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Abstract

Genome wide association studies have been usually analyzed in a univariate manner. The commonly used univariate
tests have one degree of freedom and assume an additive mode of inheritance. The experiment-wise significance of
these univariate statistics is obtained by adjusting for multiple testing. Next generation sequencing studies, which
assay 10-20 million variants, are beginning to come online. For these studies, the strategy of additive univariate
testing and multiple testing adjustment is likely to result in a loss of power due to (1) the substantial multiple testing
burden and (2) the possibility of a non-additive causal mode of inheritance. To reduce the power loss we propose: a
new method (1) to summarize in a single statistic the strength of the association signals coming from all not-very-rare
variants in a linkage disequilibrium block and (2) to incorporate, in any linkage disequilibrium block statistic, the
strength of the association signals under multiple modes of inheritance. The proposed linkage disequilibrium block
test consists of the sum of squares of nominally significant univariate statistics. We compare the performance of this
method to the performance of existing linkage disequilibrium block/gene-based methods. Simulations show that (1)
extending methods to combine testing for multiple modes of inheritance leads to substantial power gains, especially
for a recessive mode of inheritance, and (2) the proposed method has a good overall performance. Based on
simulation results, we provide practical advice on choosing suitable methods for applied analyses.
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Introduction

Genome-wide association studies (GWASs) have been
broadly used to test for association between genetic variants
and various phenotypes. These studies have been quite
successful in identifying numerous single nucleotide
polymorphisms (SNPs) associated with a variety of human
traits and diseases [1]. So far, GWASs have been commonly
analyzed univariately using one degree of freedom (df) tests
assuming an additive mode of inheritance [2–4]. The
experiment-wise significance of the univariate statistics was
assessed using a Bonferroni adjustment [5,6] or a permutation
procedure [7–9]. While this approach was reasonably
successful for GWAS, the field is moving away from this
paradigm towards whole genome sequencing. When compared
to GWAS, variant panels for sequencing studies (1) are
substantially denser and (2) have different patterns of linkage
disequilibrium (LD). Consequently, for these studies it is not
clear if the most desirable approach is still a univariate testing

for an additive mode of inheritance followed by the adjustment
of the statistics for the large number of tests.

Intuitively, a test for association between phenotype and
genotype achieves optimal power when the assumed mode of
inheritance matches the underlying one. However, the
underlying mode of inheritance is usually unknown in practice
and an incorrect choice for it may cause a substantial power
loss. Various strategies to minimize the effect of the possible
model misspecification have been studied and developed
[10–17]. Among these, one simple strategy is to test other
modes of inheritance, e.g. dominant and recessive, in addition
to the commonly used additive mode of inheritance [16,17].
This approach involves testing for three different modes of
inheritance, i.e. additive (A), dominant (D) and recessive (R),
and adjusting the lowest p-values for multiple testing. For
brevity, the combination of testing for the three modes of
inheritance will be henceforth denoted as ADR. Because the
ADR paradigm is not in widespread use yet, it is of interest to
estimate the performance improvement when applied to
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methods which were initially developed assuming an additive
mode of inheritance.

To control the rate of false positives in GWAS analyses, the
statistical significance of univariate p-values is adjusted for
around a million univariate tests. With the advent of next
generation sequencing, for univariate analyses, the number of
tests will increase dramatically when compared to GWAS.
Summary data from 1000 Genomes Project suggests that
sequencing studies consisting of subjects from any main ethnic
regions, i.e. Europe, East Asia, South Asia, Africa and the
Americas, will result in the typing of at least 5 million SNPs
having a minor allele frequency (MAF) above 5% [18]. For
larger sequencing studies, if we assume that all SNPs with
MAF > 0.5% are analyzed individually, the number of tests
increases to more than 10 million for Caucasian and Asian
cohorts and approaches 20 million for African cohorts.
Consequently, univariate approaches entail an even more
substantial multiple testing adjustment burden for sequencing
studies. It is conceivable that using multilocus approaches, e.g.
by summarizing the association of multiple SNPs
simultaneously, opens the possibility of decreasing the multiple
testing burden and, thus, increasing the power of detection for
association signals.

