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Background: This study aimed to develop an automated segmentation system for biliary structures using a deep learning model,
based on data from magnetic resonance cholangiopancreatography (MRCP).
Materials andmethods: Living liver donors who underwent MRCP using the gradient and spin echo technique followed by three-
dimensional modeling were eligible for this study. A three-dimensional residual U-Net model was implemented for the deep learning
process. Data were divided into training and test sets at a 9:1 ratio. Performance was assessed using the dice similarity coefficient to
compare the model’s segmentation with the manually labeled ground truth.
Results: The study incorporated 250 cases. There was no difference in the baseline characteristics between the train set (n=225)
and test set (n=25). The overall mean Dice Similarity Coefficient was 0.80±0.20 between the ground truth and inference result. The
qualitative assessment of the model showed relatively high accuracy especially for the common bile duct (88%), common hepatic
duct (92%), hilum (96%), right hepatic duct (100%), and left hepatic duct (96%), while the third-order branch of the right hepatic duct
(18.2%) showed low accuracy.
Conclusion: The developed automated segmentation model for biliary structures, utilizing MRCP data and deep learning
techniques, demonstrated robust performance and holds potential for further advancements in automation.
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Introduction

Liver transplantation is an essential therapeutic option for acute
liver failure and hepatic malignancies[1–3], but the limited avail-
ability of deceased donor organs has led to the emergence of

living-donor liver transplantation, expanding the pool of avail-
able organs[4–6]. Ensuring donor safety during hepatectomy is of
utmost importance, and the quality of the donor surgery sig-
nificantly affects the recipient’s post-transplantation recovery[7].

A crucial step in the donor hepatectomy procedure is the
meticulous division of the bile duct, which requires precise dis-
section and resection at an anatomically specific point to optimize
outcomes for both the donor and recipient[8]. Effective pre-
operative planning, therefore, becomes paramount in navigating
the intricate anatomical landscape of the liver. The complexity of
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• Developed an automated segmentation system utilizing a
3D residual U-Net deep learning model to delineate biliary
structures from magnetic resonance cholangiopancreato-
graphy data, aimed at improving preoperative planning in
living liver donors.

• Achieved a mean dice similarity coefficient of 0.80,
demonstrating a high level of accuracy in the model’s
segmentation capability when compared to manually
labeled ground truth, particularly in segmenting major
biliary structures.

• The proposed model was able to connect originally
disconnected voxels in certain cases, which shows its
potential to emulate expert-driven segmentation based on
anatomical knowledge.
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biliary anatomy necessitates detailed and accurate visualization
of these structures to guide the surgical approach, reduce the risk
of complications, and ensure the safety of the donor. To address
this challenge, recent clinical guidelines recommend the incor-
poration of preoperative magnetic resonance cholangiopancrea-
tography (MRCP) for all potential donors[9]. MRCP allows for
the evaluation of biliary structures and the identification of any
unexpected anatomical variations. In our institution, the biliary
structures obtained by MRCP are manually segmented and
reconstructed into three-dimensional images for better visuali-
zation during operation. This approach has proved instrumental
in facilitating image-guided surgical procedures[10,11].

The aim of the study is to leverage the accumulated annotated
dataset from the manually segmented biliary structure to train a
deep learning model capable of automatically segmenting the bile
ducts using MRCP images. We thoroughly evaluated the model’s
performance and present our findings.

Materials and methods

This retrospective study was approved by the institutional review
board of Samsung Medical Center (SMC 2021-03-056) and the
need for informed consent was waived by the IRB due to the
retrospective nature of the study. It was carried out in accordance
with the principles of the Declaration of Helsinki.

Patients

Living liver donors at SamsungMedical Center, between January
2014 and February 2021 were included in this study. All donors
underwent a comprehensive evaluation to determine their suit-
ability for liver donation, including an assessment of residual liver
volume using computed tomographic angiography. Additionally,
MRCP was performed to accurately evaluate the structure of the
biliary tract prior to surgery. Segmentation and 3Dmodeling was
prospectively performed to enhance the understanding of the
biliary structure for donor surgery. Demographic data including
age, sex, and BMI were retrieved in a de-identified state from the
Clinical Data Warehouse DARWIN-C of Samsung Medical
Center. The types of bile ducts were classified according to the
modified classification system proposed by Huang et al. (Fig. 1).

