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ABSTRACT

Motivation: The detection of positive selection is widely used to study

gene and genome evolution, but its application remains limited by the

high computational cost of existing implementations. We present a

series of computational optimizations for more efficient estimation of

the likelihood function on large-scale phylogenetic problems. We illus-

trate our approach using the branch-site model of codon evolution.

Results: We introduce novel optimization techniques that substantially

outperform both CodeML from the PAML package and our previously

optimized sequential version SlimCodeML. These techniques can also

be applied to other likelihood-based phylogeny software. Our imple-

mentation scales well for large numbers of codons and/or species. It

can therefore analyse substantially larger datasets than CodeML. We

evaluated FastCodeML on different platforms and measured average

sequential speedups of FastCodeML (single-threaded) versus

CodeML of up to 5.8, average speedups of FastCodeML (multi-

threaded) versus CodeML on a single node (shared memory) of up

to 36.9 for 12 CPU cores, and average speedups of the distributed

FastCodeML versus CodeML of up to 170.9 on eight nodes (96 CPU

cores in total).

Availability and implementation: ftp://ftp.vital-it.ch/tools/FastCodeML/.
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1 INTRODUCTION

The development of evolutionary models has a long tradition in

phylogenetics, and recent advances have enhanced our under-

standing of the molecular mechanisms involved. At the heart

of these advances is the democratization of the use of the likeli-

hood framework, which was made possible by algorithmic de-

velopments (Felsenstein, 1981) and the wide availability of

powerful computing platforms. The surge of genomic data is,

however, pushing the limits of current implementations [e.g.

(Rannala and Yang, 2008)] and demands for the developments

of better and more efficient ways to compute the phylogenetic

likelihood function (PLF).
The development of codon models is a good example to illus-

trate these current challenges and the benefits that can be reached

by improving the efficiency of current likelihood calculations

(Gil et al., 2013). There are clear advantages to use codon

models in phylogenetics (Seo and Kishino, 2008), but these are

currently not widely used because of the large computational

burdens involved (Anisimova and Kosiol, 2009). Further, the

detection of positive selection has been facilitated by the devel-

opment of new codon models. However, their application to

genome-scale data comprising a large number of species, or in-

dividuals in the case of population genomic studies, remains

challenging. Thus, there exists an urgent need for improved im-

plementations and novel optimization techniques to analyse

emerging genomic datasets (Lemey et al., 2012; Murrell et al.,

2012; Schabauer et al., 2012).
The prevalent approach for detecting positive selection in pro-

tein-coding genes is to use Markov models of codon substitution

to estimate the ratio of non-synonymous to synonymous changes

along the branches of a phylogenetic tree (Yang, 2006). The

branch-site model (BSM) [Yang, 2006 (Section 8.4); Zhang

et al., 2005] allows to detect positive selection that affects a

subset of codon sites for a subset of branches in a phylogenetic

tree. This model is particularly useful to perform interspecific

comparisons and is probably the most widely used approach

for this specific purpose. The test compares a model that assumes

positive selection on one branch or on a set of a priori specified

branches (hypothesisH1) with a null model that does not incorp-

orate positive selection (hypothesis H0). If the test is significant,

the Bayes Empirical Bayes (BEB) method is used to compute the

posterior probability of each particular codon to evolve under

positive selection along the specified branches (Yang et al., 2005).

In CodeML, the test is usually applied iteratively and independ-

ently to each branch of a given phylogenetic tree (Anisimova and

Yang, 2007; Studer et al., 2008).
This approach is compute bound, and although alternatives

have recently been proposed, the limiting factor of such analyses
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still lies with the repeated calls to compute the PLF.

For example, the estimation of positive selection on a large gen-

omic vertebrate dataset (Proux et al., 2009) shows the enormous

computational requirements of such analyses [approx. 100 CPU

years for each release of the Selectome database (Kraut et al.,

2010)]. As a consequence, large gene trees, comprising more than

100 sequences, are usually excluded and faster implementations

of the BSM are urgently needed. This clearly illustrates the need

to further optimize current software and to develop more effi-

cient computational approaches for maximum likelihood infer-

ence on phylogenetic trees.
Several recent studies introduced techniques for efficiently

