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ABSTRACT
Background  Reports of clinical improvement following 
mesenchymal stromal cell (MSC) infusions in refractory 
lupus patients at a single centre in China led us to perform 
an explorative phase I trial of umbilical cord derived MSCs 
in patients refractory to 6 months of immunosuppressive 
therapy.
Methods  Six women with a SLEDAI >6, having failed 
standard of care therapy, received one intravenous 
infusion of 1×106 MSCs/kg of body weight. They 
maintained their current immunosuppressives, but their 
physician was allowed to adjust corticosteroids initially for 
symptom management. The clinical endpoint was an SRI 
of 4 with no new British Isles Lupus Activity Guide (BILAG) 
As and no increase in Physician Global Assessment score 
of >0.3 with tapering of prednisone to 10 mg or less by 20 
weeks.
Results  Of six patients, five (83.3%; 95% CI 35.9% to 
99.6%) achieved the clinical endpoint of an SRI of 4. 
Adverse events were minimal. Mechanistic studies 
revealed significant reductions in CD27IgD double negative 
B cells, switched memory B cells and activated naïve 
B cells, with increased transitional B cells in the five 
patients who met the endpoint. There was a trend towards 
decreased autoantibody levels in specific patients. Two 
patients had increases in their Helios+Treg cells, but no 
other significant T cell changes were noted. GARP-TGFβ 
complexes were significantly increased following the 
MSC infusions. The B cell changes and the GARP-TGFβ 
increases significantly correlated with changes in SLEDAI 
scores.
Conclusion  This phase 1 trial suggests that umbilical 
cord (UC) MSC infusions are very safe and may have 
efficacy in lupus. The B cell and GARP-TGFβ changes 
provide novel insight into mechanisms by which MSCs may 
impact disease.
Trial registration number  NCT03171194.

INTRODUCTION
SLE is a heterogeneous disease affecting 
young women in their childbearing years.1 
The hallmark of disease is production of 
autoantibodies with immune complex depo-
sition in target organs. Despite research 
progress and recent clinical trials’ success, 
there is still a need for more effective safe 
treatments.2 3 Current immunosuppressive 
and biological therapies have therapeutic 
effects, yet a significant number of lupus 

WHAT IS ALREADY KNOWN ON THIS TOPIC

	⇒ Mesenchymal stromal cells (MSCs) have significant 
immune modulatory effects. There are to this point 
primarily small case series and uncontrolled trials 
of MSCs in lupus, almost all are from China. Thus, 
the efficacy of MSCs in lupus is unknown overall and 
safety unproven in non-Asian patients.

WHAT THIS STUDY ADDS

	⇒ This study adds assessment of MSC safety and im-
munological activities in a mixed ethnic cohort. The 
B cell and GARP changes following MSC infusion are 
novel and previously unreported. Although no effi-
cacy assessments can be made from this phase I 
trial, the lack of attributable adverse events and the 
achievement of an SRI4 in 5/6 patients supports the 
need for further assessments of efficacy and toxicity 
in a larger controlled trial.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ If further controlled trials show efficacy, given their 
safety profile, MSCs would be a new therapeutic ap-
proach to treating lupus with a better safety profile 
compared with current therapies. The extensive im-
munological studies also provide important insight 
into lupus pathogenesis and mechanisms of action 
of MSCs on the immune system.

http://www.lupus.org/
http://lupus.bmj.com/
http://orcid.org/0000-0003-4228-3574
http://dx.doi.org/10.1136/lupus-2022-000704
http://dx.doi.org/10.1136/lupus-2022-000704
http://crossmark.crossref.org/dialog/?doi=10.1136/lupus-2022-000704&domain=pdf&date_stamp=2022-07-12
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patients remain inadequately responsive to current thera-
pies. An additional issue with current therapies is the side 
effect profile especially for women of childbearing poten-
tial.4 Cellular therapies, such as mesenchymal stromal 
cells (MSCs) are an emerging area of interest as to their 
therapeutic efficacy in immune diseases including lupus.

MSCs are derived from bone marrow, adipose tissue 
and umbilical cords/placentas.5–7 Their local autolo-
gous use in plastic and orthopaedic surgery is proven 
beneficial.8 9 There is growing literature on the immune 
properties of MSCs and their use in immune-mediated 
diseases.10 11 Trials of MSCs in refractory graft versus host 
disease (GvHD), rheumatoid arthritis, inflammatory 
bowel disease and lupus have had variable results.12–17 
Most were uncontrolled trials with small numbers of 
participants. There is a benefit of MSCs for steroid refrac-
tory paediatric GvHD18 and local use in healing fistulas in 
Crohn’s disease.19 The efficacy in other diseases remains 
unproven due to a lack of placebo-controlled trials.