To minimize the power penalty due to multiple testing
adjustment, researchers proposed to analyze simultaneously
all SNPs in a biological functional block of interest, e.g. a gene
[19]. However, this approach might yield low power due to the
large number of df. Subsequently, researchers proposed
methods to decrease the number of df, and thus increase
power, by (1) summarizing the LD information mainly from low-
frequency SNP variation in an LD block [20], (2) using data-
adaptive sum of squared scores (aSUM) [21], (3) summarizing
the LD information by the first few principal components (PC)
[22,23], (4) combining the Simes p-value of all univariate p-
values in a gene with the p-value associated with the first few
principal components of tests in the gene(S-PC) [24] and (5)
combining individual SNP-based variance component score
statistics (SKAT) [25].

Recently, two fast non-regression based multilocus methods
were proposed for gene-based analysis. The first method,
denoted as VErsatile Gene-based Association Study (VEGAS),
summarizes the association signals in a gene using the sum of
squares (SS) or the minimum p-value (minP) of univariate
statistics in the gene [26]. Instead of performing permutations,
VEGAS simulates multivariate normal variables for a rapid
assessment of the asymptotic null distribution of summary
statistics. The second method is an improved Simes procedure
for association studies, denoted as Gene-based Association
Test using Extended Simes (GATES) [27]. GATES is an
extension to a technique proposed initially by Cheverud [28] to
determine the effective number of independent tests in a region
of interest. (For more background regarding this type of
methods, see 28–32.) Because VEGAS-SS (V-SS), VEGAS-
minP (V-minP) and GATES do not use permutations, they are
faster than permutation based multilocus methods.

While the gene is commonly considered as the biological
functional unit, it might not be the best unit for statistical
analysis. First, since not all parts of a gene are equally

important functionally, it would be more powerful to analyze
separately SNPs in regions with important functions such as
gene promoter regions, which are known to be involved in
initiating and regulating the transcription process [33,34].
Second, the association signal from a causal SNP, e.g. from
the promoter region, is diffused only among SNPs in the same
LD block [20]. Thus, using as the unit of analysis a gene
containing multiple LD blocks might increase the noise and
reduce overall statistical power to detect an association signal.
An alternative unit of statistical analysis might be a LD block
(e.g. SNPs with D ′ near 1).

Unlike GWAS, which are based on a tag SNP approach,
whole genome sequencing studies assay most genetic variants
in the genome. Consequently, the typed variation in these
studies will likely form a large number of LD blocks, each block
having a large number of SNPs. Given the number and size of
these blocks, it is conceivable that approaches analyzing
simultaneously all SNPs in a LD block might be of great
importance for a successful investigation of sequencing
studies. Although the partition of the genome into LD block
requires a substantial computing time, once they are computed
for the main ethnic groups, these blocks can be reused for
future analyses. While the LD block analysis approach was
investigated before [17], these findings need to be updated for
the present-day technological and methodological environment,
i.e. increased variant density and the new developments in
gene based methods.

In this paper, we attempt to develop/identify the most
powerful methods to detect association signals in a LD block.
To achieve this goal, we (1) propose a simple statistic
consisting of the sum of the squares of significant univariate
tests in a LD block, (2) use two simulation experiments to
assess the performance of the proposed method and
competing methods a) with or b) without an ADR extension and
(3) provide practical recommendations based on simulation
results.

Materials and Methods

Methods
Assume that we are interested in assessing the association

between a binary phenotype, Y, and m SNPs in a LD block
using a case-control cohort consisting of n cases and n

controls. For the ith subject, let Y i =
1 if ith subject is a case
0 if ith subject is a control