computing positive selection on the branches of a phylogenetic

tree. One idea is to use stochastic mapping to count substitutions

along the branches of a tree and thereby derive dN/dS ratios

(Dutheil et al., 2012; Lemey et al., 2012). While this approach

is fast, it is computationally distinct. Alternatively, new models

have been proposed to avoid the likelihood ratio test (LRT) es-

timation of positive selection for all branches of the tree. Instead,

branch assignments are considered as a random effect within a

mixed effect framework (Murrell et al., 2012). Their model not-

ably differs from the BSM (Zhang et al., 2005) in that putative

positive selection is not optimized on a priori defined branches,

but over a subset of branches which are determined by the soft-

ware. This technique reduces the computational cost of the test,

but the accuracy and robustness of this new model is not yet fully

characterized. Moreover, the authors introduced solutions for

parallelizing BSM computations, but the parallel approach is

not discussed in their article.
The bottleneck in efficiency of phylogenetic software is com-

monly the PLF, as the majority of runtime is spent here. In

(Stamatakis, 2011, p.2), the PLF is reported to consume495%

of total execution time in maximum likelihood and Bayesian

tools for phylogenetic tree reconstruction. Although this was

estimated when searching for the best tree topology, which is a

key component of phylogenetic computations but not the focus

of this article, the PLF is still the core element in all phylogenetic

applications using maximum likelihood. All these areas would

therefore benefit from an optimized PLF. Recent discussions

have proposed to use data augmentation strategies to speed up

the likelihood calculations by using heuristics to simplify the es-

timation of the conditional vectors at each node (Rodrigue and

Aris-Brosou, 2011). However, there are still opportunities for

improving the PLF with respect to sequential efficiency and par-

allelization techniques.
Our main objective is therefore to propose methodological and

algorithmic improvements and parallelization strategies to com-

pute the PLF without modifying the underlying evolutionary

model. Our optimizations and parallelizations yield substantial

speedups in the likelihood computations. Hence, we can apply

the BSM to large trees of several hundreds of sequences

and obtain results in feasible times. These computational opti-

mizations are thus of broad applicability to further likelihood-

based phylogenetic software, including but not limited to

nucleotide- and amino acid-based phylogenetic analyses in

both the maximum likelihood and Bayesian frameworks

(Nielsen, 2005).

1.1 Number of elementary tree operations

In the BSM framework, four site classes 0, 1, 2a and 2b are

applied to model combinations of purifying selection, neutral

evolution, and positive selection on foreground and background

branches. When computing hypothesesH0 andH1, each site class
has its distinct proportion according to its contribution to the

overall likelihood (cf. the supplementary material for an intro-

duction to the BSM). These proportions only depend on the two

parameters p0 and p1; each site class has a specific ! value for its

selective pressure in the foreground and in the background. !0 is

in the interval (0,1), !1 ¼ 1 and either !241 (foreground forH1)
or !2 ¼ 1 (foreground for H0). Qf0, 1, 2g corresponds to !f0, 1, 2g,
respectively.
Computing the likelihood requires computing the transition

probabilities for a given branch length t by computing the

matrix exponential Pt ¼ eQt ¼ eS�t, whereQ is the instantaneous

substitution rate matrix, S is the symmetric codon substitution

matrix and � is the diagonal matrix of codon frequencies. The
resulting probability matrix Pt is used to update the correspond-

ing conditional probability vector (CPV) w, that is, w0 ¼ Ptw.

Each CPV models the site-wise transition between 61 codon

states (universal genetic code) along each branch of the phylo-

genetic tree. This operation is applied to all sites of the multiple
sequence alignment (MSA) and to all nodes of the tree by means

of a post-order tree traversal.

The CPU-intensive computation of the CPV entails the fol-
lowing three computational kernels that operate on real dense

matrices (similar to SlimCodeML, see Section 2.1.2): (i) eigende-

composition of a symmetric matrix [see, e.g. (Bai et al., 2000)],

(ii) multiplication of a matrix by its transpose (resulting in a

symmetric matrix) and (iii) multiplication of a symmetric
matrix by a vector.

1.1.1 How many decompositions? To compute eQt we need to
decompose Q for each distinct combination of parameters �
(transition to transversion rate), �j and !. The �j are constant

over site classes and parameter optimization steps; � may change

at each parameter optimization step (but is constant over site
classes); ! varies among optimization steps and site classes. For

each distinct value of !, Q is distinct and therefore needs to be

decomposed separately. There are three distinct ! values over all

site classes; hence, we need to decompose three Q matrices in the

first parameter optimization step. For subsequent steps, !1 ¼ 1
remains constant, but Q1 may change because of a new � value.

