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Abstract

Genome wide association, epidemiological, and clinical studies have established high 

lipoprotein(a) [Lp(a)] as a causal risk factor for atherosclerotic cardiovascular disease (ASCVD). 

Lp(a) is an apoB100 containing lipoprotein covalently bound to apolipoprotein(a) [apo(a)], a 

glycoprotein. Plasma Lp(a) levels are to a large extent determined by genetics. Its link to 

cardiovascular disease (CVD) may be driven by its pro-inflammatory effects, of which its 

association with oxidized phospholipids (oxPL) bound to Lp(a) is the most studied. Various 

inflammatory conditions, such as rheumatoid arthritis (RA), systemic lupus erythematosus, 

acquired immunodeficiency syndrome, and chronic renal failure are associated with high Lp(a) 

levels. In cases of RA, high Lp(a) levels are reversed by interleukin-6 receptor (IL-6R) blockade 

by tocilizumab, suggesting a potential role for IL-6 in regulating Lp(a) plasma levels. Elevated 

levels of IL-6 and IL-6R polymorphisms are associated with CVD. Therapies aimed at lowering 

apo(a) and thereby reducing plasma Lp(a) levels are in clinical trials. Their results will determine 

if reductions in apo(a) and Lp(a) decrease cardiovascular outcomes. As we enter this new arena of 

available treatments, there is a need to improve our understanding of mechanisms. This review will 

focus on the role of Lp(a) in inflammation and CVD.
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1. Introduction

Genome wide association, epidemiological, and clinical studies have established high 

lipoprotein(a) [Lp(a)] as a causal risk factor for atherosclerotic cardiovascular disease 

(ASCVD) [1,2]. Lp(a) contains several proteins [3]. Its main protein components are 

apolipoprotein(a) [apo(a)] and apolipoprotein B100 (apoB100) which are bound by covalent 
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and non-covalent bonds [4]. Lp(a) also contains cholesterol, phospholipids, and triglycerides 

[5]. High plasma levels of Lp(a) are linked to atherosclerosis, thrombosis, and arterial 

calcification [6], which may be driven by its pro-inflammatory effects [7]. Lp(a) has been 

found in atherosclerotic plaques [8]. Several studies have suggested that Lp(a) itself may 

enhance inflammation in endothelial cells, monocytes, and macrophages, via the oxidized 

phospholipids (oxPL) that are bound to Lp(a) [9–11]. Previous studies point to both the 

apoB component and the apo(a) moiety as drivers of inflammation that can result in ASCVD 

[3,12]. Proteomic studies have also identified a large number of apolipoproteins on Lp(a), as 

well as platelet-activating acetylhydrolase (PAF-AH) and paraoxinase-1 (PON-1) [3,13,14], 

which may link Lp(a) to disease states. Some currently identified proteins and their function 

are listed in Table 1.

Plasma Lp(a) levels are to a large extent determined by genetics [15,16]. The LPA gene 

is derived from a duplication of the plasminogen gene, but apo(a) has no plasminogen-like 

activity and so, in addition to its apoB containing lipoprotein structure, it may compete 

with plasminogen for binding to fibrin, thereby impairing fibrinolysis and promoting 

thrombosis at sites of endothelial breakdown [17,18]. Recent data suggest ex vivo measures 

of fibrinolysis are not affected in subjects with high Lp(a). However, in vivo studies are 

lacking [19].

High Lp(a) levels have also been reported in various inflammatory conditions, such 

as rheumatoid arthritis (RA), systemic lupus erythematosus, acquired immunodeficiency 

syndrome, chronic renal failure, and pulmonary arterial hypertension [20–31]. Differences 

in Lp(a) levels have also been observed in pregnancy [32,33], and diabetes [34,35], 

inflammatory conditions that will not be addressed in this review.

Large data sets pointing to Lp(a) as a top genetic marker for cardiovascular disease 

[36,37] have increased interest in the identification of pathways and involved culprits 

of disease. Importantly, there are various treatments that lower Lp(a) levels. Non-lipid 

altering treatments affect Lp(a) levels, including niacin [1,6,11,38–40]. PCSK9 inhibitors 

modestly lower Lp(a) levels [9,41], as do additional apoB lowering therapies [42,43]. 