, i=

1,…,2n, be the phenotype and GA,i⋅=(GA,i1,…,GA,im) be the
additively coded genotypes for the m SNPs in the LD block, i.e.
the number of reference alleles. To test for a dominant mode of
inheritance, we denote the indicators for the heterozygote and
the reference allele homozygote as GD,i⋅=(GD,i1,...,GD,im). To test
for a recessive mode of inheritance, let the indicators of
reference allele homozygote be GR,i⋅=(GR,i1,...,GR,im). For each
mode of inheritance, we can obtain the vector of normally
distributed test statistics by regressing the phenotype on the
relevant genotype vector. Assume that the vectors of test
statistics corresponding to the additive, dominant and recessive
modes of inheritance are ZA=(ZA,1,...,ZA,m), ZD=(ZD,1,...,ZD,m) and
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ZR=(ZR,1,...,ZR,m), respectively. Based on these statistics, we
can compute p-value vectors for the three modes of inheritance
as pA=(pA,1,...,pA,m), pD=(pD,1,...,pD,m) and pR=(pR,1,...,pR,m).

Certain gene based approaches, such as V-SS, sum the
squares of all univariate statistics in a LD block. However, this
approach might lose power by including SNPs with weak
association signals, which only add noise to the test statistic. V-
minP also might suffer some statistical power loss by using
only the most significant statistic. To avoid such a loss of power
we propose a new statistical test consisting of the sum of
squared statistics exceeding a threshold, i.e.∑ j=1

m Z A, j
2 I Z A, j

2 ≥ t ,
where t>0 is a reasonably high threshold. We denote this test
statistic as the sum of square above a threshold (SS-T). The
statistical significance of SS-T can be assessed in a manner
similar to V-SS and V-minP, i.e. via multivariate normal
simulations based on the LD pattern in the block.

We compare the performance of the proposed test (SS-T), to
the performance of various association tests developed mainly
for an additive mode of inheritance and, where possible, their
ADR extensions. As association tests, we include in our
simulation studies Bonferroni, Simes [35], GATES [27], V-
SS/V-minP [26], PC [22,23], S-PC [24], SKAT [25] and aSUM
[21]. In our comparisons we also include the ADR extensions
for SS-T (ADR SS-T), Bonferroni (ADR Bonferroni), Simes
(ADR Simes), GATES (ADR GATES), V-SS (ADR V-SS), V-
minP (ADR V-minP), PC (ADR PC) and S-PC (ADR S-PC).
ADR extensions for SKAT and aSUM are not attempted
because the additive coding for genotype is implicit in the
software implementing these methods.

Bonferroni procedure summarizes the m univariate p-values
in a LD-block p-value defined as minj(m pA,j), j=1,…,m. Simes
method alleviates the conservativeness of Bonferroni

adjustment by using min j
m pA, j

j , j=1,…,m, as the block p-

value [35]. GATES method enhances the power of Simes by
using an effective number of tests approach. The p-value of

GATES method is obtained as min j
me f f  pA, j

me f f j
, j=1,…,m,

where meff is the effective number of tests of all p-values (pA,

1,...,pA,m) and meff(j) is the effective number of tests computed
from the j smallest p-values (pA,(1),...,pA,(j)) [27]. V-SS and V-
minP compute the sum of squares, ∑ j=1

m Z A, j
2 , and minimum p-

value (which is equivalent to max j Z A, j
2 ) of the univariate

statistics and assess their significance by simulating their null
distributions based on the multivariate normal distribution [26].
The test statistic for the PC method, Qk, is defined as the sum
of squares of the first k PC statistics, denoted as U1,…,Uk, of
the genotype correlation matrix. The jth PC statistic is defined
as U j = v j ⋅Z A / λ j, where vj and λj are the jth eigenvector and
eigenvalue of the correlation matrix of genotype data
GA,⋅⋅[22,23]. Under the null hypothesis, of no association
between genotype and phenotype, Qk is distributed as a χ2 with
k df. In our comparison studies, we consider the first three PC
statistics, i.e. k=3. The p-value for S-PC is obtained by
performing a Simes correction on the p-values generated from
(i) a Simes procedure applied on pA and (ii) the above PC
method [24].

