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Neuroimaging evidence implies that cognitive impairment in patients with end-stage

renal disease (ESRD) is related to the disruption of the default-mode network (DMN).

The DMN can be divided into three functionally independent subsystems, which include

the cortical hub subsystem [consisting of the posterior cingulate cortex (PCC) and the

anterior medial prefrontal cortex (aMPFC)], the dorsal medial prefrontal cortex (dMPFC)

subsystem, and the medial temporal lobe (MTL) subsystem. However, it is unknown how

the functional connectivity (FC) in DMN subsystems is differentially impaired in ESRD. This

prospective study was carried out at the Affiliated Hospital of Qingdao University, China,

between August 2018 and July 2020. Thirty-two ESRD patients and forty-five healthy

controls (HCs) were recruited for this study and received resting-state functional magnetic

resonance imaging (rs-fMRI) scanning, and FCs on predefined regions of interest (ROIs)

were individually calculated in three DMN subsystems using both ROI- and seed-based

FC analyses to examine FC alterations within and between DMN subsystems. The

two-sample t-test was used for the comparisons between groups. We also tested the

associations between FC changes and clinical information using Pearson’s correlation

analysis. The results demonstrated that ESRD patients, compared with HCs, exhibit

reduced FC specifically within the cortical hubs and between the DMN hubs and two

subsystems (the dMPFC and MTL subsystems). Moreover, the FC values between the

aMPFC and PCC were positively correlated with creatinine and urea levels in the ESRD

patients. Our results suggest that the cortical hubs (PCC and aMPFC) are preferentially

disrupted and that other subsystems may be progressively damaged to a certain degree

as the disease develops.

Keywords: end-stage renal disease, resting-state functional magnetic resonance imaging, default-mode network,

functional connectivity, cognitive impairment
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INTRODUCTION

Individuals with end-stage renal disease (ESRD), defined as a
glomerular filtration rate (GFR) of <60ml min−1 1.73 m−2

or a perpetual loss of >90% of normal renal function as
the end stage of chronic kidney disease (CKD) (1), have a
substantially higher prevalence of cognitive impairment than
the general population; cognitive impairment is present in a
striking 10 to 40% of ESRD patients, depending on the evaluation
methods of cognitive impairment and the stage of chronic kidney
disease (2). Cognitive impairment may affect independence,
daily functioning, and medication adherence of the patients
(3) and is also an independent predictor of mortality (4).
Hemodialysis, an irreplaceable treatment for ESRD, may lead to
rapid fluid transfer and swings in blood pressure. Hemodynamic
instability may ultimately result in brain damage (5). Small-
vessel cerebrovascular disease, uremic metabolite accumulation,
and anemia may also be important factors in the development
of CKD-related cognitive impairment (6). Moreover, long-term
hemodialysis may result in significantly reduced quality of life,
contributing to the development of anxiety and depression. It
should be noted that even younger ESRD patients have poorer
cognitive function than their peers (7). Therefore, what are
the neuropathological mechanisms of cognitive dysfunction in
ESRD patients? It would be worthwhile to use a neuroimaging
technique to precisely determine how cognitive impairment
affects the brain, as it may provide a sensitive neurobiological
signature that would enable earlier, accurate clinical diagnosis
and allow an effective therapeutic intervention.

In fact, the connectivity between the brain may be interrupted
in accordance with this type of brain injury. Previous diffusion
tensor imaging (DTI) (8) and voxel-based morphometry (VBM)
(9, 10) studies have shown local impairment of white matter
integrity and decreased gray matter volume. Resting-state
functional magnetic resonance imaging (rs-fMRI) research has

also demonstrated that functional connectivity (FC) within and

among several different cortical networks is altered in ESRD
(11, 12). By detecting the correlations of intrinsic fluctuations
in blood oxygenation level-dependent (BOLD) signals among
different regions, FC analysis, a common method of resting-
state functional magnetic resonance, can sensitively reflect
the coordination and interaction of neural activities among
different functionally related brain regions (13), thus providing
us with a promising viewpoint for the early detection of brain
injury in ESRD patients. Several resting-state networks [such
as default mode network (DMN), salience network, executive
network, and sensory motor network] have been identified
consistently. Among the networks, the DMN, consisting of the
posterior cingulate cortex (PCC), the precuneus cortex (Pcu), the
prefrontal cortex, the lateral parietal cortex, the medial temporal
lobe, and the hippocampus (14), has been paid increasing
amounts of attention in the research of neuropsychological
diseases related to cognitive impairment (15). The DMN
is involved in self-referential cognition process. Previous
behavioral studies have demonstrated that ESRD patients have
multidomain DMN-related neurocognitive impairment, and
disrupted connectivity in the DMN may affect a variety of

cognitive processes in those patients, including concentration,
executive, memory, abstraction, and judgment function (16),
which may be the underlying neuropathological mechanism of
ESRD cognitive impairment.

