Survival-time from diagnosis of MPNST to death.

3.2. Histology of Biopsy Sites

We first reviewed the H&E images of the tumor to correlate histology to the gross images of
the tumor. H&E stained sections in Figure 2 show representative images of the three sampled areas.
Area #1 demonstrates tissue of a spindle cell neoplasm of neural differentiation arranged in fascicles
with elongated hyperchromatic nuclei and a mild to moderate amount of cytoplasm. The tumor purity
of this sample was >95%. Area #2 shows spindled cells in a background of hemorrhage, a finding
commonly seen in these high-grade tumors with a tumor purity of >95%. Area #3 represents an area of
necrosis, another characteristic finding for MPNST. This sample showed >95% tumor purity.
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Figure 2. H&E stained sections of the biopsy sites. H&E stained sections (20X) show areas (#1) of
relatively uniform, spindled cells with fascicular growth pattern, characteristic for MPNST. Sampled
area #2 shows evidence of hemorrhage within the tumor, a feature commonly seen in MPNST. Area #3
shows abundant tumor necrosis.

3.3. Whole Exome Sequencing (WES), RNA Sequencing (RNA-Seq), and Copy Number Analysis

We first interrogated the sequencing data to identify the germline NF1 variant within this
tumor. Figure 3 shows a lollipop plot identifying the patient’s likely NF1 germline variant based on
exclusion of any variants with minor allele frequency >0.05 in the 1000 genomes database. Next, to
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investigate intra-tumoral heterogeneity within the sample, RNA sequencing of the three sample sites
was performed and is shown in Figure 4.
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Figure 4. RNA-Seq Heatmap. Normalized read counts by counts per million (CPM) in differentially
expressed genes are depicted here. Distinct gene expression profiles can be appreciated in each biopsied
area. Each column is depicted as list of genes.

Distinct gene expression profiles were observed in each of the areas sampled. The top 16
differentially expressed genes are listed in Table 2 and include a number of genes involved in
transcription and translation. We next performed a copy number analysis of the three biopsy sites to
determine whether or not different copy number alterations were observed in each area (Figure 5).
Distinct copy number signatures can be appreciated in each of the three samples further illustrating
intra-tumoral heterogeneity. Additionally, we evaluated the single nucleotide variants found in each
of the samples. This broad overview of all somatic variants is depicted in the waterfall plot in Figure 6.
Again, distinct somatic variants can be appreciated across different areas. We next explored the
potential significance of these variants through further bioinformatics analysis. While the biological
significance of each of these variants is uncertain, there is evidence that some of these variants may play
a role in the pathogenesis. For each variant in a coding region, CBioPortal [47] was queried for each
gene to determine if the somatic variant was in a functional domain. Additionally, the RNAseq data
was queried to determine if the variant in a specific area of the tumor influenced the gene expression of
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that gene in a specific area. Finally, SIFT and Polyphen were used to predict pathogenicity. Table 3a,b
list the somatic variants in the coding region that may play a role in the pathogenesis of this tumor
based on the above criteria. For those mutaions in non-coding regions, the Ensembl Variant Effect
Predictor [33] was used to determine whether or not the variant would be predicted to affect gene
expression. All of the identified variants were classified as modifiers, indicating that pathogenicity
prediction is difficult, thus the effects of these variants are unclear. (Table 3c). Further details of
the somatic variants can be found in Supplemental Table S1. Next, a gene ontology analysis was
performed. To do this, a list of genes in copy number aberrant (CNA) regions was extracted. For each
area, the list of genes located in the CNA regions intersected with the differentially expressed gene
list reported in the RNA differential expression analysis, and PantherDB [45] was utilized to identify
pathways that may be affected by these genes. Table 4 displays the unique genes in each area with
copy number aberrations and alterations in gene expression. Genes depicted in Area 1 have been
reported in the literature to serve a myriad of functions in tumorigenesis, including base excision repair,
nucleotide excision repair, and alternative splicing [48–55]. Those in Area 2 are involved in several
different pathways, including transcriptional regulation in addition to ribosomal and proteasomal
function [56–60]. Finally, the genes in Area 3 consist of several ribosomal subunits and small nucleolar
RNAs, suggesting that both translation and transcription are uniquely affected compared to other
areas [61–63]. This analysis suggests that there may be different functional programs at play across
the three areas. Next, we manually reviewed the data to look for changes in other known drivers of
MPNST including TP53, ATRX, EED, SUZ12, and CDKN2A. There were no copy number changes or
somatic mutions in any of these genes. Finally, we performed a careful manual review of all of the
shared and unique somatic variants and copy number alterations in each area in order to develop a
predicted clonal evolution. Figure 7 depicts the predicted phylogenetic tree of the subclones from each
area, representing the likely clonal evolution of the tumor.