The ADR extension for methods in the previous paragraph
can be achieved similarly by substituting: (i) 3m for m as the
number of tests in the LD block, (ii) ADR p-values
(pADR=(pA,pD,pR)) for p-values assuming an additive mode of
inheritance (pA) and (iii) ADR univariate statistics
(ZADR=(ZA,ZD,ZR)) for univariate statistics assuming an additive
mode of inheritance (ZA). While the three tests (A, D and R) are
not independent, both within and between SNPs, given that the
power loss is small [17], we conservatively use 3m as the
number of tests for the ADR extension for Bonferroni and
related methods.

We implemented in R all methods tested in this paper, with
the exception of SKAT and aSUM. SKAT statistics were
obtained using SKAT 0.63 R package with a linear kernel and
the default options. For aSUM, we used its implementation
from AssotesteR 0.1-1 R package (http://
www.gastonsanchez.com/assotester) with the default options.

Simulations
We employ two extensive simulation experiments to

generate genotype-phenotype data sets that we subsequently
use to assess the performance of relevant methods and their
ADR-extensions. The first simulation experiment generates
artificial LD-patterns (see Tables S1-S3) and the second
experiment is based on LD-patterns from a real data set (see
Tables 1 and 2).

To efficiently simulate a large number of correlated SNPs in
a LD block, the first simulation experiment (Experiment I)
employs the polychoric correlation (PCC) as a measure of LD
[17,36]. The advantage of PCC over other LD measures is that
it is directly applicable to simulating a large number of markers

Table 1. Number of cases/controls (n), relative risk of
heterozygote to non-risk allele homozygote (R1) and relative
risk of risk allele homozygote to non-risk allele homozygote
(R2) used at each simulation setting under the single causal
variant scenario of Experiment II.

 Genetic Model
Number of causal variants (k) Additive Dominant Recessive
1 1,000 (1.3, 1.6) 1,000 (1.5, 1.5) 1,000 (1, 3)

Within each cell, the settings are presented as n (R1, R2).
doi: 10.1371/journal.pone.0080540.t001

Table 2. Number of cases/controls (n) and effect size (δ) of
any causal allele used at each simulation setting under the
two and five non-interacting causal variant scenario of
Experiment II.

 Genetic Model
Number of causal variants (k) Additive Dominant Recessive
2 1,000 (0.005) 1,000 (0.008) 1,000 (0.03)
5 1,000 (0.002) 1,000 (0.003) 1,000 (0.01)

Within each cell, the settings are presented as n (δ).
doi: 10.1371/journal.pone.0080540.t002
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in LD regardless of their reference allele frequencies (RAFs)
[17]. The simulation of a study cohort is achieved using a four-
step process: i) simulate latent multivariate normal variables, ii)
discretize the latent variables to obtain genotypes, iii) simulate
the phenotype, i.e. case or control, for the simulated genotype
vector and iv) accept cases and controls until achieving the
required sample size. In this experiment, we investigate three
settings for the number of causal variants (k): i) null hypothesis,
i.e. no causal variant (k=0), ii) a single causal variant (k=1) and
iii) two non-interacting causal varaints (k=2). We present the
simulation process in more detail under Supporting Information
(see Methods S1).

The second simulation experiment (Experiment II) is based
on 200 randomly chosen 250Kb genetic regions from UK10K
(www.uk10k.org) reference data set. LD blocks are inferred by
performing a hierarchical clustering analysis with an average
link on SNP genotypes in each selected region. To match one
of the settings from the first experiment, the LD blocks are
defined using a PCC2 threshold of 0.64. The causal LD block
and the causal variant(s) within it are chosen randomly and,
thus, their RAFs are not fixed. When compared to Experiment
I, to increase robustness of the findings, we add to this
simulation experiment a five non-interacting causal variant
scenario (k=5). Otherwise, the simulations for this experiment
follow the conceptual flow of the first experiment.