Recent studies have shown that the DMN functional
alterations induced by ESRD are not limited to regional
homogeneity (ReHo) (17) and amplitude of low-frequency
fluctuation (ALFF) (18) changes; they are also manifested as
impaired FC in independent component analysis (ICA) (19),
seed-based FC analysis (20, 21), and graph theory-based analysis
(22, 23). Most of these functional abnormalities involve the
parietal lobe, PCC, Pcu, and medial frontal lobe. However, a
detailed analysis of region-specific disconnections in the DMN
has not been made available until now. Meanwhile, Andrews-
Hanna et al. (24) found that the functional architecture of the
DMN comprises three functionally separable subsystems: the
core hub subsystem [consisting of the PCC and anterior medial
prefrontal cortex (aMPFC)], the dorsal medial prefrontal cortex
(dMPFC) subsystem [consisting of the (dMPFC), temporal
parietal junction (TPJ), lateral temporal cortex (LTC), and
temporal pole (TempP)], and the medial temporal lobe (MTL)
subsystem [including the ventral MPFC (vMPFC), posterior
inferior parietal lobule (pIPL), retrosplenial cortex (Rsp),
parahippocampal cortex (PHC), and hippocampal formation
(HF)]. Different subsystems in DMN cooperate with each
other and participate in different cognitive processes. Therefore,
studies on the altered interactions within and among the three
subsystems of the DMN may provide new insights into the
neuropathological mechanisms of various brain disorders. Efforts
have been made in several clinical populations, such as people
with Alzheimer’s disease (25) and people with schizophrenia
(26). These observations suggest that the patterns of impairment
in the three subnetworks in these patients seem to differ.
Thus, whether there is a special impaired pattern of DMN
to distinguish ESRD-related cognitive impairment from other
mental disorders is another interesting question that is worthy of
further study.

To fill this knowledge gap, predefined 11 ROIs according
to the research of Andrews-Hanna et al. (24) were used for
FC analysis using both ROI- and seed-based FC analyses
in this study. Regarding the distinction between the two
methods, seed-based connectivity looks primarily at connections
between a seed and all voxels in the brain. ROI-based
connectivity observes connections between the regions of
interest (13). Different analytical approaches could influence the
results for DMN connectivity. Given that ROI-based analysis
results rely on a priori ROIs to a large extent that may
potentially affect the accuracy of the reproducibility measures,
the advantage is the ability to directly answer questions
about connectivity. Therefore, seed-based FC analysis was also
performed to comprehensively verify and interpret the findings
from ROI-based analysis.

The goals of the current study were as follows: (a) We sought
to examine the abnormalities in interactions within and between
DMN subsystems to provide further evidence of an aberrant
DMN and to determine the impaired pattern of DMN in ESRD
patients. (b) We attempted to determine whether there were
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associations between these FC changes and the clinical variables
in patients with ESRD.

MATERIALS AND METHODS

Subjects
The study was approved by the Medical Research Ethics
Committee of the Affiliated Hospital of Qingdao University,
China, and written informed consent was obtained from all
subjects before the study. For this hospital-based prospective
case–control study, 45 ESRD patients who were diagnosed with
renal failure, defined by a GFR <15ml min−1 1.73 m−2, and
who underwent regular hemodialysis were recruited from the
nephrology and renal transplantation department at our hospital
between August 2018 and July 2020. Concurrently, 45 healthy,
age-, and gender-matched volunteers were recruited from the
local community. To avoid possible coupling effects, all subjects
in the present study were right-handed and younger than 60
years old. The demographic and clinical data of each ESRD
patient were acquired from the electronic medical records in our
hospital. All ESRD patients completed laboratory examination
within 24 h before MR imaging, which included serum creatinine
level, urea level, hemoglobin level, hematocrit level, cholesterol
level, serum potassium, serum sodium, and serum calcium.