Apharesis lowers Lp(a) and other apoB containing lipoproteins, and is FDA approved for 

severe elevations of Lp(a) levels [11,44]. Studies assessing risk reduction of apharesis are 

ongoing (NCT02791802). There are three ongoing studies examining the effect of apo(a) 

lowering with novel targeted therapies (NCT04606602-SLN360, NCT04023552-TQJ230, 

and NCT04270760-AMG 890) [10,45–49]. As we enter a new arena of available treatments, 

there is a need to improve our understanding of mechanisms downstream of Lp(a) and 

mechanisms that regulate plasma Lp(a) levels. This review will focus on the role of Lp(a) in 

inflammation and cardiovascular disease (CVD).

2. Inflammation and CVD

The CANTOS (canakinumab anti-inflammatory thrombosis outcomes study) trial has for 

the first time provided direct evidence that inflammation enhances CVD events in humans, 

by showing that antagonism of interleukin (IL)-1β decreases the incidence of recurrent 

CVD events in patients with high levels of C reactive protein (CRP) [50], irrespective of 
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effects on plasma lipid levels. IL-1β is a main regulator of inflammation and cytokine 

secretion, including IL-6 [51,52]. Mendelian Randomization studies and meta-analyses 

have shown a link between IL-6R polymorphisms and CVD [53,54]. In a subgroup of 

CANTOS participants screened for IL-6 plasma levels (n = 4833), decreases in plasma 

levels of IL-6 downstream of IL-1β antagonism by canakinumab were associated with a 

reduction of CVD events [55]. Moreover, the residual CVD risk in this subgroup of the 

CANTOS trial was proportional to plasma IL-6 levels [56]. Together, these studies indicate 

an important role for IL-6 in CVD events, independent of plasma lipid levels. Other trials 

evaluating anti-inflammatory drugs (methotrexate and colchicine) in CVD include the CIRT 

(cardiovascular inflammation reduction trial), LoDoCo (low dose colchicine), COLCOT 

(colchicine cardiovascular outcomes trial), and LoDoCo2 (low dose colchicine 2) trials. 

While low-dose methotrexate was ineffective in reducing CVD events, leading to CIRT 

being stopped prematurely, the effects of colchicine on CVD are still being evaluated in 

ongoing research studies [57–61]. The outcome of these trials has recently been reviewed 

[62].

The above observations suggest that IL-6R blockade by tocilizumab, which is used as a 

therapy for RA, would have beneficial effects in CVD. However, tocilizumab treatment 

increases plasma LDL-cholesterol in RA patients [20,63–67], which has been attributed 

to decreased hepatic LDL receptor levels, as shown in HepG2 cells [65]. In three USA 

databases, as well as in studies in Japan and Italy, treatment with tocilizumab had no 

effects on major adverse cardiovascular events (MACE) [68–71]. Perhaps this was due to 

the study populations mainly consisting of RA patients that generally have higher levels 

of inflammation and lower LDL-cholesterol levels [63,72]. Two small trials assessed the 

role of tocilizumab in myocardial infarction (MI) directly, in patients that did not have RA. 

A clinical trial in non-ST-elevation myocardial infarction (nSTEMI) patients showed that 

tocilizumab did not affect MI [73] and the ASSAIL-MI (ASSessing the Effect of Anti-IL-6 

Treatment in Myocardial Infarction) trial (NCT03004703) testing a role for tocilizumab in 

STEMI patients is ongoing [74]. In sum, the CANTOS trial has provided direct evidence 

for a role of inflammation in CVD, which has mainly been attributed to decreases in plasma 

IL-6 downstream of IL-1β signaling. A role for IL-6 in CVD is supported by Mendelian 

Randomization studies and meta-analyses showing links between IL-6R polymorphisms 

and CVD. Whether IL-6R blockade by tocilizumab decreases the incidence of CVD has 

only been studied in one small population of MI patients. The ASSAIL-MI trial, which 

is currently ongoing, is likely to provide additional insights as to whether tocilizumab 

decreases the incidence of CVD.