To examine the effect of the causal model on the power of
various methods, we simulated case-control cohorts under
three underlying modes of inheritance, i.e. additive, dominant
and recessive (see Tables S2 and S3 for Experiment I and
Tables 1 and 2 for Experiment II). Under k causal variant
scenario (k>1), the underlying genetic modes of inheritance of
all k casual SNPs are assumed to be identical (for more details

see Methods S1). Each case-control sample consists of 1,000
cases and 1,000 controls for most settings (see Tables S2 and
S3 for Experiment I and Tables 1 and 2 for Experiment II). To
attain the 50% average power target, for Experiment I the
genotype penetrances and the sample sizes vary with the
mode of inheritance and the causal allele frequency (see
Tables S2 and S3).

For both experiments, we assume a binary trait of
prevalence K=0.05 and assess the empirical size of the test
and power for tested methods at a type I error of0.05. We
obtain the size and power of each method by simulating 500
replicates at each setting. For Monte-Carlo simulation/
permutation based methods, such as V-SS, V-minP, SS-T and
aSUM, we performed 500 and 1,000 simulations under
Experiment I and II, respectively.

Results

For Experiment I, under the null hypothesis (of no
association between SNP genotypes and trait) some tests (V-
SS, V-minP, SS-T and aSUM) using Monte-Carlo simulation/
permutation to assess the significance of the test statistic seem
to have slightly (albeit not-statistically significant) inflated size
of the test (Figure S1). However, when we increase to 1000 the
number of replications for Experiment II, all tested methods
control the size of the test at or below the nominal type I error
(Figures 1). As a general rule, ADR extensions tend to make
most methods more conservative. Simpler adjustments for
multiple comparisons, e.g. Bonferroni and Simes, their ADR
extensions and SS-T are the most conservative.

To find a reasonable threshold value for SS-T we use the
results of Experiment I and II, which are summarized in Figures

Figure 1.  Empirical size of the test under Experiment II as a function of the method type and the ADR adjustment
status.  The nominal type I error rate is α=0.05. The bars represent the 95% confidence interval for the size of test. Abbreviations
for methods are as follows: B - Bonferroni, S - Simes, G - GATES, V-SS - VEGAS-SS, SS-x - SS-T with x=1,...,9, V-minP - VEGAS-
minP, PC - principal component method, S-PC - Simes adjustment of Simes and PC methods, SKAT - sequence kernel association
test, aSUM - data-adaptive sum test.
doi: 10.1371/journal.pone.0080540.g001
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S2-S7 and Figure 2, respectively. Under the first experiment,
as the threshold value increases from 1 to 9, power tends to
rise. This behavior is more apparent especially when 1) the
mode of inheritance is recessive, 2) the tests are ADR-
adjusted, 3) the size of the LD block is small and 4) the
polychoric correlation between the genotypes in the LD block is
high. Under Experiment II, where we use realistic LD blocks
from UK10K data set, power decreases with an increase in
threshold values. Though under the dominant and recessive
modes of inheritance power tends to slightly increase as the
threshold value increases from 4 to 6, the improvement in
power is marginal compared to that observed under
Experiment I. On the basis of the results from both
comparisons, we deem SS-6 to be close to optimal power-wise
and, henceforth we present only its performance.

Under Experiment I conditions, the single causal variant
simulations show differences in power between the ADR
adjusted methods and the non-ADR-adjusted methods (Figures
S8-S10). When the underlying modes of inheritance are
additive or dominant, the ADR-adjustment causes a small
power loss averaging 4.9% (see "Additive" and "Dominant"
panels in the above mentioned figures). However, for a
recessive mode of inheritance, the adjustment considerably
improves the power to detect the association signal for most
settings. The average ADR adjustment power gain under a
recessive mode of inheritance is around 34.3%, ranging from
6.9% for PC to 51.8% for V-minP. Under a dual causal variant
scenario, the differences in power between methods and their
ADR extensions are similar to the single causal variant
scenario (Figures S11-S13). ADR adjustment results in a 5.3%
decrease in average power for non-recessive models and a
30% increase in average power for a recessive mode of
inheritance. The average power gain of the methods under a
recessive mode of inheritance ranges from 8.9% for V-SS to
40.5% for V-minP. The power gain for both (single and dual)
causal variant scenarios under a recessive mode of inheritance
appears to increase with i) an increase in the polychoric
correlation between SNPs in the LD block, ii) a decrease in the
size of the LD block and iii) a decrease in causal allele
frequency (CAF).