Table 2. Top Differentially Expressed Genes. The gene-specific analysis was used to test for differential
expression of genes or transcript between sample regions in Partek® Flow®. Statistical cutoff are made
by these following parameters: p-value <= 0.05; FDR step up <= 0.05; Fold Change <−2 or >2.

Gene Symbol p-Value (1 vs. 2) Fold Change
(1 vs. 2) p-Value (1 vs. 3) Fold Change

(1 vs. 3) p-Value (2 vs. 3) Fold Change
(2 vs. 3)

EEF1A1 2.04 × 10−84 −3.32 3.33 × 10−16 2.20 1.35 × 10−119 7.31

RPS27 4.32 × 10−24 −2.51 7.64 × 10−13 3.01 4.27 × 10−46 7.55

RPS27A 1.69 × 10−12 −2.62 9.42 × 10−05 2.27 4.16 × 10−21 5.95

H3C3 7.46 × 10−12 −4.51 5.05 × 10−04 11.2 5.54 × 10−09 50.6

RPLP1 2.36 × 10−10 −2.57 7.25 × 10−04 2.13 2.43 × 10−17 5.48

SNORD13 3.24 × 10−10 3.00 8.25 × 10−62 −4.91 3.52 × 10−66 −14.8

RPLP0 1.05 × 10−09 −2.26 1.60 × 10−04 2.09 1.73 × 10−18 4.72

TPI1 1.65 × 10−08 −2.27 5.61 × 10−04 2.08 6.52 × 10−16 4.72

RPL23AP42 3.77 × 10−07 −2.21 8.40 × 10−04 2.16 8.65 × 10−14 4.78

RPS23 5.34 × 10−06 −2.46 1.17 × 10−03 2.92 9.16 × 10−11 7.19

MT-TI 4.64 × 10−05 3.44 1.19 × 10−15 −3.67 6.36 × 10−20 −12.6

SNORA81 2.28 × 10−04 33.3 4.00 × 10−11 −3.39 5.12 × 10−07 −11.3

RNY1 2.45 × 10−04 2.65 4.67 × 10−24 −4.71 8.10 × 10−27 −12.5

RNVU1-31 5.00 × 10−04 −4.18 3.83 × 10−14 −17.7 7.07 × 10−13 −4.23

MT-TM 6.37 × 10−04 3.70 2.29 × 10−07 −2.89 2.69 × 10−11 −10.7

TMSB4XP6 1.16 × 10−03 3.19 2.89 × 10−04 −2.15 7.91 × 10−09 −6.87



Genes 2020, 11, 499 8 of 20

Genes 2020, 11, 499 10 of 18 

 

Area3 chr1 6181268 6209389 3.792397 RPL22 Ribosome biogenesis, protein translation 

Area3 chr17 74203581 74210655 3.363835 RPL38 Ribosome biogenesis, protein translation 

Area3 chr11 809646 812880 3.117378 RPLP2 Ribosome biogenesis, protein translation 

Area3 chr19 49496364 49499689 3.051258 RPS11 Ribosome biogenesis, protein translation 