The shared exclusion criteria for patients and control subjects
were as follows: (a) history of severe head injury or obvious
brain lesions on T2-fluid-attenuated inversion recovery (FLAIR)
images; (b) neurodegenerative diseases (e.g., epilepsy, Parkinson’s
disease, Alzheimer’s disease); (c) acute cerebrovascular disease
or peripheral arterial occlusion; (d) chronic liver failure or heart
failure; (e) history of psychiatric disorders in any control subject
or history of major psychiatric disorders in any subject; (f) severe
metabolic diseases (e.g., primary hyperparathyroidism, diabetes);
(g) substance abuse, including drugs, alcohol, or cigarettes;
(h) pregnancy or lactation at the time of the study; and (i)
contraindications to MRI and excessive head movement during
the scan. Five ESRD patients were excluded due to lacunar infarct
lesions. Eight patients were excluded during functionalMR image
preprocessing. The final study population included 32 patients
with ESRD and 45 healthy controls (HCs). Details regarding
the clinical and demographic data of the remaining subjects are
shown in Table 1.

MR Data Acquisition
All MRI images were collected using a GE 3T MRI scanner (GE
Medical Systems, Milwaukee,WI) equipped with a standard head
coil. Participants were asked to remain awake, relaxed, keep their
eyes closed, and not to do any specific thinking during functional
data collection. Conventional imaging sequences, which included
T1-weighted images and T2-FLAIR images, were acquired for
each subject to detect clinically asymptomatic lesions.

Using an echo-planar imaging (EPI) sequence, the rs-fMRI
data were obtained with the following parameters: repetition time
(TR)/echo time (TE)= 3,000ms/40ms, flip angle= 90◦, 25 slices,
thickness/gap= 5/0mm, matrix size= 96× 96, and field of view
= 24× 24 cm, 128 time points. Each scan lasted∼6 min.

TABLE 1 | Demographic and Clinical Data of the Two Study Groups.

Variable ESRD patients Healthy controls p-value

(n = 32) (n = 45)

Age (years) 44.4 ± 15.0 38.7 ± 13.1 0.080b

Sex (male/female) 17/15 23/22 0.862a

Education (years) 12.3 ± 2.7 12.9 ± 3.4 0.404b

Dialysis duration (month) 12.3 ± 12.2 – –

creatinine (µmol/L) 642.3 ± 332.6 – –

Urea (mmol/L) 22.0 ± 9.0 – –

Ca2+ (mmol/L) 2.1 ± 0.3 – –

K+ (mmol/L) 4.5 ± 0.8 – –

Na+ (mmo/L) 139.3 ± 3.2 – –

Hemoglobin (g/L) 92.7 ± 18.9 – –

Hematocrit 29.2 ± 6.0 – –

Cholesterol (mmol/L) 4.8 ± 2.2 – –

Values are represented as the mean ± SD.

ESRD, end-stage renal disease.
aThe p-value was obtained by Chi-square test.
bThe p-value was obtained by two-sided two-sample t-test.

Three-dimensional brain high-resolution T1-weighted
structural images were acquired using a 3D magnetization-
prepared rapid-acquisition gradient-echo (3D-MPRAGE
sequence). The parameters are as follows: 176 sagittal slices,
TR= 5.6ms, TE= 1.7ms, matrix= 256× 256, (FOV)= 25.6×
25.6 cm, and thickness/gap = 1.2/0mm. This session lasted for
∼5 min.

Data Preprocessing
The rs-fMRI data were preprocessed by the Data Processing
Assistant for Resting-State fMRI (DPARSF) software (27) (http://
www.restfmri.net) with the following steps: (a) Image format
conversion (DICOM to NIFTI) and then removal of the first 10
time points to stabilize the longitudinal magnetization and to
accustom the subjects to the rs-fMRI scan noise. One healthy
subject was excluded due to format conversion errors. (b) Slice
timing was performed to avoid the time phase difference between
different slices. (c) The subjects who had excessive head motion
were excluded, and the thresholds were set to mean framewise
displacement (FD) per Jenkinson (28)<0.2mm, head translation
<3mm, and rotation less than 3◦ in any direction. Eight patients
were excluded due to excessive head motion. The mean FD
values of the remaining participants of the two groups were
(0.073 ± 0.039) and (0.061 ± 0.032), respectively. There was
no significant difference in FD values between the two groups
by the two-sample t-test (t = 1.557, p = 0.124). (d) The
individual T1-weighted structural images were coregistered to
functional images; segmented into gray matter, white matter, and
cerebrospinal fluid (29); and spatially normalized to Montreal
Neurologic Institute (MNI) standard space (resampling voxel
size= 3× 3× 3 mm3). (e) Covariates, including head motion,
whitematter signal, and cerebrospinal fluid signal, were regressed
out from the time series of each voxel. We used the Friston 24-
parameter model (6 motion parameters, 6 temporal derivatives,
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and the 12 corresponding squared items) to regress out head
motion effects (30). (f) Linear detrending and bandpass filtering
(0. 01 < f < 0.08Hz) were performed to reduce low-frequency
drift and high-frequency cardiac or respiratory noise. (g) The
images were smoothed with an isotropic Gaussian kernel with a
full width at half-maximum of 4mm. Then, FC was calculated
based on the preprocessed fMRI data.