3. IL-6 regulates Lp(a) plasma levels

As previously stated, in addition to genetic control [15,16], various inflammatory diseases 

including RA have been linked to high Lp(a) levels. Studies using drugs to target 

inflammatory pathways in RA patients have provided insights into these links. IL-6R 

blockade by tocilizumab, but not tumor necrosis factor α (TNFα) blockade by adalimumab, 

decrease plasma Lp(a) levels by ~30–40% in RA patients [20,63,64,75]. These data thus 

suggest that decreased IL-6R signaling and not TNFα signaling, reduces plasma Lp(a) 

levels. Conversely, the IL-6 promoter polymorphism (−174 G/C), which is associated with 
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high plasma IL-6 levels, correlates positively with plasma Lp(a) [76], as do plasma levels 

of IL-6 as demonstrated in ~1153 human subjects [77]. The latter was confirmed in a 

subgroup of subjects (n = 635) without chronic inflammatory disease, suggesting a positive 

relationship between plasma IL-6 and Lp(a) in the general population [77]. This subgroup 

showed a positive correlation of IL-6 responsive genes with LPA mRNA expression in 

liver biopsies, further supporting a positive association between IL-6 and Lp(a) [77]. In 
vitro experiments in hepatocytes transfected with a plasmid for LPA substantiated that IL-6 

enhances LPA expression, mediated by binding of STAT3 to the LPA promoter [77]. Hence, 

multiple lines of evidence show regulation of plasma Lp(a) levels by IL-6.

However, a clinical trial in nSTEMI patients showed that tocilizumab did not affect Lp(a) 

levels, measured at day 1, 3, and months 3 and 6 after tocilizumab treatment [73]. Statin-

therapy, which may increase Lp (a) levels, was suggested to explain why tocilizumab 

did not decrease Lp (a) levels in this specific cohort [73]. Indeed, a recent meta-analysis 

from six randomized trials (n = 5256 patients) using a single well-established method 

for Lp(a) measurements has shown that statins increase Lp(a) levels (11.6–20.4% for 

pravastatin and 18.7–24.2% for atorvastatin) [78]. Mechanistically, atorvastatin increased 

LPA mRNA levels and apolipoprotein(a) in HepG2 cells [78], via an as yet unidentified 

mechanism. In summary, signaling downstream of the IL-6R affects Lp(a) levels in RA 

patients. Whether this is also the case for CVD remains to be elucidated, although one study 

found no differences, perhaps because the tocilizumab effect on Lp(a) is compromised by 

statin-therapy. Nonetheless, the statin effects may not be the complete explanation for this 

outcome. In future studies, it would be of interest to evaluate whether IL-6R polymorphisms 

that associate with CVD risk affect plasma Lp(a) levels.

Apart from inflammation, Lp(a) inversely correlates with levels of bile acids in plasma 

in patients with biliary obstructions [79]. Mechanistic studies in animal models and 

hepatocytes revealed that activation of the Farnesoid X Receptor (FXR) by bile acids 

suppressed LPA mRNA transcription, irrespective of effects on inflammatory gene 

expression[79]. In support of these findings, a later study showed that therapy with the FXR 

agonist chenodeoxycholic acid (CDCA) for gallstone disease over a period of three weeks 

decreased plasma Lp(a) levels significantly [80]. In sum, both IL-6 and FXR pathways have 

been shown to regulate plasma Lp(a) levels.

4. Tocilizumab, Lp(a), and COVID-19 (SARS-CoV 2)

IL-6 is elevated during the cytokine storm in COVID-19 patients [81–83]. It has been 

hypothesized that Lp(a) levels, as a result thereof, may also be upregulated, and that 

high Lp(a) could contribute to inflammation and thrombosis observed in COVID-19 [84]. 