Area3 chr19 39433206 39435948 3.408557 RPS16 Ribosome biogenesis, protein translation 

Area3 chr16 1962051 1964860 3.301972 RPS2 Ribosome biogenesis, protein translation 

Area3 chr19 8321157 8323340 3.044231 RPS28 Ribosome biogenesis, protein translation 

Area3 chr17 76557765 76565348 3.374444 SNHG16 Transcription [90] 

Area3 chr16 1962333 1962466 3.301972 SNORA10 Maturation of ribosomal RNA 

Area3 chr2 30187433 30187566 3.83836 SNORA10B Maturation of ribosomal RNA 

Area3 chr9 136726104 136726234 3.830137 SNORA17B Maturation of ribosomal RNA 

Area3 chrY 16138247 16138379 3.968437 SNORA20 Maturation of ribosomal RNA 

Area3 chr16 1965183 1965310 3.301972 SNORA78 Maturation of ribosomal RNA 

Area3 chr19 10109756 10109835 5.45924 SNORD105B Ribosomal RNA modification [63] 

Area3 chr19 49490614 49490699 3.051258 SNORD33 Ribosomal RNA modification 

Area3 chr14 21397291 21397401 3.835309 SNORD8 Ribosomal RNA modification 

Area3 chr14 21392149 21392253 3.835309 SNORD9 Ribosomal RNA modification 

 

Figure 5. Copy Number Variation Plot. Copy number variation plots for each biopsied site 

demonstrate distinct copy number signatures. 

Figure 5. Copy Number Variation Plot. Copy number variation plots for each biopsied site demonstrate
distinct copy number signatures.Genes 2020, 11, 499 11 of 18 

 

 

Figure 6. Somatic Variant Waterfall Plot. All somatic variants displayed on a waterfall plot. Each row 

represents a gene. Distinct somatic variant signatures are appreciated.  

 

Figure 7. Phylogenetic Tree. A predicted phylogenetic tree of the tumor subclones. 

4. Discussion 

Despite advances in our understanding of the pathobiology of MPNST and the identification of 

seemingly promising therapeutic targets using a single model system in preclinical studies, no 

investigational agents have demonstrated efficacy following translation to human clinical trials. One 

element that has largely been ignored in the study of MPNST has been the possible existence of intra-

tumoral heterogeneity. No single study in MPNST has focused on intra-tumoral heterogeneity. 

However, spatial intra-tumoral heterogeneity has become an area of interest in the study of other 

solid malignancies to begin to understand clonal evolution [91–95]. Within the NF1 field, researchers 

are beginning to appreciate the importance of understanding spatial and temporal heterogeneity. For 

example, Peacock et al. performed a genomic analysis of serial samples from one patient who 

developed an MPNST. Samples were taken at four timepoints (benign plexiform neurofibroma, 

MPNST pre-treatment, MPNST post-treatment, and MPNST at time of metastasis) [96]. They 

observed early hemizygous microdeletions in NF1 and TP53 with progressive amplifications of MET, 

HGF, and EGFR, highlighting the potential role of these pathways in progression. Additionally, 

Carriό et al. have started to examine intra-tumoral heterogeneity in PNF (plexiform neurofibromas), 

Figure 6. Somatic Variant Waterfall Plot. All somatic variants displayed on a waterfall plot. Each row
represents a gene. Distinct somatic variant signatures are appreciated.



