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Macroautophagy (henceforth autophagy) an evolutionary conserved intracellular pathway,
involves lysosomal degradation of damaged and superfluous cytosolic contents to
maintain cellular homeostasis. While autophagy was initially perceived as a bulk
degradation process, a surfeit of studies in the last 2 decades has revealed that it can
also be selective in choosing intracellular constituents for degradation. In addition to the
core autophagy machinery, these selective autophagy pathways comprise of distinct
molecular players that are involved in the capture of specific cargoes. The diverse
organelles that are degraded by selective autophagy pathways are endoplasmic
reticulum (ERphagy), lysosomes (lysophagy), mitochondria (mitophagy), Golgi
apparatus (Golgiphagy), peroxisomes (pexophagy) and nucleus (nucleophagy). Among
these, the main focus of this review is on the selective autophagic pathway involved in
mitochondrial turnover called mitophagy. The mitophagy pathway encompasses diverse
mechanisms involving a complex interplay of a multitude of proteins that confers the
selective recognition of damaged mitochondria and their targeting to degradation via
autophagy. Mitophagy is triggered by cues that signal the mitochondrial damage such as
disturbances in mitochondrial fission-fusion dynamics, mitochondrial membrane
depolarisation, enhanced ROS production, mtDNA damage as well as developmental
cues such as erythrocyte maturation, removal of paternal mitochondria, cardiomyocyte
maturation and somatic cell reprogramming. As research on the mechanistic aspects of
this complex pathway is progressing, emerging roles of new players such as the NIPSNAP
proteins, Miro proteins and ER-Mitochondria contact sites (ERMES) are being explored.
Although diverse aspects of this pathway are being investigated in depth, several
outstanding questions such as distinct molecular players of basal mitophagy, selective
dominance of a particular mitophagy adapter protein over the other in a given physiological
condition, molecular mechanism of how specific disease mutations affect this pathway
remain to be addressed. In this review, we aim to give an overview with special emphasis
on molecular and signalling pathways of mitophagy and its dysregulation in
neurodegenerative disorders.
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INTRODUCTION

Mitochondria are highly dynamic intracellular organelles that
maintain cellular homeostasis by coordinating a myriad of
functions such as ATP generation, regulation of cell death,
maintenance of calcium homeostasis, lipid and carbohydrate
metabolism, and intracellular signalling (Friedman and
Nunnari 2014). As these unique organelles determine cell fate
both in terms of survival and death, maintaining mitochondrial
homeostasis is very critical. Owing to their crucial role in a cell,
mitochondrial dysfunction is associated with many chronic
disorders some of which are neurodegeneration, aging,
cardiomyopathies and cancer (Murphy et al., 2016; Zong et al.,
2016; Johnson et al., 2021). Therefore, cells have evolved stringent
quality control mechanisms that function through a highly
orchestrated hierarchy, such as fission-fusion dynamics (Shah
et al., 2021), mitophagy (Onishi et al., 2021), mitochondrial
unfolded protein response (mitoUPR) (Shpilka and Haynes
2018), and mitochondrial derived vesicles (MDV) (Sugiura
et al., 2014) to maintain an optimal pool of healthy
mitochondria. In mitophagy, which is a specialised form of
selective macroautophagy, damaged mitochondria are engulfed
into a double-membrane vesicles called mitophagosomes and are
delivered to lysosomes for degradation. The pathway comprises
of complex interplay of diverse proteins, which recognise the
damaged mitochondria and selectively target them for
degradation via mitophagy. Through extensive research in the
past 2 decades, while intricate molecular details of this pathway
have been unravelled, several unanswered questions particularly
about the capture and delivery of damaged mitochondria to
lysosomes remain to be elucidated. In this review, we are
trying to focus on two major aspects regarding mitophagy
pathway, firstly the mechanisms through which lesser explored
molecular players aid in the completion of this pathway, and
secondly, the molecular details of how dysregulation in this
pathway contribute to pathological conditions such as
neurodegenerative disorders.