There are a number of publications regarding use of 
MSCs in refractory lupus from a single centre in Nanjing, 
China.15 20 21 The reports provide both short-term and 
long-term follow-up of dozens of patients treated with 
MSCs. There was an overall response rate of 60%–65% 
at 6 months following a single MSC infusion of 1 million 
cells per kilogram. Long-term beneficial effects on disease 
activity were reported.15 21 22 The patients primarily had 
lupus nephritis, but other manifestations of lupus were 
also improved. The length of response varied from 6 
months to 5 years.23 None were placebo controlled. The 
one controlled trial of MSCs in lupus nephritis, enrolling 
treatment naïve patients, was small (18 patients) and 
based on a high response rate to cyclophosphamide 
alone versus cyclophosphamide plus MSCs did not detect 
an added benefit of MSCs.24

MSCs advantages are they are easily obtained, have a 
low side effect profile and can be given without histocom-
patibility matching or preconditioning.25 The reported 
‘immune privilege’ of MSCs is based on their not 
expressing MHC Class II or immune cofactors, rendering 
them initially hidden from the host immune system.26 
There are literally dozens of proposed mechanisms for 
the immune effects of MSCs, though none are proven in 
humans.27 28

Due to the promising results out of China, we initiated 
studies of MSCs in lupus, starting with murine models, 
that demonstrated efficacy of MSCs from human controls 
in reducing renal disease.29 Allogeneic MSCs were used 
in this phase I trial as autologous MSCs from lupus 
patients are not as immune active as allogeneic MSCs.30 
In a limited study of autologous bone marrow MSCs, two 
lupus patients did not have a beneficial effect on their 
disease.31 Based on the lack of definitive evidence of MSC 
efficacy and lack of safety data in non-Asian patients, we 
performed a phase I safety trial in treatment refractory 
lupus in a multiethnic cohort as a stepping stone to a 
larger phase II efficacy trial. Assessing safety and potential 

mechanistic effects are an important first step in develop-
ment of a new therapy.

METHODS
Preparation of UC MSCs
The MSCs were derived from UCs of two healthy donors 
under FDA IND 16377. The donors were mothers in the 
OB/GYN clinic undergoing elective C-sections. After 
informed consent, the mother’s blood was tested using 
the infectious testing battery required for allogeneic 
bone marrow donors within 1 week of delivery. ANA 
screening was done. Potential donors were excluded 
if they had personal or family history of autoimmune 
disease or any positives on infectious and autoimmune 
testing of their blood. The cords came from one male 
and one female infant. The UCs were obtained using 
sterile technique and transported to the MUSC Center 
for Cellular Therapy. The derived cord cells were plated 
and incubated in a minimal essential medium (MEM, 
GIBCO) with glutamine and 10% sterile pooled human 
platelet lysate (Cook Regenec Inc). Aliquots were tested 
for bacterial, fungal, endotoxin and mycoplasma. MSC 
immune potency was measured by T cell proliferation 
and interferon-gamma induced IDO expression. Further 
details are provided in the online supplemental methods.

Patients
Patients had a historical presence of at least 4 of 11 of 
the ACR Lupus Classification Criteria.32 Further inclu-
sion criteria included: age between 18 and 65 years old, 
either sex, any race, evidence of a positive ANA (≥1:80 
titre) or positive dsDNA antibody test within 6 months of 
screening, clinically active SLE determined by SLEDAI 
score ≥6 and ≤12 and the presence of one BILAG A or 
one BILAG B at screening, despite standard of care 
(SOC) therapy. If the BILAG A or the BILAG B was in 
the renal organ system, the patient must have completed 
6 months with either mycophenolate mofetil or cyclo-
phosphamide. Non-nephritis patients had active disease 
despite 3 months of SOC therapy. Patients were able and 
willing to give written consent. Details regarding patient 
selection are in the online supplemental methods and in 
table 1. A sample size of 6 was selected in an attempt to 
balance the need to investigate the safety of this therapy 
with the need to limit any negative consequences should 
they occur.

Clinical endpoints
Clinical response
The SLE Responder Index (SRI) 4 was used as the assess-
ment tool for clinical activity. A decrease in the SLEDAI 
of at least 4, no new BILAG As or two BILAG Bs and no 
increase in the Physicians Global Assessment >0.3 were 
required to be considered responsive. This assessment 
was made at weeks 0, 4, 8 and 24 after the MSC infu-
sion. The week 24 assessment was the primary endpoint. 
Inability to taper prednisone to 10 mg or less by 20 weeks 
was considered a treatment failure. Dose increases or new 

https://dx.doi.org/10.1136/lupus-2022-000704
https://dx.doi.org/10.1136/lupus-2022-000704
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additions to SOC immunosuppressant therapy for SLE 
activity prior to week 24 were considered a treatment 
failure. Secondary outcomes included the SF-36 (short 
form 36) quality of life instrument and the Lupus Impact 
Tracker.33

Safety
Study participants reported adverse events (AEs) 
throughout the trial, regardless of attribution. Lowering 
of SOC immunosuppressant therapy due to toxicity was 
allowed. Further safety methodology is in the online 
supplemental methods.