Genes 2020, 11, 499 9 of 20

Table 3. (a) Details of the Tumor Related Somatic Variants in Coding Regions. Each gene with a somatic point variant is listed along with the area in which the variant
occurred, the type of variant, the amino acid change, and whether or not the variant occurs in a putative functional domain. The final column lists whether or not the
gene expression is altered in the area in which the variant occurred. The magnitude of gene expression is expressed as any of the following: NA indicates no change;
“-” indicates 1-2 fold decrease in gene expression; “- -” indicates greater than 2 fold decrease in gene expression; “+” indicates 1-2 fold increase in gene expression; “+

+” indicates greater than 2 fold increase in gene expression compared to two other areas. Pathogenicity predictions are made based on SIFT and PolyPhen scores. (b)
Details of the Tumor Related Somatic Frameshift Variants in Coding Regions. Each gene with a somatic point variant resulting in a frameshift is listed along with the
area in which the frameshift variant occurred and whether or not the frameshift variant occurs in a putative functional domain. (c) Details of the Tumor Related
Somatic Variants in Non-coding Transcript Exons, Untranslated Regions, Introns, and Upstream and Downstream Genes. Each gene with a somatic point variant is
listed along with the area in which the variant occurred, the genomic location, the type of variant, and whether or not the gene expression is altered in the area in
which the variant occurred. The magnitude of gene expression is expressed as: NA indicates no change; “-“ indicates 1-2 fold decrease in gene expression; “- -”
indicates greater than 2 fold decrease in gene expression; “+” indicates 1-2 fold increase in gene expression; “+ +” indicates greater than 2 fold increase in gene
expression compared to two other areas. The final column lists the potential impact rating as evaluated by VEP. All of these variants are listed as “modifier” indicating
that predictions are difficult or there is no evidence of impact.

(a)

Gene Area Genomic
Location Variant Amino Acid

Change
Functional

Domain Affected
Gene Expression

Altered Pathogenicity Prediction

C2orf91 1 Chr2:41953024 missense p.(Arg91Ile) N NA Possibly damaging
CCL16 1 Chr17:35978161 missense p.(Cys60Ser) Y NA Probably damaging
PAG1 1 Chr8:80984896 synonymous p.(Pro252=) Y NA Unknown

VPS13D 1 Chr1:12283596 missense p.(Phe1832Val) N - Probably damaging
VPS4B 1 Chr18:63400074 missense p.(Lys255Thr) Y NA Probably damaging

ZNF750 1 Chr17:82830337 synonymous p.(Pro659=) N NA Unknown
RIMBP3C 2 Chr22:21546513 missense p.(Arg1488Ser) N NA Possibly Damaging

SPATA31A5 2 Chr9:60919364 missense p.(Leu970Phe) N - Possibly Damaging
CCDC27 3 Chr1:3752496 synonymous p.(Ile5=) N + Unknown
LETM2 3 Chr8:38400906 synonymous p.(Leu279=) Y + Unknown
NTRK2 3 Chr9:84670796 missense p.(Trp16Cys) N NA Possibly Damaging

(b)

Gene Area Genomic Location Variant Amino Acid Change Functional Domain Affected

CSK 2 Chr15:74798671 frameshift p.(Glu25fs) Y
TSPAN9 2 Chr12:3283047 frameshift p.(Leu218fs) Y
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Table 3. Cont.

(c)

Gene Area Genomic Location Variant Gene Expression Altered IMPACT

MAP3K2 1 Chr2:127387525 intron - Modifier

RIPK3 1 Chr14:24332669 or
Chr14:24332869 downstream gene + Modifier

RNPS1 1 Chr16:2266329 intron - Modifier
SNX32 1 Chr11:65832561 upstream gene - Modifier

AC138649.1 2 Chr15:22768761 intron NA Modifier

FAM157B 2 Chr9:138231054 non-coding transcript
exon + Modifier

FANCD2P2 2 Chr3:11871392 non-coding transcript
exon + Modifier

LAIR1 2 Chr19:54358582 intron NA Modifier
NFAM1 2 Chr22:42432412 upstream gene + Modifier

TET2 2 Chr4:105241954 intron NA Modifier
TMEM114 2 Chr16:8569715 3 prime UTR NA Modifier

MOCS2 3 Chr5:53109455 5 prime UTR - Unknown
PSMB2 3 Chr1:35641574 5 prime UTR NA Modifier
RUFY1 3 Chr5:179608552 intron - Modifier
WDR6 3 Chr3:49005134 upstream gene NA Modifier

Z82190.2 3 Chr22:31821630 intron NA Modifier
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Table 4. Differentially Expressed Gene Pathway Analysis. These genes were located in copy number aberrant regions defined as copy number more than 3 or lower 1
and also demonstrated differential expression by RNA seq. Different pathways are implicated in the distinct sections.