MOLECULAR PLAYERS GOVERNING
MITOCHONDRIAL ORGANELLE
DYNAMICS AND MITOPHAGY
Mitochondrial Dynamics and Mitophagy
Themorphological dynamics of the mitochondria are maintained
by interconnected processes that control the fission-fusion
dynamics enabling the organelle to respond to a plethora of
cellular stresses by rapid changes in their structure and function.
Anatomically, mitochondria form tubular structures that is
divided into outer mitochondrial membrane (OMM), inner
mitochondrial membrane (IMM), and intermembrane space
(Kühlbrandt 2015). Each of these membrane surfaces are
enriched with proteins that control its morphological
dynamics. One of the cellular strategies to combat
mitochondrial damage is to separate the damaged part of the
mitochondrion from its healthy counterparts. This is achieved
through mitochondrial fission, a process that can sever fragments

of damaged mitochondria which act as substrates for mitophagy.
Mitochondrial fusion on the other hand serves the purpose of
establishing and maintaining reticulate structures of the
organelle, wherein, at times, fusion of the impaired
mitochondria with healthy ones dilutes the enormity of
damage (Twig and Shirihai 2011). It is therefore believed that
fusion opposes the onset of mitophagy. In this section, we aim to
throw some light on the crosstalk between mitochondrial
membrane dynamics and mitophagy mediated by different
molecular players.

Mitochondrial Membrane Proteins
Fission of the mitochondrial network is primarily regulated by a
member of the dynamin superfamily of GTPases, known as
Dynamin Related Protein 1 (DRP1). DRP1 present in the
cytosol is recruited to the membrane of the mitochondria, by
the receptors present on the outer membrane surface where it
self-oligomerises into complexes that enhance its hydrolytic
activity (Losón et al., 2013). DRP1 assembles as a ring around
the mitochondrial tubule mediating its fission (Smirnova et al.,
2001). Mutations in DRP1 disrupts fission, enhancing the
elongation of mitochondrial network (Banerjee et al., 2021).
DRP1 null mutation in mice results in embryonic lethality
with severe neural and developmental defects (Ishihara et al.,
2009). In yeast, DRP1 homolog, Dnm1 (Mozdy et al., 2000) is
recruited to the OMM with the aid of accessory proteins, such as,
mitochondrial fission 1 protein (Fis1), CCR4-associated factor 4
(Caf4), and mitochondrial division protein 1 (Mdv1). In
mammals, DRP1 is docked onto the mitochondrial membrane
by Fis1, mitochondrial fission factor (Mff) (Gandre-Babbe and
van der Bliek 2008; Liu and Chan 2015), and mitochondrial
dynamics proteins of 49 kDa (MiD49), and 51 kDa (MiD51)
(Palmer et al., 2011; Palmer et al., 2011). Loss of these
receptors results in a reduction of DRP1 localisation on the
mitochondrial surface, impairing fission cycles of the organelle
(Losón et al., 2013). A recent study suggest the novel role of
MiD51 protein in mitophagy where the depletion of this protein
induces elongation of the mitochondrial network with enhanced
Parkin-dependent clearance of damaged mitochondria,
challenging the traditional convention that mitochondrial
fission precedes mitophagy (Xian and Liou 2019). In another
study, depletion of DRP1 along with Vacuolar Protein Sorting
protein 13D (VPS13D) in neuronal cells, resulted in the
accumulation of smaller mitochondrial fragments and larger
mitophagy stalled intermediates. They also reported
moonlighting functions of VPS13D in recruiting the
downstream autophagic pathway proteins in engulfing the
damaged mitochondria (Anding et al., 2018). Another fission-
promoting protein Fis1, initially identified in yeast indirectly
controls the mitochondrial fission rates by recruiting Dnm1
(DRP1 homologue in yeast cells) onto the OMM (Mozdy
et al., 2000). Fis1 is reported to promote mitochondrial fission
by interacting with the ER-mitochondria contact site proteins,
elevating the calcium influx levels in a DRP1 independent
manner (Iwasawa et al., 2011). It is also reported to
competitively bind and inhibit the activity of fusion proteins,
mitofusin1 (MFN1) and mitofusin2 (MFN2) (Yu-Jie Li et al.,
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2019). Although Fis1 is known to partake in mitochondrial
fission, its absence is reported to be dispensable for the fission
cycles, but studies from the Caenorhabditis elegansmodel system
suggest its role in the clearance of damaged mitochondria on
treatment with drugs that affect the function of mitochondria
(Shen et al., 2014). It was perceived that fission is an important
process that governs bothmitochondrial biogenesis and clearance
but a recent study reported differential localisation of
mitochondrial proteins on its membrane surface that enabled
scission and marked distinct fates of the mitochondrial
fragments. While the mid-zone division, mediated by DRP1
and Mff led to mitochondrial biogenesis, the end-zone fission
by DRP1 and Fis1 protein increased the contact of the
mitochondrial fragments with lysosomes, thereby marking it
for degradation (Kleele et al., 2021). This study also
strengthens the hypothesis of Fis1 protein bridging
mitochondrial fragmentation with mitophagy.