Besides the difference in power between methods and their
ADR extensions, it is of interest to establish which methods
perform better under varying scenarios. For the first
experiment, aSUM tends to have the highest power under
additive/dominant modes of inheritance and it outperforms,
sometimes considerably, the next best performing group (V-
minP, GATES, SS-6 and their ADR extensions) (Figures S8-
S13). Under additive/dominant modes of inheritance, as the
CAF increases the difference in power between methods
gradually lessens while the rank of each method tends to be
maintained. For a recessive mode of inheritance, ADR V-minP
and ADR GATES perform best overall and are followed by
ADR Bonferroni, ADR Simes, ADR S-PC and ADR SS-6.
These methods substantially outperform all non-ADR-adjusted
methods, ADR V-SS and ADR PC. As CAF increases, under a
recessive mode of inheritance, the performance of ADR SS-6
approaches that of the best performers (ADR V-minP and ADR
GATES). For Experiment II, under the additive mode of

inheritance SKAT, V-SS, V-minP and SS-6 performed best
(Figure 3). Under the non-additive mode of inheritance, ADR
SS-6, ADR V-SS and ADR V-minP tend to have highest power.
While, as we observed from Experiment I, under the additive
model ADR adjustment results in slight power loss, under the
dominant model it leads to slight power gain. Under the
recessive model, ADR adjustment improves power
significantly. When compared to Experiment I, SKAT performs
much better under Experiment II conditions. On the other hand,
aSUM performs rather poorly when compared to its excellent
performance observed in the first simulation experiment. Even
more, under a recessive mode of inheritance, aSUM had the
lowest power in the second experiment.

Discussion

When compared to GWAS, whole genome sequencing
studies assay tens of millions of genetic variants in human
genome. Due to their large number, a univariate analysis of
these variants involves a substantial multiple testing burden. To
avoid such a burden, we propose a new method to summarize
in a single statistic the association between phenotype and the
genotypes of not-very-rare SNPs, i.e. those which can be
reasonably analyzed individually, in a LD block. We use two
simulation experiments to compare the performances of i) the
proposed method, ii) competing methods, e.g. methods used
for gene-based analyses and iii) the extensions of the
previously mentioned methods which combine information from
multiple modes of inheritance. The results of these simulations
are helpful in identifying methods delivering close to optimal
power when used to analyze data coming from sequencing
studies.

One important conclusion of this paper is that, even for
denser marker panels, when the true mode of inheritance is
unknown, combining additive, dominant and recessive modes
of inheritance together (i.e. ADR adjustment) is a suitable
strategy to minimize the power loss caused by the model
misspecification. The power gain of ADR adjustments over
their non-ADR adjusted counterparts is due to the considerable
improvement in the overall performance of the methods when
the underlying mode of inheritance is recessive. The power
gain of ADR extensions increases with an increase in LD
between SNPs and a decrease in causal allele frequency. This
behavior is consistent with findings for GWAS panels [16,17].

Under the theoretical experiment (Experiment I) with additive
and dominant modes of inheritance, for the rarer causal allele
frequencies range we assumed, aSUM performs best across
all configurations closely followed by V-minP, GATES, SS-6
and their ADR extensions. Under a recessive mode of
inheritance, the most powerful methods are ADR V-minP and
ADR GATES, which are closely followed by ADR Bonferroni,
ADR Simes, ADR S-PC and ADR SS-6. Probably because it
assumes additively coded genotypes, aSUM yields low power
under a recessive mode of inheritance. However, the realistic
experiment (Experiment II) shows that SKAT and V-SS perform
well. We believe that the relative difference in both experiments
is due to the fact that the first experiment is biased towards
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common tag SNP panels, whereas the second simulation
experiment is geared towards denser, sequencing SNP panel.