Location Chromosome Start Position End Position Raw Copy Number Genes Role in Tumorigenesis

Area1 chr17 81509970 81523847 3.151914 ACTG1 Anti-apoptosis, motility [64,65]
Area1 chr17 81887843 81891586 3.151914 ALYREF Genomic stability [66]
Area1 chr14 20455190 20457772 4.883921 APEX1 Base-excision repair [49]
Area1 chr17 81867720 81871406 3.151914 ARHGDIA Invasiveness, metastasis [67]
Area1 chr12 7080208 7092607 5.842557 C1R Inflammation [68]
Area1 chr17 79778131 79787983 3.109085 CBX2 Transcription [69]
Area1 chr17 50183288 50201632 3.060268 COL1A1 Metastasis [70]
Area1 chr17 82078332 82098332 3.562293 FASN Metabolism [71]
Area1 chr7 128830376 128859274 3.66148 FLNC Invasiveness [72]
Area1 chr17 82050690 82057470 3.562293 GPS1 COP9 signalosome subunit/ubiquitin-proteasome pathway
Area1 chr19 11164266 11197791 7.563794 KANK2 Cytoskeleton formation [73]
Area1 chrX 54807598 54816012 3.320925 MAGED2 Cell-cycle regulator [74]
Area1 chrX 55452104 55453566 3.320925 MAGEH1 Proliferation [75]
Area1 chr7 100092727 100101940 4.16605 MCM7 Proliferation [76]
Area1 chr14 22836556 22849027 4.136412 MMP14 Invasiveness, metastasis [77]
Area1 chr14 39175182 39183218 3.038443 PNN Splicing [51]
Area1 chr9 107283136 107332194 14.61502 RAD23B Nucleotide-excision repair [53]
Area1 chr18 49488452 49492523 3.095593 RPL17 Ribosome biogenesis, protein translation [61]
Area1 chrX 54814369 54814497 3.320925 SNORA11 Maturation of ribosomal RNA [62]
Area1 chr7 102194075 102194164 4.159154 SNORA48 Maturation of ribosomal RNA
Area1 chr2 5692666 5701385 3.929294 SOX11 Transcription
Area1 chr17 76734114 76737374 3.109085 SRSF2 Splicing [54]
Area1 chr9 35099775 35103195 3.374564 STOML2 Anti-apoptosis [78]
Area1 chr17 61399895 61409466 3.52571 TBX2 Transcription [79]
Area1 chr19 58544090 58550722 3.012426 TRIM28 Proliferation [80]
Area1 chr9 35056063 35073249 3.374564 VCP Protein degradation [81]
Area1 chr7 101162508 101165593 4.159154 VGF Transcription [82]
Area2 chr2 47335314 47335514 4.114423 BCYRN1 Transcription [56]
Area2 chr6 73515749 73523797 3.582945 EEF1A1 Translation [57]
Area2 chr19 3976055 3985469 3.359182 EEF2 Translation [58]
Area2 chr1 150574550 150579738 4.140715 MCL1 Anti-apoptosis [83]
Area2 chr1 151399533 151401944 4.140715 PSMB4 Proteasomal function [59]
Area2 chr11 67583594 67586660 3.211531 GSTP1 Metabolism [84]
Area2 chr15 65296050 65296166 3.976034 RNU5A-1 RNA processing
Area2 chr15 65304676 65304792 3.976034 RNU5B-1 RNA processing
Area2 chr7 148983754 148983856 3.383375 RNY3 RNA processing
Area2 chr13 27251308 27256691 6.141368 RPL21 Ribosome biogenesis, protein translation
Area2 chr9 19375714 19380254 3.739665 RPS6 Ribosome biogenesis, protein translation
Area2 chr2 24273613 24273741 4.326829 SCARNA21 RNA processing
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Table 4. Cont.