Importantly, studies in 9005 UK Biobank participants found that plasma levels of apoB, 

a component of Lp(a), was not associated with COVID-19 [85]. The link between IL-6, 

Lp(a), and COVID-19 is of interest, particularly in view of studies addressing whether 

tocilizumab suppresses symptoms and complications associated with COVID-19. Potential 

anti-inflammatory effects of tocilizumab could be mediated by decreases in Lp(a). The 

effect of tocilizumab on reducing symptoms and mortality related to COVID-19 has been 

investigated extensively. Some studies, though small in terms of number of patients, have 
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shown clinical benefit [81–83], while others did not [86–88]. A recent meta-analysis 

and meta-regression has suggested that tocilizumab is associated with clinical meaningful 

improvements in COVID-19 [89]. This is supported by recent results in a larger group 

of 4116 COVID19 patients in the RECOVERY (Randomised Evaluation of COVID-19 

Therapy) trial, that, although preliminary, showed that tocilizumab improves survival in 

hospitalized COVID19 patients with hypoxia and systemic inflammation [90]. Lp(a) may 

be elevated during the cytokine storm in COVID-19 and could contribute to an increased 

incidence of thrombosis [84].

5. Lp(a), oxidized phospholipids, and CVD risk

Lp(a) has been found to enhance inflammation, presumably due to oxidized phospholipids 

(oxPL) bound to Lp(a). In addition to Lp(a), oxPL circulate on oxidized LDL (oxLDL) and 

apoptotic cells [91]. This was found using E06, an antibody that binds to the phosphocholine 

head-group of most oxPL, but not PL [91]. E06 blocks the uptake of oxLDL, but not LDL 

by macrophages, as well as their ingestion of apoptotic cells, but not viable cells [91]. A 

landmark study by the Witztum Laboratory has shown that E06 suppresses inflammation 

and atherosclerosis in Ldlr−/− mice, providing direct evidence that oxPL, in mice either 

derived from oxLDL or apoptotic cells, accelerates atherosclerosis [92].

Using the E06 and apoB-100/E06 assays, several studies have shown a positive relationship 

between oxPL and acute coronary syndrome (ACS), CVD events, and MI [93–95], 

indicating that oxPL is a clear pro-atherogenic factor in humans. Whether the positive 

relationship between oxPL and CVD is driven by oxPL bound to LDL and/or Lp(a), has 

been reviewed in detail [93]. A positive correlation between Lp(a) and plasma oxPL in 

plasma of patients from several CVD cohorts support a role of oxPL association with Lp(a) 

[93].

Lp(a) concentrations correlate inversely with the size of the apo(a) isoform, and the small 

apo(a) isoform has high affinity for oxPL [93,96,97]. This may explain the higher affinity of 

apo(a) for oxPL when Lp(a) concentrations are high [7,96,98,99]. Mendelian Randomization 

studies have shown that the small isoform of apo(a) associated with Lp(a) plasma levels > 

50 mg/dL, increases CVD risk by 2–2.5-fold compared to the large apo(a) isoform [36,100]. 

These studies are limited to white cohorts and Lp(a) levels vary by ethnicity [101,102]. 

Importantly, not all subjects with Lp(a) plasma levels > 50 mg/dL develop CVD, suggesting 

that additional factors may be required for CVD to develop in the setting of high plasma 

Lp(a) levels.

Inflammation has been suggested to potentiate CVD risk mediated by Lp(a) and oxPL [103]. 

This was investigated by assessing the correlation between Lp(a) or apoB-bound-oxPL and 

CVD risk in carriers and non-carriers of an IL-1 haplotype that is associated with increased 

inflammation [103]. In this study a positive relationship between Lp(a) or apoB-bound-oxPL 

and CVD risk was shown in subjects carrying this IL-1 haplotype, but not in non-carriers 

[103]. This positive relationship was strengthened in subjects with high levels of CRP. 

