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INTRODUCTION

The strongest genetic risk factor for late-onset Alzheimer’s disease (AD) is allele ε4 of the
apolipoprotein E (ApoE) gene, which was discovered in 1993 (Corder et al., 1993). In around
2010, human genome-wide association studies (GWASs) of late-onset AD cases identified novel AD
risk genes, the majority of which are considered to be expressed selectively or highly in microglia
(Hansen et al., 2018). These include the triggering receptor expressed on myeloid cell 2 (TREM2)
(Jonsson et al., 2013), complement receptor 1 (CR1) (Lambert et al., 2009), ATP-binding cassette
sub-family A membrane 7 (ABCA7) (Hollingworth et al., 2011), and CD33 (Hollingworth et al.,
2011). It is of note that the strength of the effect of the TREM2 variant (odds ratio of 2.36-
2.71) is similar to that of ApoE ε4 (odds ratio of 3.08) (Villegas-Llerena et al., 2016). Of these
genes, ApoE, TREM2, and CD33 have been identified as key genes involved in the intermediate
state of disease-associated microglia (DAM, also referred to as microglial neurodegenerative
phenotype) by most recent single-cell RNA sequencing studies of microglia from AD-transgenic
(Tg) mice (Keren-Shaul et al., 2017; Krasemann et al., 2017). Specifically, ApoE and TREM2 are
up-regulated while CD33 is down-regulated during DAM activation (Keren-Shaul et al., 2017;
Krasemann et al., 2017). Furthermore, the DAM signature is dependent on the TREM2-ApoE
pathway in AD-Tg mice (Krasemann et al., 2017). Immunohistochemistry on human AD brain
tissue has shown that even though DAM-like microglia (labeled with only one type of DAM
marker) are located in close proximity to Aβ plaques, they are not found in non-plaque
areas (Keren-Shaul et al., 2017; Krasemann et al., 2017). These genetic and immunohistochemistry
findings imply that the functional changes of ApoE, TREM2, and CD33 caused by the variants
of GWAS-identified AD risk genes, which overlap with DAM-associated genes, alter microglial
functions and consequently play important roles in AD pathogenesis. Nevertheless, it should be
taken into account that the protein expression of these molecules in human brains is fundamentally
different from that in rodent brains.

TREM2 EXPRESSION IN MICROGLIA

A number of animal studies have demonstrated microglial immunoreactivity for TREM2
in the rodent brain (Thrash et al., 2009; Kawabori et al., 2015). In the human brain,
however, there has been controversy about the microglial expression of TREM2. Even
though human microglia isolated from AD brains show up-regulated expression of
TREM2 mRNA (Gosselin et al., 2017), this increase cannot be readily confirmed at the
protein level. Using the same polyclonal anti-TREM2 antibody (Sigma HPA010917),
two independent immunohistochemical studies on 312 postmortem cases, including 92
AD cases, have shown that human microglia do not express the TREM2 protein (Satoh
et al., 2013; Fahrenhold et al., 2018). These studies have also demonstrated that the
TREM2-immunoreactive cells are recruited monocytes in brain blood vessels, not microglia
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or perivascular macrophages (Satoh et al., 2013; Fahrenhold et al.,
2018). On the other hand, a study on 33 cases, including 11 AD
cases, reported TREM2-immunoreactive microglia associated
with plaques; this study employed a different polyclonal anti-
TREM2 antibody (R&D AF1828) (Lue et al., 2015). Although
we have no convincing reason to explain this inconsistency in
microglial immunoreactivity, the HPA010917 antibody appears
to be more reliable than the AF1828 antibody, based on
immunoreacting ability. Whereas AF1828 can recognize human
recombinant TREM2 in immunoblotting, it is not able to
label monocytes, macrophages, dendritic cells, or osteoclasts
in human spleen and bone marrow (Satoh et al., 2013). The
discrepancy in the human microglial expression of TREM2
between mRNA levels and protein levels could be attributed
to the possibility that human TREM2 protein in microglia is
post-translationally modified. For example, HPA010917 may not
bind to a protein modified by glycosylation. Human TREM2
has been demonstrated to undergo glycosylation (Park et al.,
2015), even though it is not known whether this kind of
post-translational modification changes the TREM2 antigenicity.
Another possibility is that the antibody recognizes human
TREM2, but since the protein is soluble in humans, it is no longer
detected by immunohistochemical methods. Soluble TREM2
resulting from ectodomain shedding has been detected in human
cerebrospinal fluid by the enzyme-linked immunosorbent assay
(Suarez-Calvet et al., 2019). The immunohistochemical finding
that human TREM2-immunoreactive cells are largely restricted
to blood circulation, not to the brain, implies that an altered
immune response in the periphery may play a role in the
development and progression of AD.