The total number of Q decompositions does not depend on the

number of branches in the tree nor on the number of sites in the

MSA. In the general case, the number of Q matrices depends on

the number of unique substitution matrices in the model, which
can be large in mixture models [e.g. (Lartillot and Philippe, 2004;

Venditti et al., 2008)]. With respect to other evolutionary models,

similar optimizations may be applicable.

1.1.2 How many matrix–matrix multiplications? Pt has to be

computed for each combination of Q and t. For our case of

binary trees, the number of branches in the phylogeny equals
2n�2 where n is the number of extant taxa. For each distinct

Q, branches have to be computed separately. The BSM applies

Q0 and Q1 to each branch, but Q2 only to foreground branches.

In other words, Pt has to be computed for all branches using Q0
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and Q1 (site classes 0 and 1), and in addition on the foreground

branch(es) by using Q2 (site classes 2a and 2b). Therefore,

we need to compute Pt 2mþ l times for m branches in

the phylogeny and l foreground branches; this yields

ð2� ð2n� 2ÞÞ þ 1 ¼ 4n� 3 branches when using a single fore-

ground branch. Overall, we need to compute 17 distinct P matri-

ces in our example 1. This matrix–matrix multiplication is also

applied in further evolutionary models based on substitution

matrices.

1.1.3 How many matrix–vector computations? In a straightfor-
ward approach, each CPV is computed along each branch for all

sites and all site classes. In our example this makes

8� 4� 2 ¼ 64 CPV computations. If a CPV connected to a

leaf is computed on ‘clean’ data [no ambiguity symbols in

MSA (Comnish-Bowden, 1985)], the CPV at the leaf only con-

tains a single 1 (0 elsewhere). In this case, computing the resulting

CPV simplifies to selecting the corresponding column of the P

matrix. In the general case, an upper limit of the number of

involved matrix–vector multiplications per site class is the

number of branches in the phylogeny � the number of sites in
the MSA. Certainly, this number can be decreased depending on

similarities in the codons as discussed in Section 2.1.1 (‘subtrees

reuse’). Likewise, this step is important to all other evolutionary

models based on substitution matrices.
Further computational savings are possible. In this context, we

refer to a ‘subtree’ as a connected part of the phylogeny where at

least one node is a leaf. Whenever a particular branch of a single

site applies the same P and all other CPVs of its subtree match,

the particular CPV has a ‘twin’ in another site class and needs to
be computed only once. In Figure 1, such matching CPVs are

identified by matching indexes. For example, CPV23 appears in

site class 1 and in site class 2b, as also CPV20 and CPV21 have

twins, and they pairwise apply matching P matrices (here, all

based on Q1). These redundancies are caused by matching !0

values for site classes 0 and 2a and by matching !1 values for site
classes 1 and 2b. In our example, this means that only 40 out of

64 (62.5%) CPVs have distinct values and will hence have to be

computed. CPVs are computed recursively via a postorder tra-

versal propagating from the leaves towards the root (Felsenstein,

1981). Hence, for the BSM in general, the number of distinct

CPVs depends on the location of the foreground branch in the
tree (the closer to the root, the less CPV computations are

required).

2 IMPROVEMENTS

Here we discuss optimization techniques that we propose. Note
that we have not added any heuristics, and each of the following

improvements is supposed to be beneficial independent of the

number of species and independent of the number of alignment

sites. Specific implementation issues are described along with

each optimization technique.

2.1 Sequential improvements

2.1.1 Subtrees reuse The per-site likelihoods for a MSA are

independent of each other and can thus be computed in an ar-

bitrary order. If two or more sites of the MSA are identical, it
suffices to only compute the logarithmic likelihood (lnL) on one

site and multiply it by the number of identical sites to obtain the

total lnL. This technique is used in most likelihood-based soft-

ware, but there are further redundant computations caused by

re-occurring patterns in the MSA.
In each subtree, there is a potential to economize CPV com-

putations for different sites of the MSA. If the same state appears

at two or more sites of a sequence, all occurrences yield identical
CPVs at the particular leaf. If the patterns of the sub-alignment

induced by a subtree match are identical for two or more sites,

the corresponding CPVs for the two sites are also identical.