FC Analysis
In our study, both ROI- and seed-based FC analyses were
performed to investigate the abnormal FC within the DMN.

ROI-Based FC Analysis
To investigate the altered function and interaction of DMN
subsystems, we performed a ROI-based FC analysis in a pairwise
manner. Eleven ROIs of the DMNwere approximated as spheres,
each with a 5-mm radius (see Figure 1), according to the
definition in a previous study (24). To reveal the functional
connection patterns between these regions, we separately
constructed their pairwise connectivity matrix using FC analysis.
First, the temporal correlations between averaged time courses
for each pair of ROIs were calculated and then transformed
to z values using DPARSF software. Specifically, for each ROI,
the average time series was calculated for each subject and then
correlated with the time series of the other 10 ROIs. An 11 × 11
FC matrix was obtained for each subject. Next, a network-based
statistics (NBS) method (31) was used to identify edges with
significantly different FC in the ESRD patients compared with the
HCs using the GRETNA software toolbox (32). Independently
corrected p-values (after 10,000 permutations) were computed
for each link using a generic procedure to control the familywise
error rate (FWE) (33). A value of p < 0.05 was set as the

threshold for significant differences in the present study. Age,
gender, education, and head motion parameters (FD according
to Jenkinson) were controlled for covariates in the between-
group analyses.

Seed-Based FC Analysis
To comprehensively verify and supplement the findings from
ROI-based analysis, four spherical ROIs (radius = 5mm),
selected on the basis of previous research (24), and centered
at the PCC (−8, −56, 26), aMPFC (−6, 52, −2), dMPFC (0,
52, 26), and vMPFC (0, 26, −18), were generated to calculate
seed-based FC in the current study. These four seeds were
selected because they represent the cores of the three subsystems
of DMN (24). For each seed, we used DPARSF software to
extract the average time course. Then, the correlation between
the averaged time course of each seed and the time series
of the whole brain was computed in a voxelwise manner.
Finally, we used Fisher’s r-to-z transformation to transform the
correlation coefficients into z values to improve the normality
of their distribution. Two-sample t-tests were performed on
the PCC/aMPFC/dMPFC/vMPFC-seeded FC maps of the two
groups individually to identify regions with significant group
differences [Gaussian random field correction with voxel-level
threshold p < 0.001 and cluster-level threshold p < 0.01
(0.05/4), two-tailed] with age, gender, education, and head
motion parameters (FD according to Jenkinson) as covariates.

Statistical Analysis
Group Differences in Demographic and Clinical Data
The demographic and clinical data differences between the two
groups were compared using the two-sample t-test and χ

2 tests

FIGURE 1 | Eleven ROIs utilized in the rs-fMRI analysis for the midline core (blue), dorsal medial prefrontal cortex (dMPFC) subsystem (green), and the medial

temporal lobe (MTL) subsystem (red) within DMN. The corresponding MNI coordinates for each ROI are shown on the right side of the picture. The regions were

selected from a previous study (24). (ROI, regions of interest; DMN, default-mode network; PCC, posterior cingulate cortex; aMPFC, anterior medial prefrontal cortex;

dMPFC, dorsal medial prefrontal cortex; TPJ, left temporo-parietal junction; LTC, lateral temporal cortex; TempP, temporal pole; MTL, medial temporal lobe; vMPFC,

ventral medial prefrontal cortex; pIPL, posterior inferior parietal lobule; Rsp, retrosplenial cortex; PHC, parahippocampal cortex; HF, hippocampal formation).
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in SPSS 22.0 software (SPSS Inc., Chicago, IL, United States).
Statistical significance was set to p < 0.05.