Based on our simulation results, if the disease associated
SNPs are highly likely to be acting additively (multiplicatively)
or dominantly, for data coming from sequencing panels, we
recommend the use of SKAT, ADR V-SS, ADR V-minP, and

ADR SS-T. However, researchers rarely know the mode of
inheritance for a variant. When no prior information regarding
the underlying mode of inheritance is available, we recommend
the use of methods with good performance across all modes of
inheritance and all simulation experiments, i.e. ADR V-SS,
ADR V-minP, ADR GATES and ADR SS-T. However, we

Figure 2.  Empirical power of SS-T methods under Experiment II as a function of the mode of inheritance, the number of
causal variants in a LD block (k) and the ADR adjustment status.  The nominal type I error rate is α=0.05. The bars represent
the 95% confidence interval for the power of test. See Figure 1 for background and abbreviations.
doi: 10.1371/journal.pone.0080540.g002
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believe that if the authors of SKAT and aSUM implement ADR
adjustments in their software, these methods would become
desirable tools for the analyses of SNPs in LD blocks
regardless of the underlying mode of inheritance.

Supporting Information

Figure S1.  The size of the test under Experiment I as a
function of the method type, the number of SNPs (m), the
polychoric correlation (ρ) between the genotypes of SNPs

Figure 3.  Empirical power of the main methods under Experiment II as a function of the mode of inheritance, the number
of causal variants in a LD block (k) and the ADR adjustment status.  The nominal type I error rate is α=0.05. The bars represent
the 95% confidence interval for the power of test. See Figure 1 for background and abbreviations.
doi: 10.1371/journal.pone.0080540.g003

Association Testing Strategy

PLOS ONE | www.plosone.org 7 November 2013 | Volume 8 | Issue 11 | e80540



in the LD block and the ADR adjustment status. The
nominal type I error rate is α=0.05. Abbreviations for methods
are as follows: B - Bonferroni, S - Simes, G - GATES, V-SS -
VEGAS-SS, SS-x - SS-T with x=1,...,9, V-minP - VEGAS-minP,
PC - principal component method, S-PC - Simes adjustment of
Simes and PC methods, SKAT - sequence kernel association
test, aSUM - data-adaptive sum test.
(TIF)

Figure S2.  Empirical power of SS-T methods for the single
causal variant scenario (k=1) under Experiment I as a
function of the mode of inheritance (panels), the number of
SNPs in the LD block (m), the polychoric correlation
between the genotypes of SNPs in the LD block (ρ) and the
ADR adjustment status. The causal allele frequency is
pd=0.01 and the nominal type I error rate is α=0.05. See Figure
S1 for background and abbreviations.
(TIF)

Figure S3.  Empirical power of SS-T methods for the single
causal variant scenario (k=1) under Experiment I as a
function of the mode of inheritance (panels), the number of
SNPs in the LD block (m), the polychoric correlation
between the genotypes of SNPs in the LD block (ρ) and the
ADR adjustment status. The causal allele frequency is
pd=0.05 and the nominal type I error rate is α=0.05. See Figure
S1 for background and abbreviations.
(TIF)

Figure S4.  Empirical power of SS-T methods for the single
causal variant scenario (k=1) under Experiment I as a
function of the mode of inheritance (panels), the number of
SNPs in the LD block (m), the polychoric correlation
between the genotypes of SNPs in the LD block (ρ) and the
ADR adjustment status. The causal allele frequency is
pd=0.10 and the nominal type I error rate is α=0.05. See Figure
S1 for background and abbreviations.
(TIF)

Figure S5.  Empirical power of SS-T methods for the dual
non-interacting causal variant scenario (k=2) under
Experiment I as a function of the mode of inheritance
(panels), the number of SNPs in the LD block (m), the
polychoric correlation between the genotypes of SNPs in
the LD block (ρ) and the ADR adjustment status. The
causal allele frequency is pd=0.01 and the nominal type I error
rate is α=0.05. See Figure S1 for background and
abbreviations.
(TIF)

Figure S6.  Empirical power of SS-T methods for the dual
non-interacting causal variant scenario (k=2) under
Experiment I as a function of the mode of inheritance
(panels), the number of SNPs in the LD block (m), the
polychoric correlation between the genotypes of SNPs in
the LD block (ρ) and the ADR adjustment status. The
causal allele frequency is pd=0.05 and the nominal type I error

rate is α=0.05. See Figure S1 for background and
abbreviations.
(TIF)