However, identical patterns in the sub-alignments induced by a

subtree need to be identified first. The identification of such

identical patterns in sub-alignments can be done, e.g. by search-

ing (i) sequentially or (ii) using a symbol table (Sedgewick and
Wayne, 2011, p.361). In the latter case, the key is the index of the

CPV within the tree, and the value associated with the key is its

CPV. In the straightforward approach (i), there are no costs on

storing values, but up to m – 1 lookups for a matching subpat-

tern, where m is the length of the MSA. For huge MSAs, it may

Fig. 1. Analysis on how many elementary subtree computations are ne-

cessary in the branch-site model; CPVm correspond to m distinct condi-

tional probability vectors, where matching m need to be computed only

once; Q 0, 1, 2f g identify three distinct Q matrices for distinct ! 0, 1, 2f g

values
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be advantageous to implement the second approach, where the

additional cost for storing or linking site patterns is compensated

by a faster lookup. In FastCodeML, we identify reusable subtree

patterns in a preprocessing step and tag each node with the

codon sequence identified by the subtree rooted in this node.

Subsequently, a lookup of these tags for all sites with identical

subtrees is done. Once identified, the CPV that can be re-used is

linked via a pointer in the reusing tree, that is, this saves the costs

of computing this particular CPV. The unused subtree can be

freed to reduce memory consumption. In the example of

Figure 2, computing the two CPVs incident to two leaves in

box ‹ and the CPV at › are redundant, because both codon

sites feature an identical subtree: all involved CPVs match. Thus

three CPV computations can be saved.
Related techniques for extending pattern detection and re-use

in the MSA to the subtree level have already been proposed

(Izquierdo-Carrasco et al., 2011; Stamatakis et al., 2002;

Sumner and Charleston, 2010). However, they focus on detecting

patterns and avoiding redundant likelihood computations on

trees whose topologies change in the course of ML tree search.

For dynamically changing trees, a trade-off between the pattern

detection and memory storage costs and the amount of saved

computations needs to be achieved. To reduce the cost of pattern

detection, the initial implementation of the Subtree Equality

Vector (SEV) technique (Stamatakis et al., 2002) only considered

subtree patterns that contained a single identical character. The

book keeping was subsequently further simplified to sites con-

sisting entirely of gaps (Izquierdo-Carrasco et al., 2011). In

Kosakovsky Pond and Muse (2004), the authors suggest to

sort nucleotide-based MSAs by site similarity to avoid redundant

computations. This approach minimizes memory consumption,

as only a subset of sites needs to be kept in memory. However,

this incurs additional costs for rearranging the sites in order

to maximize the number of lookups from neighboring sites.

The memory consumption for our application scenario

(Selectome database updates) does not represent a limiting

factor. Hence, all CPVs can be kept in memory, avoiding the

expensive reordering of sites. However, especially for memory-

intensive approaches, it may be more effective to keep only a

subset of all CPVs in memory and consider site sorting.

2.1.2 New matrix exponential and CPV computation In
Schabauer et al. (2012), we transformed the problem of comput-

ing the matrix exponential of non-symmetricQt into a symmetric

problem as follows: we define the symmetric matrix A :¼ �
1
2S�

1
2

and compute its eigendecomposition A ¼ X�X>. By introducing

Y :¼ Xe�t=2, the matrix exponential of Qt becomes

eQt ¼ ��
1
2YY>�

1
2.

An additional modification transforms the final asymmetric

matrix–vector multiplication eQtw into a symmetric matrix–

vector product:

w0 ¼ eQtw ¼ ŶŶ>ð�wÞ, ð1Þ

whereŶ ¼ ��1=2Xe�t=2: ð2Þ

Note that ŶŶ> is by construction a symmetric matrix, whereas

��1=2YY>�1=2 is generally asymmetric. The advantage of this

modification is that the symmetry reduces the number of neces-

sary matrix memory accesses by approx. 50% (Golub and Van

Loan, 2013, p.18). This technique has been implemented in

FastCodeML.