FC and Correlation Analyses
In the FC analysis, the regions showing significantly different
FC between the ESRD and HCs were mapped to cortex
surface and visualized with the BrainNet Viewer package (34).
To investigate the potential effect of laboratory results on
the DMN, we extracted the mean FC correlation coefficient
values (after Fisher’s r-to-z transformation) of these abnormal
regions using DPABSF software. Then, we conducted a Pearson’s
correlation analysis between altered FC and clinical variables
(dialysis duration, creatinine level, urea level, hemoglobin level,
hematocrit level, cholesterol level, serum potassium, serum
sodium, and serum calcium) in the ESRD patients.

RESULTS

Participants’ Demographic and Clinical
Information
The demographic and clinical information of all patients and
healthy subjects are shown in Table 1. There were no significant
differences in age, gender, or education level between the two
groups (p > 0.05).

ROI-Based FC Result
The ROI-based FC strength of the ESRD and HC controls is
shown in Table 2 and Figure 2. In the dMPFC subsystem,
compared with the controls, ESRD patients exhibited
significantly reduced connectivity in the dMPFC-TPJ ROI pair.
In the MTL subsystem, significantly reduced connectivity was
found in the pIPL-Rsp and pIPL-PHC ROI pair. Interestingly,
the ESRD patients exhibited hypoconnectivity between the

TABLE 2 | Regions showing significantly decreased pairwise FC in patients with

ESRD compared with HCs.

ROI region Connected brain ROI region t-value

ESRD vs. HCs

NBS correction (p < 0.05)

PCC aMPFC −2.029

pIPL −3.040

Rsp −2.205

aMPFC dMPFC −2.191

TPJ −2.058

Rsp −3.387

dMPFC TPJ −3.040

pIPL Rsp −2.329

PHC −2.559

FC, functional connectivity; ESRD, end-stage renal disease; HCs, healthy controls;

NBS, network-based statistic; PCC, posterior cingulate cortex; aMPFC, anterior

medial prefrontal cortex; dMPFC, dorsal medial prefrontal cortex; TPJ, temporal

parietal junction; Rsp, retrosplenial cortex; pIPL, posterior inferior parietal lobule; PHC,

parahippocampal cortex.

DMN hubs and two subsystems (PCC-aMPFC, PCC-pIPL, PCC-
Rsp, aMPFC-dMPFC, aMPFC-TPJ, aMPFC-Rsp), suggesting
widespread functional disconnection between the DMN hubs
and those two subsystems.

Seed-Based FC Result
Compared with HCs, ESRD patients exhibited significantly
decreased PCC-seeded FC with the bilateral aMPFC and Pcu.
For the aMPFC seed, only the bilateral PCC showed significantly
decreased FC in patients with ESRD compared with HCs. For the
dMPFC seed, the bilateral aMPFC showed significantly decreased
FC in patients with ESRD compared with HCs (Table 3;
Figure 3). However, there were no significant group differences
in connectivity between the vMPFC seed and any region.

Correlation Between FC and Clinical
Variables
For ESRD patients, FC values between the aMPFC and PCC
extracted from the seed-based analysis were positively correlated
with the creatinine level (r = 0.426, p = 0.015) and urea level
(r = 0.475, p= 0.006) (Figure 4).

DISCUSSION

To date, this study is the first to focus on the neural activity
of DMN subsystems in ESRD patients, although a previous
work has investigated other aspects of ESRD. We report two
major findings. First, the extensive functional disconnection
within the DMN in ESRD patients was mainly between the
DMN hubs and two subsystems. Second, the dMPFC and
MTL subsystems in the DMN were also disrupted to a
certain degree.