The fusion machinery is regulated by mitofusin proteins
(MFN1 and MFN2) on the outer mitochondrial membrane
and they also belong to a family of transmembrane GTPases.
MFN1, owing to its higher GTPase activity regulates
mitochondrial fusion and docking process much more
efficiently than MFN2 (Escobar-Henriques and Joaquim 2019).
MFN2 has received attention as an ER-mitochondria contact site
tether protein and is reported to get ubiquitinated during PTEN
induced kinase 1 (PINK1) - Parkin (PRKN) mediated mitophagy
followed by p97 mediated proteasomal degradation. MFN2
degradation thus disrupts ER-mitochondria contacts
promoting mitophagy (McLelland et al., 2018). It also recruits
Parkin onto damaged mitochondria as a consequence of PINK1
dependent phosphorylation (Chen et al., 2021). IMM fusion is
regulated by optic atrophy 1 (OPA1) which undergoes proteolytic
cleavage by two peptidases namely Overlapping activity with m-
AAA protease (OMA1) (Head et al., 2009), and YME1 like 1
(YME1L1) (Mishra et al., 2014) to produce long and short
transmembrane forms, i.e., l-OPA1 and s-OPA1 respectively.
l-OPA1, due to its low intrinsic hydrolytic activity works in
concert with cardiolipin (mitochondria specific lipid) (Ban
et al., 2018), and MFN1 (Song et al., 2009) to mediate fusion
of IMM. Interestingly, higher levels of s-OPA1, present on the
IMM, has been reported to inhibit fusion activity (Wang et al.,
2021).

Cytoskeletal Elements
Actin and Myosin Motor Proteins
Filamentous actin (F-actin) plays a critical role in maintaining the
morphological homeostasis of the organelle by aiding efficient
docking of DRP1 protein onto the mitochondrial membrane at
the time of fission (Hatch et al., 2016). DRP1 protein assembles
on the OMM and constricts the membrane to mediate fission, but
often, DRP1 oligomeric rings are smaller for constricting the
entire circumference of the mitochondrial membrane, and hence
a pre-constriction step is required. Pre-constriction of the
mitochondrial membrane before fission is a coordinated step
involving actin-associated proteins, F-actin and myosin motor
proteins (Hatch et al., 2016). An isoform of actin nucleator
protein formin, IFN2, is anchored on ER membranes and