2.1.3 LRT optimization When optimizing parameter values for

H0 and H1 one after the other, one can save on parameter opti-

mization steps. Each step in the parameter optimization proced-

ure improves the associated lnL of the tree until convergence has

been reached. In this discussion, the optimizer may modify all

parameter values at each single step. One can either (i) optimize

H0 first with high accuracy and iteratively improve H1 after-

wards: once 2ðlnLðH1Þ � lnLðH0ÞÞ becomes larger than

ð�21Þ
�1
ð1� �Þ, the parameter optimization for H1 can be stopped

because the LRT is already significant. This potentially saves

optimization steps for H1. Or we can (ii) optimize H1 first,

then proceed analogously: the parameters of H0 are optimized

until 2ðlnLðH1Þ � lnLðH0ÞÞ becomes smaller than ð�21Þ
�1
ð1� �Þ.

In general, a significant LRT (i.e. detecting positive selection) is

a relatively rare event (Kosiol et al., 2008; Studer et al., 2008).

Strategy (i) saves optimization steps if positive selection occurs;

strategy (ii) saves optimization steps if not. Consequently, with-

out prior knowledge of the frequency of occurrence of positive

selection in the MSA at hand, strategy (ii) (implemented in

FastCodeML) will yield larger savings. If the LRT is significant,

a BEB is applied to identify the sites under positive selection.

Otherwise, FastCodeML does not execute the BEB, in contrast

to CodeML. In the general case, this optimization is applicable if

different models are compared, where each of them is optimized

iteratively.

(a)

(b)

Fig. 2. Subtrees reuse strategy depicted for two (not necessarily neighbor-

ing) sites in the MSA; in (a) subtree (1) contains identical codons for both

sites; consequently, in (b) the CPVs for both sites are identical and need to

be computed only once (dotted line)
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2.2 Parallelization

While the parallelization of ML-based nucleotide- protein- and

codon models has already been addressed (Stamatakis, 2011)

(e.g. RAxML, IQPNNI, HyPhy), it has mostly been in the con-

text of tree topology optimization, and not for the likelihood

itself. The main challenge in parallelizing ML-based phylogeny
computations comes from the tree structure that leads to an ir-

regular domain decomposition (Tomko, 1995). An efficient par-

allelization of the BSM is even more challenging due to its site

classes and dependencies in between.
Our implementation optimizes simultaneously all the param-

eters. The maximizer acts as an impenetrable boundary for par-

allelization, and we distinguish parallelization ‘above’ (coarse-
grain) and ‘within’ (fine-grain) this boundary (cf. supplementary

material, Fig. 1).

2.2.1 Coarse-grain parallelization: Gene-wise parallelization.
Because distinct genes typically have different evolutionary his-

tories with distinct branch lengths and evolutionary parameters,

phylogenies for genes are commonly estimated independently for

each gene. Consequently, single genes cannot be concatenated

into multi-gene alignments to attain high scalability by means
of a fine-grain parallelization of the likelihood function [see, e.g.

(Stamatakis and Ott, 2009)]. Here we test for selection independ-

ently (gene-wise), these analyses can be carried out in an embar-

rassingly parallel way [see, e.g. (Foster, 1995, p.21)].
Foreground branch parallelization. A further BSM paralleliza-

tion option is the simultaneous analysis of distinct foreground

branches. This is possible because we want to test for positive

selection on each branch of a given phylogeny. Thus, the 2n� 3
tests for positive selection, where n is the number of taxa, can be

conducted in parallel by duplicating the tree data structure and

CPVs.
Under this parallelization strategy, a dedicated master process

broadcasts all model parameters, tree topologies and branch

lengths to all worker nodes. The workers then conduct the

tests independently of each other on different foreground

branches of the same tree. Afterwards, the worker nodes return
the estimated parameter values and the lnL scores to the master

process. We implemented this approach using MPI (Message

Passing Interface Forum, 1994). The foreground-branch based

parallelization can be combined with a site-wise fine-grain par-

allelization of the per-tree likelihood computations (Section
2.2.2) into a hybrid parallelization scheme.

Hypotheses parallelization. Note that for each foreground

branch, hypotheses H0 and H1 can be computed independently
and simultaneously, thus increasing the degree of parallelism.

However, the simultaneous computation of H0 and H1 prevents

us from using the aforementioned LRT optimization (Section

2.1.3). Although the LRT and the subsequent BEB must be

computed after H0 and H1, they can be parallelized between
different foreground branch computations. This parallelization

strategy can be applied whenever two evolutionary models are

compared. It is implemented in FastCodeML via the same

master-worker scheme.

2.2.2 Fine-grain parallelization: Site-wise parallelization. A
common way to parallelize likelihood computations on shared

memory architectures is by parallelizing over the sites of the

MSA. This site-wise parallelization can be implemented using

OpenMP or POSIX Threads. MPI-based implementations exist

but focus on large MSAs that are outside the scope of this article.