Disrupted Cortical Hubs in Patients With
ESRD
Our ROI-based FC analysis shows a widespread functional
disconnection between the DMN hubs and those two subsystems
(PCC-aMPFC, PCC-pIPL, PCC-Rsp, aMPFC-dMPFC, aMPFC-
TPJ, aMPFC-Rsp). In addition, seed-based FC analysis shows
significantly decreased FCs between the PCC and Pcu, the PCC
and aMPFC, and the aMPFC and dMPFC in patients with ESRD
compared with HCs, which were consistent with the results of
ROI-based analysis. In line with our findings, Ni et al. (19) found
through ICA that ESRD patients showed decreased FC in the
PCC, precuneus, andMPFC, with further reduction in theMPFC
with the development of minimal nephrotic encephalopathy.
Similarly, Lu et al. (35) reported that significantly decreased FC
of the DMN was observed in the PCC and Pcu, as well as in
the MPFC, in the ESRD group with mild cognitive impairment.
However, a previous study (21) using the PCC and vMPFC as
seeds found that some other regions also had decreased FC with
the PCC or vMPFC, such as the thalamus, middle temporal gyrus,
and anterior cingulate gyrus, which was inconsistent with our
results. The reasons for this difference may include the different
sample sizes and the coordinates of selected seed points. As
consistently reported in the literature, the aMPFC and PCC,
as the midline cores of DMN, are strongly correlated with the
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FIGURE 2 | The group differences of pairwise FC between ESRD patients and HCs (p < 0.05, NBS correction). (A–E) Impaired FC in the regions of three DMN

subsystems in ESRD patients compared with HCs. (C) Significantly decreased FC between the DMN hubs and two subsystems (PCC-aMPFC, PCC-pIPL, PCC-Rsp,

aMPFC-dMPFC, aMPFC-TPJ, aMPFC-Rsp). (D) Significantly decreased FC between dMPFC and TPJ in the dMPFC subsystem. (E) Significantly decreased FC

between pIPL and Rsp, pIPL, and PHC in the MTL subsystem. (F) Bar diagrams of average FC (Fisher’s r-to-z transformed values) between the DMN core hubs and

regions of the dMPFC and MTL subsystem. Error bars depict standard errors of the mean. Lines represent FC between each pair of defined ROI regions with

significant group differences between two groups. The color bars and the color of lines represent the T scores. (FC, functional connectivity; ESRD, end-stage renal

disease; HCs, healthy controls; NBS, network-based statistic; PCC, posterior cingulate cortex; aMPFC, anterior medial prefrontal cortex; dMPFC, dorsal medial

prefrontal cortex; TPJ, temporal parietal junction; pIPL, posterior inferior parietal lobule; Rsp, retrosplenial cortex; PHC, parahippocampal cortex).

TABLE 3 | Regions showing significantly decreased voxelwise FC in patients with ESRD compared with HCs.

ROI region Connected brain region Side Brodmann area Cluster size MNI coordinates (mm) t-value

X Y Z

ESRD vs. HCs (GRF correction, voxel-level threshold p < 0.001, cluster-level threshold p < 0.01, 2-tailed)

PCC aMPFC L/R 10 110 0 63 15 −5.1763

Pcu L/R 23 129 −6 −63 24 −5.5477

aMPFC PCC L/R 30 92 −6 −42 15 −4.4341

dMPFC aMPFC L/R 10 86 0 60 15 −5.2356

FC, functional connectivity; ESRD, end-stage renal disease; HCs, healthy controls; MNI, Montreal Neurological Institute; GRF, Gaussian random field; PCC, posterior cingulate cortex;

aMPFC, anterior medial prefrontal cortex; Pcu, precuneus.

dMPFC and MTL subsystems and share common functions,
showing preferential autocorrelation activities in functional
integration in all time contexts; they are activated when people
make self-relevant affective decisions (24). Separately, the PCC
has a central role in supporting internally directed cognition,
retrieving autobiographical memories, planning for the future,
and regulating attention (36). The aMPFC is involved in parts
of cognitive and task performance and emotional response,
including attention-demanding processes, evaluative judgment,
self-referential processes, self-initiated thoughts, or emotional

and intention processing (37). The DMN subsystems interact
in a dynamic equilibrium, which is crucial for the maintenance
of normal cognition, and the PCC and aMPFC may receive
information integration from the other two subsystems. Thus,
the widespread disruption in the functional integration of core
hubs in DMN may be the main reasons for multidomain DMN-
related cognitive dysfunction involving concentration, executive,
memory, emotion, and judgment in ESRD subjects. In addition,
a brain-network-based analysis also suggests that the nodal
efficiencies of default-mode components were disproportionately
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FIGURE 3 | The group differences of voxelwise FC between ESRD patients and HCs (voxel-level threshold p < 0.001 and cluster-level threshold p < 0.01, GRF

correction). (A) Significantly decreased PCC-seeded FC with bilateral aMPFC and Pcu in ESRD patients compared with HCs. (B) Bar diagrams of average