Treatment protocol
All patients received UC-derived MSCs suspended at 
a concentration of 2×106 cells/mL in Plasma-Lyte A 
(Baxter) suspension media. The patients and the treat-
ment team were aware they were all receiving MSCs. 
The patients received 1×106 cells/kg body weight. The 
infusion rate was 100×106 over 10 min. Patients received 
premedication of Benadryl 25 mg and 650 mg of Tylenol 
orally. There was no preconditioning or Human Leuko-
cyte Antigens (HLA) matching. If the patient was cyto-
megalovirus (CMV) antibody negative, they received cells 
from the donor that was CMV negative. If the patient was 
CMV antibody positive, but not having an acute infection, 
they received cells from the CMV positive donor. Further 
description of the treatment protocol is in the online 
supplemental methods.

Statistical analysis
The primary endpoint consisted of the proportion of 
participants who exhibited a clinical response at week 
24 by SRI 4. This proportion was reported along with an 
exact 95% CI. All secondary analyses were conducted in 
an exploratory fashion with p values and CIs presented 
without adjustments for multiple comparisons. Interval 
estimates were generated at the 95% confidence level.

Since many of the secondary endpoints were collected 
at multiple time points, statistical models appropriate for 
longitudinal data analyses were used.34 General linear 
mixed models (GLMMs), including appropriate covari-
ance structures to account for within-subject clustering, 
were constructed for the different outcomes to determine 
whether there were significant changes over time (ie, for 
the SLEDAI, SF-36 and Lupus Impact Tracker (LIT)) and 
whether certain outcomes were correlated with others 
(ie, B/T cell subtype distributions and autoantibody 
levels). Sensitivity analyses were conducted by adopting a 
last observation carried forward (LOCF) approach within 
the GLMM models, given that one subject (#3) did not 
contribute data after week 8.

Mechanistic studies
Protocols for handling of specimens, B cell and T cell 
characterisations, ELISA assays and glycoprotein A repeti-
tion predominant (GARP) assays are in the online supple-
mental methods section.

Table 1  Safety reports during the trial including AEs and the one SAEs

Subject
Non-serious AEs
(#NCI-CTCAE Grade) SAE (#) AEs related to MSCs Early withdrawal

1 3 grade 1
5 grade 2
0 grade ≥3

0 Grade 2 nausea (‘possible’)

2 0 grade 1
2 grade 2
0 grade ≥3

0

3 2 grade 1
2 grade 2
0 grade ≥3

1 Grade 1 paraesthesias 
(‘possible’)
Grade 1 flushing (‘possible’)

Dropped out after week 8 visit

4 0 grade 1
3 grade 2
0 grade ≥3

0 Grade 2 tachycardia (‘possible’)

5 1 grade 1
1 grade 2
0 grade ≥3

0

6 1 grade 1
1 grade 2
0 grade ≥3

0

Total 21 AEs 1 SAE 4 AEs possibly treatment related; 
all resolved without sequela

1 early withdrawal to pursue other SLE 
treatments at week 8

There were no grade 3 or higher AEs. AEs deemed definitely not related to the investigational product are totalled numerically but not detailed 
in the table. Attribution of the AEs and SAE is presented in column 3.
AEs, adverse events; MSCs, mesenchymal stromal cells; NCI-CTCAE, National Cancer Institute Common Terminology Criteria for Adverse 
Events; SAE, serious adverse event.

https://dx.doi.org/10.1136/lupus-2022-000704
https://dx.doi.org/10.1136/lupus-2022-000704
https://dx.doi.org/10.1136/lupus-2022-000704
https://dx.doi.org/10.1136/lupus-2022-000704
https://dx.doi.org/10.1136/lupus-2022-000704
https://dx.doi.org/10.1136/lupus-2022-000704
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RESULTS
Safety
As shown in table 1, there were a total of 21 AEs over the 
52 weeks of the trial. None were grade 3 or higher, and 
only four were felt possibly related to the MSC infusions 
and all resolved quickly. These included mild nausea, 
paraesthesias and flushing. There were no lab-related AEs 
in the six participants. One patient dropped out (patient 
3) and was treated with rituximab by her primary rheuma-
tologist 4 months post-MSC infusion for refractory symp-
toms. Her SAE was an anaphylactic reaction to the ritux-
imab. She lived in California and did not want to make 
the cross-country trips post-week 8. This was the only SAE 
in the trial and was judged not due to MSC treatment 
given a prior history of multiple anaphylactic reactions to 
intravenous medications. There were no other common 
AEs within the group.