However, while our subtree patterns re-use scheme (Section

2.1.1) reduces the number of computations along the branches,

it poses a load balance challenge: (i) a particular CPV for a site

can only be computed after the site whose results it reuses (i.e.
data dependency) has been computed and (ii) a site that reuses a

previously computed CPV exhibits a smaller workload which

leads to load imbalance.

The load balancing strategy we use in FastCodeML subdivides

the alignment sites into groups such that each group exclusively

reuses subtrees from the previous groups (Fig. 3). Each group is
assigned a rank value starting from zero. CPVs from groups with

lower rank values can potentially be reused. The first group does

not reuse any subtree. All subtrees of a group can be parallelized,

because they are independent of each other. The groups are then

computed sequentially in order of rank. To balance the load for

each group, subtrees can be moved to higher ranked groups. To

increase parallelism, the trees of each group are replicated for

each site class that should be computed until no lower rank

group depends on it. The parallelization inside each group has

been implemented using OpenMP.
This site-wise parallelization strategy including load balancing

can likewise be applied to nucleotide- or protein-based MSAs.

The parallel performance may vary due to different computa-

tional load per site.

2.3 Implementation

FastCodeML has been implemented from scratch (except for the

BEB that was largely taken from the CodeML codebase) in ISO

Cþþ 2003 utilizing BLAS and LAPACK for linear algebra op-

erations, and Spirit (http://www.boost.org/doc/libs/release/libs/

spirit/) for tree parsing. We use the parameter optimization code-

base of CodeML.

3 EVALUATION

We measure median runtimes of 10 individual runs for each

evaluation (three on the large scale analysis in Section 3.5).

Speedup values are determined by S ¼ T1

T2
, where T1 is the

Fig. 3. Load balancing strategy: the sites of the tree are grouped so that

each group depends only on groups at its left (continuous lines). A tree

can be moved to a group to its right (dashed line) only if it has no

dependencies from other trees in intermediate groups
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runtime (elapsed time, wall-clock time) of the reference execution

and T2 the runtime of the execution to be evaluated on the same

dataset; for a relative speedup T1 and T2 denominate runtimes of

the same executable, while for the absolute speedup T1 is strictly

the original CodeML. Initial branch lengths were read from file,

while model parameters are initialized randomly. Memory con-

sumption of CodeML, SlimCodeML and FastCodeML for these

datasets is not a limiting factor and therefore not performance

critical. Although a single executable can be used for all subse-

quent evaluations, we built sequential, OpenMP parallelized,

MPI parallelized and hybrid executables separately. A summary

of the platforms used can be found in the supplementary

material.

3.1 Datasets

Table 1 contains the six datasets we used for evaluation. With

respect to the Selectome database, these empirical datasets are

representative for the cases: (D1) small number of species/

medium sequence length; (D2) small number of species/large se-

quence length; (D3) medium number of species/small sequence

length; (D4) large number of species/short sequence length; (D5)

a simulated dataset with positive selection based on dataset D1

(using PAML’s evolver choosing ‘evolverNSbranchsites’ for the

BSM with !2 ¼ 5). Finally, we analyse in D6 a very large rbcL

dataset (Grass Phylogeny Working Group II, 2012) which

cannot be processed in a feasible time by CodeML.

3.2 Accuracy

In Table 2 we analyse the accuracy of FastCodeml with respect

to lnLs and LRT scores. We use SlimCodeML as a proxy for

good accuracy, as it gives very similar results as CodeML

(Schabauer et al., 2012), which is the established gold standard.

We note that the accuracy of computed lnLs is much higher than

typically required to discriminate between significant and insig-

nificant LRTs.

3.3 Sequential runtimes

Sequential speedups of FastCodeML (single-threaded) versus

CodeML and SlimCodeML for five datasets (H0 and H1, re-

spectively) on platform Macpro (cf. supplementary material)

are depicted in Figure 4; here, FastCodeML includes the follow-

ing improvements: faster matrix exponentiation (Section 2.1.2)

and subtrees reuse (Section 2.1.1). LRT optimization (Section

2.1.3) is not considered, as either H0 or H1 is computed per

run. We observe speedups of FastCodeML versus CodeML

ranging from 2.6 to 5.8. The sequential FastCodeML is signifi-

cantly faster than both CodeML and SlimCodeML on all five

datasets.