PCC-seeded FC (Fisher’s r-to-z transformed values) in the two groups. (C) Significantly decreased aMPFC-seeded FC with bilateral PCC in ESRD patients compared

with HCs. (D) Bar diagrams of average aMPFC-seeded FC (Fisher’s r-to-z transformed values) in the two groups. (E) Significantly decreased dMPFC-seeded FC with

bilateral aMPFC in ESRD patients compared with HCs. (F) Bar diagrams of average dMPFC-seeded FC (Fisher’s r-to-z transformed values) in the two groups. The

color bars represent the T scores. The results were mapped onto the brain surface using the BrainNet viewer software. Error bars depict the standard error of the

mean. (FC, functional connectivity; ESRD, end-stage renal disease; HCs, healthy controls; GRF, Gaussian random field; PCC, posterior cingulate cortex; aMPFC,

anterior medial prefrontal cortex; Pcu, precuneus; dMPFC, dorsal medial prefrontal cortex).

FIGURE 4 | Scatter plot of the relationship between altered functional connectivity and clinical variables. Significantly positive correlations between aMPFC-PCC

functional connectivity and creatinine level (A) and urea level (B) in the patients with ESRD (p < 0.05). (PCC, posterior cingulate cortex; aMPFC, anterior medial

prefrontal cortex; ESRD, end-stage renal disease.)

weakened and tended to preferentially affect central or hub-like
regions in ESRD patients (22).

Combined with the above findings, we proposed that cortical
hubs (the PCC and aMPFC) in the DMN were preferentially
disrupted; this is a specific pattern distinct from what is observed

in other diseases; for example, in Alzheimer’s disease (AD),
disruption has been found mainly in the MTL subsystem
(25). This interference can be explained and supported by a
large number of previous studies. Evidence from previous DTI
(8) and VBM (9, 10) studies of ESRD patients found that
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white matter damage and gray matter volume reduction are
mainly located in the anterior frontal lobe. An MRS study
by Wang et al. (38) also found cerebral metabolism changes
(lower NAA/Cr ratio and higher Cho/Cr ratio) in bilateral
prefrontal in ESRD patients. The prefrontal cortex plays a
crucial role in cognitive control, including working memory,
learning, and attention, as well as emotional response (39);
even cognitively normal elderly individuals with white matter
hyperintensities (WMHs) have been reported to have gray matter
(GM) volume loss predominantly in the frontal cortex (40).
Furthermore, the anatomical location of the PCC is located
at the margin between the territories of the two main arteries
supplying blood to the brain; therefore, it is susceptible to
hemodynamic changes brought about by long-term hemodialysis
(41). The PCC is one of the brain regions with the highest
levels of metabolic activity and connectivity (42, 43). Using
dynamic causal modeling, Davey et al. found that self-referential
cognitive processes were driven by PCC activity and moderated
by the regulatory influences of MPFC (44). Therefore, when
considered with our current findings, this evidence indicates
that the extensively disrupted FC between core DMN hubs
and other subsystems in ESRD patients may be due to the
weakened driving role of PCC. In our study, creatinine and
urea levels in patients with ESRD were positively correlated
with the z-values of FC between the aMPFC and PCC. This
is a surprising finding that completely contradicts previous
research (20, 35). To the best of our knowledge, long-term
hemodialysis patients have elevated creatinine and urea levels,
and the accumulation of uremic toxins results in a series of brain
injuries, including neurotoxicity, neuroinflammation, blood–
brain barrier injury, oxidative stress, microvascular changes,
apoptosis, and brain metabolic dysfunction (45). However,
among our patients, those with higher levels of creatinine and
urea nitrogen had higher FC between the aMPFC and PCC.
One possible explanation for this result is that the MPFC
plays a regulatory role in the late stage of the disease, but
this regulatory mechanism cannot fully compensate, and thus,
patients still present a low degree of FC compared with HC
controls. Further research should be carried out in the future to
confirm this speculation.