Clinical response
The six patients enrolled were female with an average 
age of 38 years (range of 26–48 years). Two participants 
were African-American, one was Hispanic and three were 
Caucasian. Average disease duration was 8.2 years (range 
of 3.9–11.7 years). One patient had onset of disease as a 
child. Baseline disease features are in table 2. One patient 
had refractory episodes of transverse myelitis despite 
immunosuppression and biological therapy. One patient 
had renal disease with ongoing proteinuria post-therapy 
with mycophenylate (MMF). All but one patient were 
on hydroxychloroquine and prednisone. Two were on 
MMF, one on azathioprine and MMF and one on cyclo-
sporine. Two were not on an immunosuppressant having 
failed multiple immunosuppressive regimens. All patients 
continued their baseline medications throughout the 
trial.

Overall, 5 (83.3%; 95% CI 35.9% to 99.6%) of the six 
participants receiving UC MSCs reached the primary 
response criteria of an SRI of 4 by 24 weeks and a 
decrease in prednisone to 10 mg a day or less by 20 weeks 
(figure 1A, table 3 and online supplemental table 1). By 

Table 2  Baseline demographics and disease characteristics in the six participants

Subject

Age,
race/ethnicity
sex

Baseline SLE
manifestations

SLE duration
at baseline

Baseline SLE
medications

Baseline
SLEDAI 
score

Week 24
SLEDAI 
score

1 30–35 year old 
female

Transverse myelitis, alopecia, oral 
ulcers, pleuritis

4.8 years HCQ, MMF, 
prednisone

6 0

2 35–40 year old 
female

Arthritis, alopecia, oral ulcers 9.9 years HCQ 8 2

3 30–35 year old 
female

Arthritis, alopecia, peritonitis, 
angioedema

10.5 years Cyclosporine, 
prednisone

6 NA

4 25–30 year old 
female

Rash, oral ulcers, alopecia, low 
complement, +dsDNA abs, nephritis

11.7 years HCQ, MMF, 
prednisone

10 6

5 45–50 year old 
female

Rash, arthritis, oral ulcer 8.7 years HCQ, prednisone 8 0

6 35–40 year old 
female

Arthritis, low complement, +dsDNA 
abs, leucopenia

3.9 years HCQ, MMF, AZA, 
prednisone

11 5

Demographics of the participants is presented in column 2 with baseline lupus manifestations and disease duration are shown in columns 
2 and 3. There was a wide range of disease manifestations and disease duration. Baseline medications, SLEDAI at baseline and SLEDAI at 
week 24 are presented in columns 5, 6 and 7.
AZA, azathioprine; HCQ, hydroxychloroquine; MMF, mycophenolate mofetil.

Figure 1  Clinical and patient-reported outcomes. (A) Line 
plot of the change in SELENA-SLEDAI scores over the course 
of the trial. This is the overall score combining lab and clinical 
criteria. The primary endpoint was the SLE Responder Index 
(SRI) 4 at 24 weeks). There was overall a significant decline 
in SELENA-SLEDAI scores of 5/6 patients meeting the SRI-4 
endpoint (p<0.006). (B) Lupus Impact Tracker (LIT) means 
over the time of the study. There was a significant decrease 
in the LIT beginning at week 12 and continuing through 
week 52 (p=0.007). Error bars indicate SD. Represents the 
scores of the five patients completing the trial to 52 weeks. 
(C) SF-36 subscale scores at the given timepoints for the five 
patients who completed the study. significant increases in 
general health (p=0.02), social functioning p=0.02) and vitality 
(p=0.004) were present beginning at week 12 and continuing 
through week 52. Data represents the scores of the five 
patients completing the trial to 52 weeks. SELENA SLEDAI, 
Safety of Estrogens in Lupus Erythematosus National 
Assessment Systemic Lupus Erythematosus Activity Index.

https://dx.doi.org/10.1136/lupus-2022-000704
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week 24, results from the GLMMs showed that there was a 
significant (p<0.001) decline from baseline in the SLEDAI 
scores, decreasing from a baseline average of 8.2 (range 
6–11) to 2.8 (range 0–6) at week 24, for a mean decline 
of 5.3 units (95% CI 2.7 to 8.0). Significant (p<0.05) and 
sustained responses in the SF-36 scores and the LIT over 
time were observed (figure 1B and C). Sensitivity analyses 
using the LOCF approach for missing data yielded results 
that were similar to the primary analyses; significance 
(p<0.05) was preserved for the time changes noted in the 
SLEDAI; the SF-36 general health, social functioning and 
vitality domains; and the LIT.

Standard laboratory measures were assessed. Partici-
pant 3’s proteinuria improved from baseline (1015 mg/g/
day) to week 24 (192 mg/g/day) with an increase in her 
lymphocyte count from 290 to 1000 and her C4 from 9.5 
mg/dL to 13.1 mg/dL. Participant 6 had a decrease in 
her anti-dsDNA level from a baseline of >300 IU/mL to 
132 IU/mL at week 24. None of the other patients had 
low complement levels or high anti-dsDNA levels.