Dataset

The study used three-dimensional (3D) MRCP using a gradient
and spin echo (GRASE) technique for visualization of biliary
structures. The 3D GRASE MRCP datasets were manually
labeled slice by slice for the common bile duct (CBD), common
hepatic duct (CHD), gall bladder (GB), cystic duct, and intrahe-
patic duct (IHD) by two experienced biomedical engineers using
an annotation tool called 3D slicer. The results were verified by a
board-certified abdominal radiologist and several liver surgeons,
and it the annotations were not appropriate, they were reanno-
tated until the supervising physicians were satisfied. Training and
test sets were allocated in 9:1 ratio.

3D residual U-Net model and implementation

We utilized a 3D residual U-Net model for this study. The model
extracts context features through an encoding process and uses
these features to reconstruct the segmented image during decod-
ing. The model is trained to minimize a loss function, optimizing

the network parameters for hierarchical feature extraction.
During encoding, the convolutional residual operation is
employed, while during decoding, multitarget segmented images
are reconstructed with deconvolutional feature maps, including
skip connections at each resolution level.

The 3D residual U-Net model was implemented in TensorFlow
1.14 and trained on a workstation with four GPUs (NVIDIA
TITAN XP 16GB). During preprocessing, images were cropped,
resized, and normalized. The training data was augmented through
various techniques, such as 3D rotation, scaling, random flipping,
and cropping. The dice similarity coefficient (DSC) loss (L) was
used as the loss function. The network was trained using the Adam
optimizer with a learning rate of 0.0001, with 1000 epochs and a
batch size of 4. During the testing phase, preprocessed images of the
entire MRI scan were fed into the proposed network (for detailed
methodological information, see the Supplementary Document,
Supplemental Digital Content 1, http://links.lww.com/JS9/B685).

Evaluation

The performance of the deep learning model to segment biliary
structure was compared with manually delineated ground truth.
Since the ground truth was masked by connecting the originally
disconnected structures, comparison was additionally performed
against the initially masked image, which did not connect the
disconnected parts from the original image. Both quantitative and
qualitative assessment were performed. As a quantitative mea-
sure, DSC[12] was used to quantify the segmentation performance
of the deep learning model (Fig. 2). As a qualitative measure, the
biliary structure was subdivided according to the orders. Then the
results of auto-segmentation were assessed by two expert radi-
ologists, and classified as follows: ‘complete’, as for segmentation
done without disconnection, ‘partial’, as for segmentation but
disconnection between proximal and distal parts, and ‘absent’, as
for no segmentation. To evaluate the accuracy, proportion of
complete segmentation of the deep learning model compared to
both the original MRCP image and the ground truth was asses-
sed. Furthermore, a modified assessment of accuracy was per-
formed by allocating score 1 for complete segmentation and score
0.5 for partial segmentation and comparing the score of the deep
learning model compared to the original MRCP and the ground
truth. For visualization, biliary structures were 3-dimensionally
reconstructed with Mimics Medical (Materialise). For assessing
the DSC coefficient, 3D slicer was used for calculation.

Statistical analysis

Continuous variables were presented as mean ± SD and ana-
lyzed using the independent t-test or Mann–Whitney test, as
appropriate. Categorical data were presented as numbers and
percentages and analyzed using the χ2 or Fisher’s exact
test. All statistical analyses were performed using R
Statistical Software (version 3.6.3; Foundation for Statistical
Computing).

Results

Patients

A total of 250 living liver donors were included in the study, whose
mean age was 34.4±11.3 years old, with 58% of male (145/250)
and type I bile duct as the most common (183/250, 73.2%)
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anatomical type. There were no statistical differences in demo-
graphic and morphological characteristics between training and
test sets (Table 1).

Quantitative evaluation

The results of the manual segmentation and automatic segmen-
tation using the 3D residual U-Net model for each case are
summarized in Figure 3, showing the 3D reconstructed struc-
tures. The mean DSC for the whole biliary structure was
0.79 ± 0.18 against the initially masked image and 0.80 ± 0.20
against the ground truth (Table 2). DSC were also calculated for
subdivided structures. For CBD, CHD, GB, and main IHD, DSC
against the initially masked model and ground truth were
0.80 ± 0.19 and 0.81 ± 0.20, respectively. For CBD, CHD, and
GB, DSC against the initially masked model and ground truth
were 0.80 ± 0.21 and 0.81 ± 0.21, respectively. For CBD and
CHD, DSC against the initially masked model and ground truth
were 0.70 ± 0.11 and 0.74 ± 0.08, respectively.