These findings suggest that Lp(a) and oxPL enhance CVD in the presence of IL-1 induced 

inflammation, particularly when this results in high CRP levels.
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6. Clinical implications of high Lp(a) linked to inflammation

The role of Lp(a) in inflammation has been evaluated extensively in in vitro studies. Early 

studies have shown that Lp(a) is a chemoattractant for monocytes and upregulates IL-6 

secretion in these cells [104–106]. Lp(a) also enhances the expression of vascular cell 

adhesion molecule (VCAM)– 1, intracellular adhesion molecule (ICAM)– 1, E-selectin, 

IL-6, and IL-8 in human endothelial cells, as well as IL-8 in macrophages [107–110]. In 

line with these data, Lp(a) increases monocyte adhesion to human endothelial cells, and 

monocyte transmigration through the endothelial layer, early events in the development 

of atherosclerotic plaques [110,111]. In studies with E06 antibodies and apo(a)-mutated 

peptides that show reduced affinity for oxPL binding, all effects of Lp (a) on enhancing 

expression of adhesion molecules and cytokines were shown to be dependent on oxPL [109–

111].

The role of Lp(a) in vascular inflammation has been studied in subjects with either high or 

low Lp(a) plasma levels. These subjects were not on statins, not smoking, and were matched 

for age, sex, and body mass index. They did not show differences in leukocyte levels 

or blood pressure [111]. Essentially, the only difference between these groups were the 

plasma Lp(a) levels. Using positron emission tomography/computed tomographic (PET/CT) 

imaging, subjects with high Lp(a) levels (average ~108 mg/dL) showed an increase in 18 

F-fluorodeoxyglucose (FDG) uptake in the arterial wall of the carotid artery and ascending 

aorta in comparison to subjects with low Lp(a) (average ~7 mg/dL), reflecting an increase 

in arterial inflammation [111]. Normalized wall index of the carotid artery was not different 

between the groups as shown by magnetic resonance imaging (MRI) [111]. Subjects with 

high Lp(a) had high oxPL-apoB as well as oxPL-Lp(a) levels compared to the low Lp(a) 

group. Elegant 99 mTc-labeling studies of autologous peripheral blood mononuclear cells 

(PBMCs) revealed an increase in PBMC accumulation in the arterial wall of the carotid and 

the aorta in subjects with high Lp(a) [111].

These studies for the first time provided solid evidence, in the human setting, that Lp(a) 

enhances arterial wall inflammation, presumably by enhancing monocyte entry. The latter 

could be the consequence of increased monocyte activation and/or endothelial activation. It 

has been shown in monocytes from patients included in the PET/CT study that an increase in 

plasma Lp(a) was accompanied by increases in C-C chemokine receptor 7 (CCR7), CD62L 

(L-selectin), the integrins CD11b, CD11c, and CD29 on the surface of monocytes, which 

reflect monocyte activation [111]. Monocytes from patients with high Lp(a) showed an 

increase in endothelial transmigration as well as cytokine secretion; the latter being mediated 

by oxPL on Lp(a) [111]. This likely explains the enhanced monocyte entry in the arterial 

wall in the subjects with high plasma Lp(a) levels.

Currently, antisense-based approaches to lower plasma apo(a) levels are in clinical trials. 

IONIS-APO(a)LRx decreases apo(a) plasma levels by ~72% and oxPL-Lp(a) levels at 85 

days after injection compared to day 0 [45]. Interestingly, incubation of plasma from patients 

who received IONIS-APO(a)LRx with healthy aortic endothelial cells suppressed ICAM-1, 
VCAM-1, monocyte chemoattractant protein-1 (MCP-1), and IL-6 expression, compared to 

plasma from placebo treated patients, suggestive of suppression of endothelial activation by 
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antisense oligonucleotides to apo(a) [110]. These data support the therapeutic potential of 

these drugs for decreasing CVD, in particular when CVD is driven by inflammation.

Further studies examining the monocyte activation phenotype by the same group have shown 

that elevated Lp(a) plasma levels in otherwise healthy individuals were associated with an 

increase in interferon α (IFNα) and IFNγ responsive genes in monocytes, compared to 

individuals with low Lp(a) [112]. These differences were exacerbated in monocytes from 

CVD patients with high Lp(a) plasma levels that also showed an increase in TNFα signaling 

pathways [112]. Additional studies showed that lowering Lp(a) levels by ~47% via an 

antisense-based approach (AKCEA-APO(a)-LRx) in CVD patients led to suppression of 

IFNα, IFNγ, and Toll like receptor (TLR) responsive genes in monocytes [112]. AKCEA-

APO(a)-LRx treatment also suppressed CCR2, CX3C chemokine receptor 1 (CX3CR1), 

and Toll like receptor 2 (TLR2) surface expression on monocytes, decreasing their trans-

endothelial migratory capacity. These data support the findings in earlier studies [111] that 

Lp(a) enhances monocyte entry into atherosclerotic plaques, which may be mediated by 

direct effects on monocytes, and endothelial cells [110].