Location Chromosome Start Position End Position Raw Copy Number Genes Role in Tumorigenesis

Area2 chr15 78091171 78091297 3.898802 SNORA63 Maturation of ribosomal RNA
Area2 chr1 12221147 12221271 3.552826 SNORA70 Maturation of ribosomal RNA
Area2 chr2 10446713 10446849 4.496897 SNORA80B Maturation of ribosomal RNA
Area2 chr12 124911603 124917368 3.034233 UBC Ubiquitin homeostasis [85]
Area3 chr16 28823034 28837237 5.159031 ATXN2L Stress granule regulator [86]
Area3 chr9 136862118 136866286 3.830137 EDF1 Transcription
Area3 chr11 2129111 2141238 7.774932 IGF2 Proliferation [87]
Area3 chr11 2608327 2699994 7.774932 KCNQ1OT1 Transcription [88]
Area3 chr11 2134133 2134209 7.774932 MIR483 Transcription [89]
Area3 chr9 127447673 127451405 3.212283 RPL12 Ribosome biogenesis, protein translation
Area3 chr19 49487553 49492308 3.051258 RPL13A Ribosome biogenesis, protein translation
Area3 chr19 48615327 48619536 3.174325 RPL18 Ribosome biogenesis, protein translation
Area3 chr1 6181268 6209389 3.792397 RPL22 Ribosome biogenesis, protein translation
Area3 chr17 74203581 74210655 3.363835 RPL38 Ribosome biogenesis, protein translation
Area3 chr11 809646 812880 3.117378 RPLP2 Ribosome biogenesis, protein translation
Area3 chr19 49496364 49499689 3.051258 RPS11 Ribosome biogenesis, protein translation
Area3 chr19 39433206 39435948 3.408557 RPS16 Ribosome biogenesis, protein translation
Area3 chr16 1962051 1964860 3.301972 RPS2 Ribosome biogenesis, protein translation
Area3 chr19 8321157 8323340 3.044231 RPS28 Ribosome biogenesis, protein translation
Area3 chr17 76557765 76565348 3.374444 SNHG16 Transcription [90]
Area3 chr16 1962333 1962466 3.301972 SNORA10 Maturation of ribosomal RNA
Area3 chr2 30187433 30187566 3.83836 SNORA10B Maturation of ribosomal RNA
Area3 chr9 136726104 136726234 3.830137 SNORA17B Maturation of ribosomal RNA
Area3 chrY 16138247 16138379 3.968437 SNORA20 Maturation of ribosomal RNA
Area3 chr16 1965183 1965310 3.301972 SNORA78 Maturation of ribosomal RNA
Area3 chr19 10109756 10109835 5.45924 SNORD105B Ribosomal RNA modification [63]
Area3 chr19 49490614 49490699 3.051258 SNORD33 Ribosomal RNA modification
Area3 chr14 21397291 21397401 3.835309 SNORD8 Ribosomal RNA modification
Area3 chr14 21392149 21392253 3.835309 SNORD9 Ribosomal RNA modification
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4. Discussion