Qualitative evaluation

Table 3 shows the qualitative assessment for auto-segmentation
accuracy. When only the complete segmentations were assessed,
CBD, the right hepatic duct, and the second order of the left hepatic
duct showed 100% reconstruction compared to the originalMRCP
image. CHD and hilum showed better outcomes compared to the
original MRCP image. When the accuracy was assessed against the
ground truth, only the right hepatic duct showed 100% recon-
struction. While most of the structures showed relatively high
accuracy, the third-order of right hepatic duct showed a low
reconstruction rate of 18.2% when compared to the ground truth.
The modified assessment method, which also included partially

Figure 1. The types of bile ducts were classified according to the modified classification system proposed by Huang et al.: type I, normal type; type II, trifurcation of
right anterior, right posterior, and left hepatic duct; type III, right posterior duct draining into left hepatic duct; type IV, early branching of right posterior duct from the
common hepatic duct; type V, right posterior duct draining into cystic duct; and other types of variation in bile duct anatomy.

Figure 2. Illustration of Dice similarity coefficient (DSC) for biliary structure
segmentation. The shaded areas represent the segmented regions from two
different methods: A (e.g. manual segmentation) and B (e.g. automated seg-
mentation by the deep learning model). The intersection of A and B represents
the common area correctly identified by both methods. The DSC is calculated
by the formula shown, which quantifies the similarity between the two seg-
mentation results. The closer the DSC value is to 1, the higher the degree of
agreement between the two methods.
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segmented structure showed that all the structures except the cystic
duct showed high accuracy exceeding 90.0% of reconstruction.
Similarly, modified assessment comparing to the ground truth
showed that except for the cystic duct (70.2%), right posterior duct
(72.0%), and 3rd order of the right hepatic duct (46.7%), all the
structures showed accuracy exceeding 80.0%.

Discussion

The present study aimed to develop a deep learning model for the
automatic segmentation of biliary structure using MRCP images

for preoperative planning of living-donor liver transplantation. The
results demonstrated the promising performance of the deep
learning model in segmenting bile ducts from MRCP images. The
mean DSC for the whole biliary structure was 0.80±0.20. This
result indicates a relatively high degree of similarity between the
automatic segmentation and human-labeled manual segmentation.

The development of an automated segmentation model holds
significant potential in preoperative planning in LDLT. By
reducing the time and labor required for 3D reconstruction, this
model can streamline the surgical planning process and allow for
more rapid decision-making. Since 2019, our transplantation
center has initiated the image-guidance program for precise sur-
gical planning using 3D modeling software such as Mimics
Medical and 3D slicer[9]. This approach not only helps young
surgeons but also surgeons who already overcome the learning
curve for laparoscopic living-donor hepatectomy. The biliary
anatomy of the donor is of best importance in laparoscopic living-
donor hepatectomy due to its high relationship with donor and
recipient morbidity[7,8,13]. Living-donor liver transplantation is
related to high rate of biliary complication compared to deceased
donor liver transplantation[14,15]. The difference derives from the
anatomical difference in that while deceased donor liver trans-
plantation is mostly performed with whole liver with large single
anastomosis of the CBD, living-donor liver transplantation is
usually performed with partial liver grafts with IHD with small
diameter. A precise surgical technique is required to achieve the
best outcome in living-donor liver transplantation to reduce the
bile duct opening of the liver graft.

However, these processes require a significant amount of time
and human work to finalize the 3D-models. The anatomical

Table 1
Baseline characteristics.

Overall Training set Test set P

N 250 225 25
Sex (%)

Male 145 (58.0) 131 (58.2) 14 (56.0) 1
Female 105 (42.0) 94 (41.8) 11 (44.0)

Age 34.4± 11.3 34.7± 11.2 31.5± 12.6 0.231
BMI 23.3± 2.9 23.3± 2.9 23.4± 2.7 0.769
BD type (%)

I 183 (73.2) 165 (73.3) 18 (72.0) 0.523
II 14 (5.6) 12 (5.3) 2 (8.0)
III 35 (14.0) 33 (14.7) 2 (8.0)
IV 14 (5.6) 11 (4.9) 3 (12.0)
V 2 (0.8) 2 (0.9) 0 (0.0)
others 2 (0.8) 2 (0.9) 0 (0.0)

BD type, bile duct type.

Figure 3. Three-dimensionally reconstructed models of ground truth and inference of the auto-segmentation model. The green models represent ground truth
while yellow models represent inference of the auto-segmentation model. Dice similarity coefficient is presented case by case. The pink shadow represents the
errors between the models.
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understanding to model a precise structure is not given for free
and requires significant experience. Therefore, an automated
process for this procedure is deemed to enhance the workflow of
image-guidance program[16].