3.4 Parallel runtimes

3.4.1 Site-wise parallelization Figure 5 shows the scaling of

FastCodeML on a site-wise (OpenMP based) parallelization

Table 2. Accuracy of SlimCodeML and FastCodeml on Macpro; �H0ðH1Þ is the absolute difference of lnLs comparing either SlimCodeML or

FastCodeML with CodeML on H0 (H1), respectively

Dataset �H0
�H1

LRT pos. selection

SlimCode versus CodeML D1 1:5 � 10�5 3:5 � 10�6 5:4 � 10�5 no (3)

D2 3:5 � 10�1 5:7 � 10�2 7 � 10�1 no (3)

D3 7:8 � 10�6 9:9 � 10�3 2:2 � 10�5 no (3)

D4 9:1 � 10�8 9:6 � 10�7 2:3 � 10�6 no (3)

D5 8:5 � 10�10 6:8 � 10�11 10.4 site 239 (3)

FastCodeML versus CodeML D1 1:1 � 10�2 4:5 � 10�6 �2:1 � 10�2 no (3)

D2 3:4 � 10�1 2:8 � 10�2 �5:1 � 10�1 no (3)

D3 2:2 � 10�2 2:1 � 10�3 �3:9 � 10�2 no (3)

D4 1:5 � 10�6 1:2 � 10�6 �4:5 � 10�9 no (3)

D5 4:9 � 10�10 1:6 � 10�9 10.4 site 239 (3)

Note: ‘3’ indicates agreement of the computed result with CodeML.

Table 1. Test datasets of our analyses; remaining branches is the percentage of non-redundant branches for the given data over all sites of the alignment;

dataset D5 is generated based on ENSGT00390000016702.Primates.1 with !2 ¼ 5

Abbr. Full name No. of species No. of branches Remaining branches [%] Length (codons)

D1 ENSGT00390000016702.Primates.1 7 12 37.74 299

D2 ENSGT00530000063518.Primates.1 95 188 75.49 39

D3 ENSGT00550000073950.Euteleostomi.7 25 48 56.31 67

D4 ENSGT00580000081590.Primates.1 6 10 20.92 5004

D5 Generated by evolver (PAML) 7 12 38.04 282

D6 Grass_rbcL 506 1242 19.54 414
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strategy for dataset D2 on 1–12 CPU cores (one thread per core);

we observe relative speedups comparing FastCodeML in 1 . . . n

versus 1 threads, reaching 11.1 for 12 cores without subtrees

reuse, and speedups up to 7.6 for 12 cores with subtrees reuse.

These relative speedups correspond to absolute speedups versus

CodeML of up to 23.4 without subtrees reuse, and speedups up

to 19.9 with subtrees reuse. While scaling of subtrees reuse is

slightly worse than without subtrees reuse, absolute runtimes

on this particular platform and dataset suggest to enable subtrees

reuse on 1–11 cores but not on 12. The worse scaling of subtrees

reuse is presumably caused by load imbalance. Due to differences

in the sequential performance of subtrees reuse, we also expect

the performance of parallel subtrees reuse to vary with different

datasets. In general, the effectiveness of parallel subtrees reuse is

a trade-off between the number of redundant branches versus the

data dependencies introduced.

3.4.2 Foreground branch-based parallelization Figure 6 depicts

the relative scaling of FastCodeML on a foreground-branch

based parallelization strategy. The evaluation has been done
for dataset D3 on 1–7 worker nodes (single thread per node).

Due to the master–worker scheme used, performance gains are

observed for two or more worker nodes. The analysis is done for

all possible 22 foreground branches, where the runtime for

CodeML is measured only on a single foreground branch but

multiplied by 22; running CodeML on all foreground branches is

expected to consume more than a day. We observe relative

speedups of up to 5.9 on 7 worker nodes, which corresponds

to absolute speedups from 3.3 to 19.4. In general, the relative

speedup for foreground branch-based parallelizations benefits

from a high ratio of foreground branches to available nodes,

as the workload can more easily be divided into balanced parts.