As shown in online supplemental figure 1A, titres for 
anti-Ro52, anti-Ro60, anti-Sm and anti-RNP were assessed 
at each of the 0-week, 4-week, 8-week and 24-week time-
points. All the participants had increased titres of anti-
Ro52, anti-Ro60 and anti-RNP greater than control. 
Participants 5 and 6 had titres of anti-Sm elevated above 
control. In participants 2 and 6, there was a log-fold 
decrease in anti-Ro60 antibodies between week 0 and 
week 4 that remained through week 24. Other titres 
remained stable over the time of the study. The assay 
for these measures is the LIP assay, which has a broader 
dynamic range than standard ELISA measures perhaps 
explaining the changes seen in these assays over time.

There was stability or further improvement in the clin-
ical response from 24 to 52 weeks in the five responders 
(figure  1A and online supplemental table 1). Physician 
global and patient global assessments were significantly 
improved in the 5/6 responders (table  3 and data not 
shown). Prednisone was able to be tapered or maintained 
at 10 mg or less per day (table 3). There was a sustained 
response in the LIT (figure 1C). Subsequently, from 18 

to 48 months after completion of the study, four of the 
patients flared. Patient 1 had a recurrence of her thoracic 
cord transverse myelitis at 20 months postinfusion. She 
was treated with Cytoxan and pheresis and retreated with 
MSCs. She has had no flares now 34 months later. The 
other three participants had less severe flares with arthritis 
and skin disease and were not retreated with MSCs.

Mechanistic studies
B cell responses
Flow cytometry was performed on patient samples at 
weeks 0, 4, 8 and 24. Week 8 data are not included due 
to weather induced loss of 3 week 8 samples in transit. 
The gating scheme was previously published with the 
identification of nine B cell subsets35: (1) plasmablasts, 
(2) double negative 3+4, (3) double negative 2 (DN2), 
(4) double negative 1, (5) switched memory (SM), (6) 
unswitched memory, (7) activated naïve (aN), (8) resting 
naïve+transitional 3 and (9) transitional 1+2 (T1+T2).

As shown in figure 2, there was variation in percentage 
of B cell subsets at baseline. A significant change from 
week 0 to 24 was a marked decrease in the percentage of 
total DN B cells in participants 1, 2, 5 and 6 (figure 2 and 
online supplemental table 2). DN2 B cells are expanded in 
African-American women with active lupus.35 Of interest, 
the two patients with the highest numbers of DN2 cells 
at baseline were the two African-American participants 
(1 and 6). There was a significant reduction in DN2 B 
cells following MSC infusion. aN B cells are also increased 
in African-American females with lupus.33 Three of the 
participants (1, 5 and 6) had detectable numbers of aN 
B cells. Participants 1 and 6 had expanded DN2 B cells 
and aN B cells in parallel through the study. Patients 2 
and 5 were not on immunosuppressants at the time of 
study entry, yet still had significant changes in their B cell 
profiles similar to the patients on immunosuppressants.

Concomitant with the decrease in DN and aN B cells, 
there was an increase in resting naïve and T1+T2 B 
cells. There was a significant change in the SM B cells, 
decreasing in all five of the patients that were responders. 
Online supplemental table 1 presents the B cell data in a 

Table 3  Change in the physician global assessment and prednisone dosing

Subject

Physician’s Global Assessment 
(PGA) change over 24 weeks
(scale 0–3)

Baseline prednisone dose 
(mg/day)

Week 24 prednisone dose 
(mg/day)

Week 52 
prednisone dose 
(mg/day)

1 −1.94 10 7.5 5

2 −0.9 0 0 0

3 n/a 20 – –

4 −1.23 20 10 2.5

5 −1.05 10 10 10

6 −1.8 10 10 10

The change in the PGA from baseline to week 24 is presented in column 2, while the change in prednisone dosing from baseline to week 
24 and to week 52 is presented in columns 3 and 4. Three of the five responders were able to taper prednisone to 5 mg or less, while two 
maintained their prednisone dose at 10 mg/day.

https://dx.doi.org/10.1136/lupus-2022-000704
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numerical format including the SLEDAI score calculated 
at the week 0-week, 4-week and 24-week visits. There were 
significant associations between subjects’ SLEDAI scores 
and their percentages of N+T (p=0.042), SM (p=0.007) 
and DN (p=0.041) B cells over time. There was a negative 
correlation for N+T with the SLEDAI and positive correla-
tion of the SM and DN with the SLEDAI.