APOE EXPRESSION IN MICROGLIA

ApoE is believed to be derived mainly from astrocytes in
the human brain (Murakami et al., 1988). In normal human
brains, ApoE is predominantly expressed by astrocytes at both
mRNA (Hansen et al., 2018) and protein (Murakami et al.,
1988) levels. Microglial ApoE expression is induced in AD
model mice (Hansen et al., 2018). However, in human AD
brains, only a portion of microglia show the immunoreactivity
for ApoE (Uchihara et al., 1995), while microglial expression
of the ApoE gene is up-regulated (Mathys et al., 2019). Such
inconsistency in ApoE expression by AD microglia may stem
from post-translational modification of the apolipoprotein. ApoE
has recently been shown to bind to human TREM2 with a
specific high affinity (Atagi et al., 2015). However, the exact
relationship between ApoE and microglia in the human brain
remains unknown, since microglia appear not to express the
TREM2 protein in the human brain, as mentioned above.
In the periphery, a significant amount of circulating ApoE is
produced by macrophages as well as by the liver. It has been
demonstrated that human monocyte-derived macrophages from
ε4/ε4 subjects secret a large amount of ApoE but lack effective
cholesterol efflux (Cullen et al., 1998). The ε4/ε4 macrophages
appear to facilitate the development of hypercholesterolemia
and to contribute considerably to AD pathogenesis since
hypercholesterolemia is a major risk factor for late-onset AD
(Meng et al., 2014).

CD33 EXPRESSION IN MICROGLIA

CD33 (also referred to as sialic acid binding immunoglobulin-
like lectin-3) used to be considered a myeloid-specific
immunomodulatory receptor. Today, it is known that CD33 is
also expressed by microglia at both mRNA (Galatro et al., 2017;
Gosselin et al., 2017) and protein (Malik et al., 2013) levels in
normal human brains. In human AD brains, the number of
CD33-immunoreactive microglia is increased with a positive
correlation with the insoluble Aβ42 burden (Griciuc et al., 2013).
CD33 overexpression associated with the rs3865444C risk allele
is linked to increased AD risk, while other single nucleotide
polymorphisms (i.e., rs3865444A and rs12459419T) yield non-
functional CD33 protein and reduce AD risk (Bradshaw et al.,
2013; Malik et al., 2013). These genetic findings suggest that
CD33 mutations cause dichotomous results. Although the
protection against AD onset could be explained by adaptive
loss-of-function (Siddiqui et al., 2017), it is still unknown how
CD33 mutations contribute to AD pathogenesis. As a result of
the fact that CD33 mutations also change the immunological
functions of peripheral monocytes (Bradshaw et al., 2013),
the CD33 mutation-altered peripheral immune system may
contribute to AD pathogenesis to some extent, as do altered
microglia functions.

DISCUSSION

As mentioned above, ApoE, TREM2, and CD33 are human
GWAS-identified AD risk factors and also DAM-associated genes
identified by single-cell RNA analyses on microglia from AD
model mice. Based on the cellular expression pattern of the
proteins, ApoE, TREM2, and CD33 in humans, the possibility
cannot be excluded that functional changes of these molecules
due to gene mutations have little to do with microglia in AD
pathogenesis. Instead, the altered functions of ApoE, TREM2,
and CD33 may have a close link to peripheral monocytes
expressing these proteins and cause a dysregulated immune
response, such as chronic systemic inflammation. Furthermore,
such functional changes in ApoE, TREM2, and CD33 may
indirectly induce the neurotoxic activation of microglia via
chronic systemic inflammation, which has been shown to
induce neuroinflammation associated with microglial activation
(reviewed in Hashioka et al., 2019).
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