In the same study showing anti-inflammatory effects of AKCEA-APO(a)-LRx on monocytes 

[112], also monocytes from the ANITSCHKOW trial had been included. This trial included 

patients with high plasma levels of LDL-cholesterol and high Lp(a) (~80 mg/dL) [113]. 

While the PCSK9 antibody evolocumab lowered plasma LDL-cholesterol by ~60%, it 

reduced plasma Lp(a) by only ~14% [113]; and as a consequence did not affect arterial 

inflammation or inflammatory gene expression in monocytes [112,113]. These effects were 

attributed to Lp(a) reduction being only minimal after evolocumab treatment and reduction 

of LDL-cholesterol not affecting inflammation under conditions of high plasma Lp(a) levels 

[113]. A large percentage of patients with Familial Hypercholesterolemia (FH) also show 

Lp(a) levels > 50 mg/dL [114,115]. While PCSK9 antibodies reduce Lp(a) in these patients 

[114,115], the outcome of the ANITSCHKOW trial suggests that in the context of high 

Lp(a) levels (~80 mg/dL), reduction of Lp(a) by evolocumab is insufficient to suppress 

arterial wall inflammation or inflammatory gene expression in monocytes [112,113]. In a 

recent study, Santos et al. examined the long-term effects of evolocumab in patients with FH 

[116]. Evolocumab has similar efficacy in FH as in non-FH populations if patients have at 

least 1 normal LDLR allele. In this study, they did find lower than expected CV event rate of 

2.7% per year vs. a range of 4–5% in previous studies [116].

However, subgroup results from the Studies of PCSK9 Inhibition and the Reduction of 

vascular Events (SPIRE) program, showed that statin-treated FH patients had a similar 

magnitude of risk reduction for hard cardiovascular events with the PCSK9 inhibitor 

bococizumab as did patients without FH, with no evidence of statistical heterogeneity [115]. 

The benefits of Lp(a) lowering using targeted apo(a) lowering treatments, in addition to 

LDL-cholesterol lowering therapies in this population are yet to be determined.

7. Concluding remarks

Collectively, it has been shown that Lp(a) enhances arterial inflammation, by stimulating 

monocyte entry, mediated by oxPL [110–112]. OxPL is a clear pro-atherogenic factor [93–
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95], and the small apo(a) isoform has high affinity for oxPL [93, 96, 97], and is associated 

with high Lp(a) levels that have been linked with CVD in Mendelian Randomization studies 

[36,100]. Additional work is needed to elucidate mechanisms linking Lp(a) to inflammatory 

phenotypes. The association of the small apo(a) isoform with high Lp(a) levels, and its 

high affinity for oxPL binding may lead to further understanding and discovery of pathways 

that link Lp(a) to inflammation. The role of the large apo(a) isoform in CVD remains 

understudied. Additional studies will be needed to elucidate whether the Lp(a) particle itself 

starts an inflammatory signal or existing inflammatory conditions drive the particle and its 

components to participate in pathways driving inflammation.

Since not all subjects with plasma Lp(a) levels > 50 mg/dL are at CVD risk, questions 

remain as to the additional risk factors that determine the pro-atherogenic and pro-

thrombotic capacity of Lp(a). IL-1 induced inflammation may contribute to the effects of 

Lp(a) on CVD events [103]. Nonetheless, in this particular study [103], IL-1 may have 

increased plasma Lp(a) by increasing IL-6 expression, which complicates its interpretation.