3.4.3 Hybrid parallelization Figure 7 depicts absolute scaling of

FastCodeML on a hybrid (foreground branch and site-wise) par-

allelization strategy implemented using OpenMP and MPI on

1–7 worker nodes, where all 12 CPU cores are used.
Corresponding runtimes, relative and absolute speedup values

are summarized in Table 3. We observe relative speedups up to

6.3 on 7 worker nodes, which corresponds to absolute speedups

up to 170.9.

3.5 Large scale analysis

A large scale analysis has been conducted to prove the use of

FastCodeML beyond the capabilities of CodeML. In initial tests,

we verified that dataset D6 achieves its best runtime performance

on platform Castor (cf. supplementary material) by using all 12
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Linear (hypothetical) speedup
Relative speedup FastCodeML

Scaling foreground-branch based parallelisation

Worker nodes

S
p
ee

d
u
p

7654321

7

6

5

4

3

2

1

Fig. 6. Parallel foreground branch (MPI based) relative speedups of

FastCodeML for dataset D3 on Castor for H1; only a single CPU core

per node was used

FastCodeML vs. SlimCodeML (H1)
FastCodeML vs. SlimCodeML (H0)

FastCodeML vs. CodeML (H1)
FastCodeML vs. CodeML (H0)

Sequential overall speedups

Dataset

S
p
ee

d
u
p

D5D4D3D2D1

9

8

7

6

5

4

3

2

1

Fig. 4. Sequential speedups of FastCodeML in comparison with

CodeML and SlimCodeML on Macpro for H0 and H1, respectively

1135

FastCodeML

vs.
vs.
 to 
branch 
parallelisation
parallelisation 
 to
-
2 
-
parallelisations 
-
parallelisation
-
parallelisation 
 to 
summarised 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt760/-/DC1


available cores per node and by reusing subtrees (Section 2.1.1).

We analysed D6 for H0 and H1 running FastCodeML (multi-

threading) on 12 CPU cores and determined average runtimes of

three test runs. The average runtime of FastCodeML on dataset

D6 is 21.9 h forH0 and 31.9h forH1. Due to time restrictions, we

evaluated only a single iteration of CodeML for D6 which took

2.2h on H0 (367 iteration steps) and 2.3h on H1 (426 iteration

steps) on the same platform. As we apply the same parameter

optimization codes, we use the average number of optimization

steps of FastCodeML on dataset D6 for the following speedup

metric: we extrapolate that CodeML would have finished execut-

ing in approximately 2:2� 367 ¼ 807:4 h (i.e. ca. 33.6 days) for

H0 and 2:3� 426 ¼ 979:8 h (i.e. ca. 40.8 days) for H1. The esti-

mated speedups comparing the single threaded CodeML with

FastCodeML running in 12 threads is thus 36.9 for H0 and

30.7 for H1. In this example, the LRT optimization saves 268

optimization steps for H1 (63%).

4 CONCLUSIONS

We introduced here three sequential code optimizations: an im-

proved matrix exponential, subtrees reuse and LRT optimization.

We observed significant speedups versus both CodeML and our
previous version SlimCodeML, and the first two optimizations

can be used in various likelihood computations in phylogenetics.
Moreover, we present a parallelization strategy that uses a fine-

grain and a coarse-grain approach. Overall, our improvements
allow for testing selection on phylogenetic trees which exceed

the possibilities of the original CodeML software; this is crucial

to tackle the genomic data avalanche. The discussed improve-
ments are motivated by the branch-site model but can, due to

the likelihood framework, be extended to nucleotide- and amino
acid-based MSAs as well as Bayesian approaches. We briefly

identified such opportunities where applicable, but an extensive

discussion is subject to future work.
The optimization of the likelihood surface for phylogenetics

problems is complex and we have started experimenting with the

alternative parameter optimizers available in NLopt (http://ab-

initio.mit.edu/wiki/index.php/NLopt). It may be interesting to
compare different implementations of the Broyden–Fletcher–

Goldfard–Shanno (BFGS) optimization method, but a deeper
investigation of the global and derivative-free optimizers is

needed to better understand the potential solutions to find the

maximum likelihood estimator for complex evolutionary models.
In a future version the dependencies between nodes could be

modelled as a directed acyclic graph and the parallelism be based

on a dataflow model (YarKhan et al., 2011) to study and poten-

tially further improve parallel performance. Moreover, the site
classes could be included into the dependency graph. This way a

more fine-grained parallelism could be achieved. Increasing the
parallel performance becomes crucial with the trend of more

parallelism in future computer platforms (Dongarra, 2012).
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