Disruption of Subsystems in Patients With
ESRD
In addition to the predominantly disrupted cortical hubs in
ESRD patients, we also found reduced FC in the dMPFC
subsystem (dMPFC-TPJ) and MTL subsystem (pIPL-Rsp and
pIPL-PHC), which may suggest further development of cognitive
impairment in ESRD. The dMPFC subsystem is robustly
activated for tasks that require mental state inference (24). There
is strong connectivity and interaction between dMPFC and TPJ,
constituting an important part of the “mentalizing network” (46),
which may directly participate in the processing of emotions
(47). The prefrontal cortex is found to be closely related to the
production and regulation of emotions. Specifically, the dMPFC
is recruited when involved in appraising the intentions and
mental states of others, and in the expressing of negative emotion,

and thus can affect the outcome of an individual’s happiness
(48). In contrast, the TPJ is recruited preferentially during the
other-centered affective recognition process (49). These results
indicate that the FC between the dMPFC and the TPJ may be the
neural basis of the cognition process in emotion recognition and
regulation. Moreover, depressive hemodialysis patients showed
impaired FC in the amygdala-prefrontal-PCC-limbic circuits, as
well as an abnormal interaction between depressive mood and
cognitive control deficits (50, 51). Abnormal FC of the dMPFC
subsystem was also found in patients with major depressive
disorder (52). Therefore, the explanation for our findings is
that lower connectivity between the dMPFC and the TPJ of
the dMPFC subsystem might cause negative outcomes of the
cognition process in emotion recognition and regulation, which
may lead to the development of negative emotions, such as
anxiety and depressive mood.

The MTL subsystem is preferentially activated when involved
in episodic memory and thinking (24); thus, significant changes
in the MTL subsystem may reflect cognitive changes in memory
in ESRD patients. In particular, the Rsp is densely interconnected
with several components of the hippocampal-parahippocampal
memory system, which play a crucial role in the encoding
of working memory, learning, and spatial processing (53).
Additionally, the Rsp has connections with the posterior parietal
cortex, which is responsible for working memory, visuo-spatial
processing, and some related cognitive functions (54). According
to previous studies, the bilateral IPL is reliably activated when
performing working memory processes in both humans and
animals (55). The PHC and Rsp mediated contextual associative
memory as well as spatial learning (56), while the IPL was
involved in the storage and expression of contextual details that
support episodic memory in memory decisions as a temporary
memory caching system (57). Moreover, a task-related fMRI
study found similar FC (in the PCC, the bilateral IPL and
the left PHC) abnormalities related to memory, consistent with
our study (58). Thus, impaired FC among the pIPL, Rsp, and
PHC in the MTL subsystems of the DMN in patients with
ESRD may account for additional memory impairments to
some degree.

LIMITATIONS

Some limitations of the current study should be noted. First,
patients with end-stage renal disease have severe metabolic
imbalance, which is likely to have a substantial impact on
cerebral vascular regulation. Rs-fMRI connectivity is not only
driven by neurovascular but also merely vascular mechanisms.
Although the current study tries to avoid the confounding
effect, we did not have the ability to avoid the effect of these
kinds of mechanisms, such as atherosclerosis. We selected
hemodialysis patients to minimize the influence of different
dialysis methods. In addition, the effects of physiological effects
such as respiration and heart rate, especially the respiration-
related “connectivity network” on functional connectivity, were
not considered in this study. Second, 11 ROIs were selected
from a previous study (24) based on data-driven approaches;
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other ROIs may also be worth studying. To avoid crossing
results, these ROIs were located in the left hemisphere of the
brain. It is not known whether the changes in brain function
in ESRD patients have hemispheric dominance. However, a
previous study have demonstrated that the left cerebral cortex has
stronger functional connectivity with the same hemisphere (59).
Third, we focused only on the DMN. Other cortical networks
are equally important and may also be involved in the brain
injury process in ESRD patients. Related research will be carried
out in our future experiments. Fourth, the current study did
not include cognitive testing, which would have allowed us
to examine correlations with functional brain abnormalities.
Five, these correlations between abnormal FC correlation and
clinical variables did not pass stringent correction; thus, they
were exploratory and need to be validated in a larger sample
size. Next, the narrow selection criteria led to a small sample
size, which limited the generalizability of our results. There
were no significant group differences in connectivity between
the vMPFC seed and any region, which might also be explained
by the limited sample size. Therefore, further studies with
larger groups of participants are needed to further confirm our
findings. Finally, the study had a cross-sectional design; future
work should include longitudinal studies to reflect changing
patterns of DMN subsystem connectivity over the duration
of dialysis.

CONCLUSION

In conclusion, different subsystems of the DMN have
inconsistent degrees of impairment in ESRD. The cortical
hubs (PCC and aMPFC) are preferentially disrupted, and other
subsystems may develop progressive impairment to a certain
degree as the disease develops. Our findings provide novel
insights into the underlying pathological mechanism of cognitive
impairment in ESRD patients.
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