T cell responses
Prior studies of MSC infusions in lupus-prone mice, and 
in more limited studies in human lupus, reported an 
increase in Treg cells with a decrease in Th17 and T folli-
cular helper (Tfh) cells following MSC infusions.36

As shown in figure 3A, we assessed the fold change of 
Treg cells in the peripheral blood of the participants. In 
patient 1, was there a significant increase in percentage/
fold change in Treg cells. This change was present in 
both Helios− and Helios+ Treg cells. Participant 6 also 
had an increase in Treg cells present only at week 24 and 
primarily in Helios− Treg cells. Participant 2 had a consis-
tent increase in her Tregs as measured by fold change 
compared with baseline though percentage change was 
small.

Online supplemental figure 1B demonstrates there 
were fluctuations in Th1, Th2 and Th17 cells but no clear 
trends during the study. In online supplemental figure 1B, 
we also present measures of Tfh and T peripheral helper 
(Tph) cells. As expected, there were very few Tfh cells 
detected, although participant 1 had a sustained decrease 
following MSC infusion. A limited number of Tph cells 
were detected, and there was no significant change 
during the study. There were no associations between 
SLEDAI score and changes in T cell subsets other than in 
Treg levels in patients 1 and 2. There were no detectable 

changes in CD8+ T cells or their subsets, nor NKT cells 
(data not shown).

GARP is a cell surface protein that is a repository for 
latent TGFb and plays a key regulatory/tolerance role 
in immunity via modulating TGFβ activation.37 It is 
primarily expressed on platelets, Tregs, activated B cells 
and MSCs.38 39 Lack of GARP expression on murine B 
cells or Treg cells resulted in lupus-like autoimmunity.39 
We postulated that GARP was involved in the impact of 
MSCs on the immune response. We assessed the presence 
of soluble GARP–TGFβ complexes in the serum of lupus 
patients from our biorepository that were not in the trial. 
There was a significant (p=0.023) decrease in serum levels 
of circulating GARP–TGFβ complexes in lupus patients 
versus controls (figure  3D). We then assessed if there 
was a correlation between circulating GARP-TGFβ levels 
and disease activity in these biobank patients. As shown 
in figure  3E, there was a significant inverse correlation 
(p=0.034) between serum levels of soluble GARP-latency-
associated peptide (LAP) and SLEDAI scores in patients 
with active disease (SLEDAIs >10). In figure 3E, prior to 
infusion, serum GARP levels were undetectable in the six 
participants. At week 4, GARP-TGFβ serum levels were 
significantly increased from baseline in all patients. At 
week 8, levels fell in all the patients but remained above 
baseline. At week 24, there was an upward rebound or 
stability of GARP levels in four of the five patients that 
completed the study (1, 2, 3 and 5).

DISCUSSION
This phase I trial is the first of allogeneic MSCs performed 
in multiethnic lupus patients. The results indicate that 
infusion of allogeneic UC MSCs appears safe short term, 
as we had no serious adverse events that were attributed 
to the UC MSC infusions, and all the AEs were grade 2 
or less. We were encouraged that five of the six patients 
treated met the primary endpoint of an SRI 4, justifying 
performing the phase II double-blind multicentre effi-
cacy study currently in progress. We were also encouraged 
by the marked B cell changes and increased serum GARP-
TGFβ measures noted indicating the MSCs had a systemic 
immune effect paralleling the clinical effects.

The patients in this trial were of mixed ethnicity with 
a range of ages. The patients had variable lupus manifes-
tations. The prior studies in China by Dr Sun included 
patients with primarily refractory lupus nephritis, but also 
included patients with significant hematological involve-
ment and pulmonary haemorrhage.15 21 22 In a recent 
review of his cohort, Dr Sun reported that younger male 
patients and those with musculoskeletal symptoms were 
not as responsive to UC MSC infusion as other lupus 
manifestations.20

The duration of response is variable in the reports 
from Dr Sun’s group.15 21 22 He reported a 65%–70% early 
‘response’ rate with a long-term response rate of 4–5 years 
in the 25% range. A limited number of patients in his 
cohort are beyond 5 years with minimal disease activity. 

Figure 2  B cell subset changes over time by flow cytometry. 
(B) Cell subset changes over time as determined by flow 
cytometry. Significant differences in B cell subsets occurred 
over the trial period as also noted in online supplemental 
table 2. The cell markers used are listed in the methods and 
are previously published.33 Most significant changes were in 
decreased double negative B cells including DN2, increased 
transitional B cells and decreased activated naive B cells. 
IgD−CD27+=SM+PB, IgD−CD27−=DN1+DN2+(DN3 +4), 
IgD+CD27=(T1 +T2)+(rN +T3)+aN. aN, activated naïve; DN, 
double negative; rN, resting naïve; SM, switched memory; T, 
transitional; PB, plasmablasts; USM, unswitched memory.

https://dx.doi.org/10.1136/lupus-2022-000704
https://dx.doi.org/10.1136/lupus-2022-000704
https://dx.doi.org/10.1136/lupus-2022-000704
https://dx.doi.org/10.1136/lupus-2022-000704
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Of the five ‘responsive’ patients in our trial, one remains 
with minimal disease activity out 3–4 years from their one-
time infusion (participant 6). The other four patients had 
a full or partial flare of their disease from 18 months to 30 
months post-single infusion. The response of participant 
1 to retreatment was consistent with prior data from Dr 
Sun’s group reflecting retreatment is often successful.