Despite advances in our understanding of the pathobiology of MPNST and the identification
of seemingly promising therapeutic targets using a single model system in preclinical studies, no
investigational agents have demonstrated efficacy following translation to human clinical trials.
One element that has largely been ignored in the study of MPNST has been the possible existence of
intra-tumoral heterogeneity. No single study in MPNST has focused on intra-tumoral heterogeneity.
However, spatial intra-tumoral heterogeneity has become an area of interest in the study of other
solid malignancies to begin to understand clonal evolution [91–95]. Within the NF1 field, researchers
are beginning to appreciate the importance of understanding spatial and temporal heterogeneity.
For example, Peacock et al. performed a genomic analysis of serial samples from one patient who
developed an MPNST. Samples were taken at four timepoints (benign plexiform neurofibroma, MPNST
pre-treatment, MPNST post-treatment, and MPNST at time of metastasis) [96]. They observed early
hemizygous microdeletions in NF1 and TP53 with progressive amplifications of MET, HGF, and
EGFR, highlighting the potential role of these pathways in progression. Additionally, Carrió et al.
have started to examine intra-tumoral heterogeneity in PNF (plexiform neurofibromas), ANF
(atypical neurofibroma) and ANNUBP (atypical neurofibromatous neoplasms with uncertain biological
potential), the precursors to MPNST. They performed SNP-array analysis and exome sequencing on
multiple biopsies of eight PNF, of which some had areas consistent with ANF or ANNUBP. Their data
suggested that loss of a single copy of CDKN2A/B in NF1 null cells is sufficient to start ANF development
and that total inactivation of both copies is necessary to form ANNUBP [97]. Our study represents the
first look at spatial intra-tumoral heterogeneity within an MPNST. We have demonstrated differing
mutational profiles, copy number alteration signatures, and gene expression profiles within the three
areas sampled. The differing mutation profile includes a variety of single nucleotide variants, including
missense, frameshift, and synonymous variants. The role of synonymous variants in the tumorigenesis
of MPNST is uncertain. However, there is increasing evidence that synonymous variants can alter gene
expression and protein function and thus cannot be simply disregarded [98–101]. Additionally, several
of the genes in Table 3a,b have previously been implicated in cancer [102–115]. For example, in Area 2,
CSK was found to have a frameshift variant in its functional domain. CSK encodes a C-terminal Src
kinase that has previously been found to act as a tumor suppressor in both breast cancer and prostate
cancer [112–114]. Interestingly, in the context of breast cancer, Smith et al. showed that C-terminal Src
kinase loss facilitated tumorigenesis by altering expression of the PRC2 complex subunits, EZH2 and
SUZ12 [113]. Based on these data, it is possible that alterations in CSK could be another way in which
the PRC2 complex is affected in MPNST. Another gene, CCL16, is involved in chemotaxis of human
monocytes and lymphocytes. This chemokine was shown to delay mammary tumor growth and reduce
rates of metastasis in mouse models [115], raising the possibility of decreased immune surveillance of
our patient’s MPNST secondary to a non-functional CCL16. In addition to the differences in single
nucleotide variants, there were differences in copy number alterations across the three areas with Area
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2 showing the most distinct signature in terms of copy number gains and losses. The degree to which
each somatic variant, differentially expressed gene, and copy number aberration contributes to the
biologic heterogeneity of the tumor remains uncertain. However, future work in our lab will be geared
at elucidating this information. Finally, there was a distinct difference in gene expression among the
three areas with gene ontology studies pointing toward differences in translation and protein targeting.

Taken together, these data point toward the existence of intra-tumoral heterogeneity and suggest
that further investigation into this phenomenon is warranted. Additionally, these data suggest that there
should be some caution taken in interpreting sequencing that comes from a single biopsy site. The advent
of single cell sequencing has allowed for more rigorous evaluation of intra-tumoral heterogeneity in
other cancers including acute leukemias [116,117], as well as in some solid malignancies [118,119].
Future work will be geared at using this data as the foundation to better understand clonal heterogeneity
along with single cell sequencing to comprehensively evaluate intra-tumoral heterogeneity and clonal
evolution of MPNST.

5. Conclusions

Significant intra-tumoral heterogeneity exists and may be a barrier to our ability to improve
outcomes in patients with NF1-MPNST. These data suggest that multi-regional sampling may be
necessary to understand clonal evolution, and for driver gene identification and biomarker development
in the future.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/5/499/s1,
Supplemental Table S1: Comprehensive Genomic Information for Single Nucleotide Variants.
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