The automated segmentation model yielded a reasonable
outcome for masking the biliary structure. While including the
gall bladder for the evaluation enhanced the performance, the
outcome for IHDs showed relatively poor performance. This is
partly due to the original image itself since IHDs are usually
invisible due to its small caliber. These structures are frequently
disconnected in MRCP and the ground truth is modeled by
connecting the missing voxels by the biomedical artists. While
the disconnected parts are connected by human hands, the deep
learning model fails to connect it since there is no high signal
intensity in the original DICOM image. While the deep learning
model showed reasonable outcomes for visually distinguishable
structures, it did not reach the level of connecting the isolated
structures.

However, there were cases where the model connected the
originally disconnected voxels in the original image. Figure 4
summarized those cases where the deep learning model out-
performed either the ground truth or the initially masked model
in certain anatomical area. These findings show the possibility of
the automated model to mimic the human biomedical engineers
who knows the anatomical structures and can reconstruct the
structure based on their knowledge. The reason for the dis-
connection in the original image is the unique characteristics of
the biliary structure in contrast to the vascular structure. While
the hepatic artery, portal vein, or hepatic vein are not dis-
connected due to its volume and pressure inside, biliary struc-
tures can be decompressed by the filling of the GB or the drainage
through the duodenum. Therefore, these structures are usually
very thin and peripheral structures cannot be observed[17,18].

The reason for including qualitative assessment in this study
was that the DSC score is considered not to be a perfect method
for evaluating the accuracy of the bile duct of MRCP. While the
DSC score evaluates the correctness of each voxel objectively, the
score itself is highly dependent on the number of total voxels
included[12]. This means that large structures tend to show high
scores while small structures show low scores. For biliary
structures of MRCP, the DSC score has the disadvantage to
underestimate the performance since the biliary structure is a
very thin structure in regards of the original DICOM image.

Based on the qualitative method, the deep learning model
showed reasonable performance compared to the original
MRCP. For CHD and hilum, it even showed a better outcome
than the original image. The reason for this seems to originate
from the fact that the model was trained based on the ground

Table 2
Dice similarity coefficient (DSC) for the test set against initially
masked image and ground truth according to the anatomical
orders.

Against initially masked image Against ground truth

Whole biliary structure 0.79± 0.18 0.80± 0.20
CBD/CHD/GB/Main IHD 0.80± 0.19 0.81± 0.20
CBD/CHD/GB 0.80± 0.21 0.81± 0.21
CBD/CHD 0.70± 0.11 0.74± 0.08

CBD, common bile duct; CHD, common hepatic duct; GB, gall bladder; IHD, intrahepatic duct.
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truth, which was reconstructed by connecting the disconnected
structures by the biomedical artist. Since the model was trained
with the expert intervening in the disconnected structures, the
model also showed promising results.

The dataset used for training and validationwas collected from
a single institution and predominantly features a homogeneous
patient demographic, primarily young individuals with an ideal
BMI. This specificity raises concerns about the model’s

Figure 4.Cases where the auto-segmentation model showed extra-performance connecting the disconnected structures in the original DICOM images. Images in
red represent initially masked 3D-model, whereas 3D-models in green represent ground truth. These five cases show that auto-segmentation model can connect
the structures that were disconnected in the original image for reconstructing a biliary structure.
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performance across a more diverse patient population, particu-
larly in older patients and those with a higher BMI, who may
present with anatomical and imaging differences that could
impact segmentation results. In addition, our study did not
explore the clinical impact of the automated segmentation tech-
nique nor its integration into the surgical workflow. To bridge
this gap, we underscore the importance of conducting further
research and validation studies to evaluate the real-world benefits
and challenges associated with the implementation of this tech-
nology in clinical practice.

Another issue that should be discussed is that the evaluation
process for this type of study has innate limitations. The biliary
structure is a relatively small and thin structure compared to the
liver itself. While the DSC or IOU (intersection of union) score
usually shows high performance for relatively large structures, it
is relatively poor for small structures. Error of single voxel has
significant impact on outcome for structures such as biliary
structures. Therefore, readers should consider for this innate
limitation of DSC score as the evaluation method.

In conclusion, the developed deep learning model demon-
strated promising performance in automatically segmenting bile
ducts from MRCP images. The application of this automated
segmentation technique holds significant promise in enhancing
the preoperative understanding of bile duct structures and aug-
menting surgical guidance during living-donor liver transplan-
tation procedures. Further research and validation are necessary
to establish the clinical utility and wider applicability of this
approach.
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