There are prior reported trials of MSCs in human 
lupus; seven used allogeneic derived cells and one used 
autologous bone marrow-derived cells.31 40–42 All but two 
trials were done in China. There is only one ‘placebo-
controlled trial’ of MSCs in lupus nephritis patients that 
were new onset and untreated comparing MSCs plus 

cyclophosphamide to cyclophosphamide alone.24 43 The 
other two reports of MSCs in lupus were case reports 
from Europe, one using autologous cells that showed no 
improvement.40 A more recent paper described compas-
sionate use of UC MSCs in three woman with class IV 
lupus nephritis.43 They reported a complete remission in 
two patients and a partial remission in a third.

The only large placebo-controlled trials reported to 
date of MSCs in allo and autoimmune diseases used MSCs 
for treating Crohn’s disease and GvHD. The method of 
derivation and validation of the cells were not described. 
The MSCs however were late passages and were infused 
post-thawing, both of which are known to impact MSC 

Figure 3  Cell changes over time. (A) Treg changes over time are presented. Participant 1 had a significant increase over time 
in Tregs both Helios+and Helios− looking at percentage change and fold change over baseline. Participant 2 had a significant 
increase with time compared with baseline in both Treg subsets, though the percentage change was small given the low 
percentage of Tregs at baseline (B). A representative flow block is shown in figure part C demonstrating the increase in Tregs 
over time from 0% to 8% in participant 1. (D–F) GARP serum measures. Figure part D shows measures of circulating serum 
GARP-LAP (latency-associated peptide) complexes as measured by a sandwich ELISA assay as previously described.37 
Random SLE patients in the MUSC cohort (n=30) had significantly less (p=0.0226) circulating GARP-LAP complex than age/
sex/race matched controls (n=16) y-axis is od 450. (E) Plots GARP–LAP complexes via ELISA versus patient SLEDAI score 
at the time of blood draw (n=21) for the MUSC lupus cohort. The y-axis is OD 450 reading via ELISA. There is a significant 
correlation between SLEDAI score and GARP–LAP complexes in patients with SLEDAI scores >10. Figure part F is a sandwich 
ELISA measure of soluble serum GARP expressed as ng/mL of serum in the MSC treated patients over time demonstrating 
near 0 levels of serum GARP at baseline with significant increases at week 4, decreasing at week 8 prior to rebounding at week 
24 in 3/5 patients. Mann-Whitney U test was used to determine significance (week 0–week4- p=0.003). GARP, glycoprotein A 
repetition predominant; LAP, latency-associated peptide; MUSC, Medical University of South Carolina; MSC, mesenchymal 
stromal cell; OD, optical density.



Kamen DL, et al. Lupus Science & Medicine 2022;9:e000704. doi:10.1136/lupus-2022-0007048

Lupus Science & Medicine

functionality. These trials showed trends towards efficacy 
but did not meet their target endpoint. These failures 
are likely due to the quality of the cells but led some to 
postulate MSCs are not effective in immune-mediated 
diseases.44 There is demonstrated efficacy of MSCs in 
treating steroid refractory GvHD in paediatric patients 
receiving allogeneic bone marrow. MSCs are approved 
to treat GvHD in paediatrics in Canada, Japan and New 
Zealand. MSCs given by direct injection into the local 
area is approved to treat refractory fistulas in Crohn’s 
patients in the European Union.

Patients in our trial were on hydroxychloroquine, pred-
nisone and different immunosuppressants. Due to lack 
of response, two patients had their immunosuppressants 
discontinued prior to entry into the study. In this limited 
series, nor in the Sun trials, was there any indication of 
effects of concomitant medications on responses to MSCs. 
The impact of concomitant medications on response to 
MSC therapy is unresolved though data to date suggest a 
minor if any effect.

There are a number of unanswered questions regarding 
UC MSCs in lupus. The first is how variable are UC MSCs 
between donors in their efficacy. In this series, we did not 
see a differential response between the recipients of the 
two different cord cell lots. In our preclinical studies in 
lupus-prone mice, we used four different bone marrow 
donors from controls and three from lupus patients.29 The 
MSCs from controls were more effective in preventing 
disease progression in the mice than were lupus-derived 
MSCs. The lupus-derived MSCs had induced indoleamine 
2,3-dioxygenase (IDO) expression by gamma interferon 
and suppressed stimulated T cell proliferation similar to 
cells from controls. They were, however, not as effective 
in preventing B cell proliferation.29 Given the prevalence 
difference in men versus women, one could speculate 
MSCs derived from males would be more effective than 
females. We have insufficient numbers to suggest there 
are differences in MSCs depending on sex of the donor. 
Defects in lupus MSCs are increasingly reported in 
vitro45–47; definitive studies of differences in in vivo effi-
cacy of different MSC preparations are lacking. Studies 
comparing bone marrow-derived versus adipocyte-
derived versus UC-derived suggest subtle differences in 
function, but no definitive data that one source is supe-
rior in in vivo trials in humans. We used UC MSCs due to 
their ready availability, rapid growth characteristics and 
the ability to treat multiple patients with one cord (>90).