Figure S7.  Empirical power of SS-T methods for the dual
non-interacting causal variant scenario (k=2) under
Experiment I as a function of the mode of inheritance
(panels), the number of SNPs in the LD block (m), the
polychoric correlation between the genotypes of SNPs in
the LD block (ρ) and the ADR adjustment status. The
causal allele frequency is pd=0.10 and the nominal type I error
rate is α=0.05. See Figure S1 for background and
abbreviations.
(TIF)

Figure S8.  Empirical power of the main methods for the
single causal variant scenario (k=1) under Experiment I as
a function of the mode of inheritance (panels), the number
of SNPs in the LD block (m), the polychoric correlation
between the genotypes of SNPs in the LD block (ρ) and the
ADR adjustment status. The causal allele frequency is
pd=0.01 and the nominal type I error rate is α=0.05. See Figure
S1 for background and abbreviations.
(TIF)

Figure S9.  Empirical power of the main methods for the
single causal variant scenario (k=1) under Experiment I as
a function of the mode of inheritance (panels), the number
of SNPs in the LD block (m), the polychoric correlation
between the genotypes of SNPs in the LD block (ρ) and the
ADR adjustment status. The causal allele frequency is
pd=0.05 and the nominal type I error rate is α=0.05. See Figure
S1 for background and abbreviations.
(TIF)

Figure S10.  Empirical power of the main methods for the
single causal variant scenario (k=1) under Experiment I as
a function of the mode of inheritance (panels), the number
of SNPs in the LD block (m), the polychoric correlation
between the genotypes of SNPs in the LD block (ρ) and the
ADR adjustment status. The causal allele frequency is
pd=0.10 and the nominal type I error rate is α=0.05. See Figure
S1 for background and abbreviations.
(TIF)

Figure S11.  Empirical power of the main methods for the
dual non-interacting causal variant scenario (k=2) under
Experiment I as a function of the mode of inheritance
(panels), the number of SNPs in the LD block (m), the
polychoric correlation between the genotypes of SNPs in
the LD block (ρ) and the ADR adjustment status. The
causal allele frequency is pd=0.01 and the nominal type I error
rate is α=0.05. See Figure S1 for background and
abbreviations.
(TIF)

Figure S12.  Empirical power of the main methods for the
dual non-interacting causal variant scenario (k=2) under
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Experiment I as a function of the mode of inheritance
(panels), the number of SNPs in the LD block (m), the
polychoric correlation between the genotypes of SNPs in
the LD block (ρ) and the ADR adjustment status. The
causal allele frequency is pd=0.05 and the nominal type I error
rate is α=0.05. See Figure S1 for background and
abbreviations.
(TIF)

Figure S13.  Empirical power of the main methods for the
dual non-interacting causal variant scenario (k=2) under
Experiment I as a function of the mode of inheritance
(panels), the number of SNPs in the LD block (m), the
polychoric correlation between the genotypes of SNPs in
the LD block (ρ) and the ADR adjustment status. The
causal allele frequency is pd=0.10 and the nominal type I error
rate is α=0.05. See Figure S1 for background and
abbreviations.
(TIF)

methods S1.  Simulation of genotype-phenotype data.
(DOC)

Table S1.  Settings used in Experiment I.

(DOC)

Table S2.  Number of cases/controls (n), relative risk of
heterozygote to non-risk allele homozygote (R1) and
relative risk of risk allele homozygote to non-risk allele
homozygote (R2) used at each simulation setting under the
single causal variant scenario (k=1) of Experiment I. Within
each cell, the settings are presented as n (R1, R2).
(DOC)

Table S3.  Number of cases/controls (n) and effect size (δ)
of any causal allele used at each simulation setting under
the two non-interacting causal variant scenario (k=2) of
Experiment I. Within each cell, the settings are presented as
n (δ).
(DOC)
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