Since several clinical trials on lowering plasma Lp(a) levels are ongoing [10, 45–49], 

questions remain as to which patients may benefit from Lp(a) lowering, especially since 

not all patients with elevated Lp(a) are at risk for CVD. These could include patients with 

elevated Lp(a) and high levels of inflammatory cytokines such as CRP, which is more 

routinely measured. In that regard, it would also be of interest to investigate whether anti-

inflammatory drugs, such as canakinumab, or colchicine lower plasma Lp(a) levels, and as 

such are more effective in reducing CVD in patients with elevated Lp(a). One complication, 

as observed in a small trial with tocilizumab [73], is that several CVD patients are on 

statins, which have been associated with elevated Lp(a) [78]. Since tocilizumab treatment 

decreases plasma Lp(a) levels, and several lines of evidence indicate that Lp(a) is being 

produced downstream of IL-6 signaling, it will be of interest whether tocilizumab lowers 

plasma Lp(a) in the ASSAIL-MI trial [74] and whether this affects CVD events. Moreover, 

recent studies have shown that IL-6 inhibition with ziltivekimab in the Trial to Evaluate 

Reduction in Inflammation in Patients With Advanced Chronic Renal Disease Utilizing 

Antibody Mediated IL-6 Inhibition (RESCUE) has anti-inflammatory effects and decreases 

plasma Lp(a) dose-dependently. Ziltivekimab may be tested in a cardiovascular outcome 

trial [139]. Findings from the RESCUE trial suggest that its anti-inflammatory effects could 

be due to Lp(a) lowering.
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Table 1

Proteins Present on Immunoprecipitated Lipoprotein (a) Particles.

Detected 
Proteins (in 
addition to apo 
(a) and apoB100)

ApoC1 Smallest apoliprotein in plasma. ApoC1 is associated with VLDL and HDL and acts on lipoproteins by inhibiting binding 
mediated by apoE to the LDL receptor, VLDL receptor, and LRP [117], and inhibiting lipoprotein lipase (LPL) [118], 
and cholesteryl ester transfer protein (CETP) [119]. It also binds to lipopolysaccharide, which increases inflammation, and 
protects against sepsis [120].

ApoA1 Is the main protein component of HDL. ApoA1 is involved in reverse cholesterol transport (RCT), i.e. the removal of 
cholesterol from macrophage foam cells in the arterial wall via ATP Binding Cassette Transporter A1 (ABCA1), transport 
in plasma, uptake by the liver and ultimate secretion into the bile. While mainly anti-inflammatory, pro-inflammatory 
effects of ApoA1 have also been reported [121].

ApoC2 Co-factor for LPL activity [122]

ApoC3 Inhibitor of LPL [123] and apoE mediated binding to LDL receptor and LRP [124]. Newly suggested role as pro-
inflammatory apolipoprotein [125,126].

ApoE Is associated with chylomicron remnants, VLDL, LDL, and HDL. Regulates VLDL and LDL clearance and contributes to 
HDL formation [127]. Binds lipopolysaccharide and protects against sepsis [128].

ApoF Small apoliprotein associated with HDL, may have a role in lipid transfer between lipoproteins [129].

ApoA2 Secondary apolipoprotein contained in HDL particles, inhibits hepatic lipase to maintain HDL levels [130].

ApoD ApoD is mainly associated with HDL and participates in lipid transport. It has a high affinity for arachidonic acid, and a 
diverse array of functions [131].

ApoJ/Clusterin Associated with HDL [132]. Mainly role in Alzheimer’s Disease but crosses blood brain barrier [133].

ApoM Is primarily expressed and secreted from the liver and present on HDL. ApoM is the main chaperone of sphingosine-1-
phosphate (S1P) on HDL [134].

ApoC4 Mainly present on VLDL (80%) and also on HDL (20%) [135]. Linked to TG metabolism in mouse studies [136].

PAF-AH Platelet activating factor – acetylhydrolase (PAF-AH) is present on LDL (70–83%) and HDL (11–30%) and hydrolyzes 
PAF-like oxidized phospholipids [137].

PON – 1 Paraoxonase-1 (PON-1) is mainly associated with apoA1 on HDL and inhibits LDL and HDL oxidation [138].
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