It is clear in humans that following intravenous infu-
sion the majority of the cells are trapped in the lung, but 
how long they remain viable is unknown.48 It is not known 
whether the MSCs have to migrate to the affected organ 
for cell-to-cell interactions for effect or if MSC derived 
endosomes/cytokines are sufficient.49 50 In studies in 
mice infused with human cells, there are reports of a 
short half-life for the MSCs, while others, including our 
group, found evidence of MSC survival in target organs 
for weeks postinfusion.29 The only human study of MSC 
survival looked for HLA mismatched MSCs at autopsy of 

patients having undergone MSC infusion for GvHD.51 
MSCs could be detected in different organs weeks after 
the MSC infusion. Whether cells that are MHC matched 
or closely matched are preferable to mismatched cells is 
also unclear, though the ‘immune privilege’ reported for 
MSCs is time limited.52 Alloreactivity postinfusion is vari-
able and may or may not enhance MSC effects.

As controversial as is the efficacy of MSCs, the mech-
anisms by which they impact disease is also unclear. In 
vitro data indicate that MSCs can suppress the activity of 
almost every immune cell, while enhancing regulatory 
B and T cells. A host of mediators are secreted by MSCs 
including IDO, NO, PGE2, TGFβ, IL10, Factor H and 
hepatic growth factor.53–55 MSC cell surface molecules 
such as GARP and FLT3L are postulated to interact with 
host immune cells impacting proliferation, differentia-
tion and activity.39 56 Others showed in mice that MSCs 
are engulfed by resident macrophages inducing a tolero-
genic anti-inflammatory phenotype that prolongs the 
efficacy of MSCs. MSCs are ineffective in mice lacking 
macrophages.56 57 At the cellular level, as noted previ-
ously, MSCs are reported to increase Tregs and Bregs 
while decreasing Th17 cells, TfH cells and inducing a Th1 
to Th2 shift possibly via TGFβ effects.58 Enhancing devel-
opment of CD1c+ tolerogenic dendritic cells (DCs) via 
expression of FLT3L by MSCs was reported, enhancing 
IFNγ production by CD8+ T cells.56 Although all of the 
previously mentioned may contribute, the actual defining 
mechanisms remain unknown.

Although we did not note any significant changes in the 
T cell compartment other than in two patients, we did find 
marked changes in the B cell compartment. The signifi-
cant effect on DN B cells, aN B cells and switched (SW) 
B cells was not reported in published MSC studies. The 
importance of these findings is supported by the correla-
tion of SLEDAI scores and changes in B cell subsets. 
The DN B cells and activated naïve cells are increased in 
active lupus and are believed to be precursors of auto-
antibody producing cells in lupus.59 Epigenetic analysis 
of these DN B cells in lupus patients revealed they are 
primed to respond to TLR ligands, especially TLR7.35 
The changes in ENA autoantibodies is of note, given the 
reported stability of these antibodies despite therapy. The 
technique used in this study was the LIP assay which has 
a broader detection range than standard clinical assays 
allowing better detection of changes in antibody levels.

It is unclear if the effect of MSCs on B cells is a direct 
effect or an indirect effect. The impact on B cells appears 
less likely to be due to T cell effects since we saw evidence 
of a T cell change in only two patients, while the B cell 
effect was present in all five responders. Based on the 
known expression of GARP on MSCs and a prominent 
role for GARP in tolerance and autoimmunity in mice,39 
we assessed GARP-TGFβ levels in participants in this trial. 
When a GARP bearing cell interacts with another cell that 
expresses GARP, expression of GARP is increased on both 
cells.32 This affect may explain the rebound of GARP-
TGFβ levels at 24 weeks or may reflect the improvement 
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in disease activity in patients with resultant increased 
GARP-TGFβ expression.

If future larger trials prove significant efficacy of MSCs 
in treating lupus, where would such treatment fit into the 
treatment algorithm of lupus. Producing the cells can be 
done given 90–100 patients can be treated with a single 
cord, and a number of companies and institutions are 
developing the ability to produce MSCs for human use. 
Given the safety, the ease of infusion and the length of 
response, if MSCs are shown to have equal or superior 
efficacy to current treatments, acceptance and use of 
MSCs in lupus will likely be broad.
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