polymerizes actin, thus driving ER membranes closer to the
mitochondria (Chakrabarti et al., 2018). This IFN2 mediated
actin polymerization is aided by myosin motor protein, NMIIA
(Kruppa and Buss 2021). Additionally, IFN2 also directly
interacts with another protein Spire1C that is localized on the
mitochondrial surface and promotes polymerization of actin
filaments (Manor et al., 2015). IFN2-Spire1C interaction
facilitates enwrapping of the ER tubules around mitochondria
facilitating the decrease of membrane circumference (Friedman
et al., 2011). Actin filaments on the mitochondria thus constrict
the mitochondrial membrane surface which thereby enhances the
docking of DRP1 protein onto the OMM, mediating fission. Also,
DRP1 activity is enhanced in the presence of F-actin as shown by
in vitro GTPase assay (Ji et al., 2015) suggesting that along with
driving the constriction of the mitochondria, filamentous actin
also primes DRP1 protein to form functional oligomers that
assemble on the OMM. Treating the cells with fragmentation-
inducing drugs such as carbonyl cyanide
m-chlorophenylhydrazone (CCCP) trigger actin filaments to
rapidly associate with mitochondrial fragments in an Actin
Related Protein 2/3 (Arp2/3) dependent manner (Sunan Li
et al., 2015). Another actin-associated protein, cofilin1, also
plays an integral role in maintaining mitochondrial
morphology and mitophagy. Knockdown of cofilin1 in mouse
embryonic fibroblasts (MEFs) resulted in fragmented
mitochondria with increased levels of DRP1 on OMM (Li
et al., 2018). Also, it was observed that the mitochondrial
morphology was restored in cofilin1-deficient MEFs upon
expression of a constitutive active cofilin1 mutant, but not
upon expression of a cofilin1 mutant that does not bind actin
(Rehklau et al., 2017). These results support a model wherein
cofilin dependent depolymerization of actin acts as a negative
regulator of mitochondrial scission by antagonizing with IFN2-
Spire1C mediated actin polymerization. In another report,
cofilin1 was observed to depolymerize F-actin filaments post
fission resulting in the disassembly of fission complex and
reduction of mitochondrial membrane potential that triggered
PINK1/Parkin dependent mitophagy (Li et al., 2018). Actin cages
around the damaged mitochondria also serve as platforms for the
growing phagophores, facilitating their capture (Kruppa and Buss
2018; Hsieh and Yang 2019). Additionally, Arp2/3 complex has
also been implicated in mitophagosome biogenesis and blocking
actin polymerisation using a Arp2/3 inhibitor led to the inhibition
of mitophagosome formation by probably reducing surface
accessibility for phagophore expansion (Hsieh and Yang 2019).

Together with actin, actin-associated motor proteins also play
a vital role in mitochondrial membrane morphology, anchorage,
docking and mitophagy. Myosin VI (MYO6), a unique
unconventional myosin, has binding sites for ubiquitin and
different autophagy adaptor proteins (de Jonge et al., 2019). It
is targeted to the surface of damaged mitochondria in a Parkin-
dependent manner, as a C431S mutation in the Parkin protein
diminishes MYO6 translocation onto the mitochondrial surface
(Kruppa et al., 2018). MYO6 thus forms a complex with Parkin
and is recruited to the surface of damaged mitochondria via its
ubiquitin binding ability. This recruitment enhances the assembly
of actin cages around the damaged mitochondria resulting in
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their “bite-sized” fragments. While these fragments are unable to
fuse back to the neighbouring healthy mitochondria, they
promote the assembly of the downstream autophagic
machinery leading to its engulfment (Kruppa and Buss 2021).
MYO6 through its interaction with translocase of the outer
membrane1 (TOM1) complex is also involved in
mitophagosome maturation by facilitating its fusion to
endosomes and subsequently to lysosomes (Tumbarello et al.,
2012; Hu et al., 2019). Non-muscular myosins, NMIIA, NMIIB,
and NMIIC, as previously discussed, accumulate at the site of
mitochondrial fission and mediate actin-dependent constriction
of the membrane (Korobova, Ramabhadran, and Higgs 2013;
Hatch et al., 2016; Yang and Svitkina 2019; Ji et al., 2015)
increasing assembly of DRP1 rings around the mitochondrial
filaments. A pathogenic mutation in NMIIC, known to be
associated with peripheral neuropathies, inhibited fission in a
dominant-negative manner (Almutawa et al., 2019). NMIIB is
reported to be involved in the pathogenesis of TAR DNA binding
protein 43 (TDP-43) associated neurodegeneration where its
knockdown led to mitochondrial accumulation with decreased
neuronal cell viability (Jun et al., 2020). Inhibition of myosin II
with blebbistatin or loss of NMIIA reduced mitochondrial fission
and mitophagy in cardiomyocytes after ischemia–reperfusion
injury (Korobova, Gauvin, and Higgs 2014; Kruppa and Buss
2021). Another unconventional myosin, myosin 19 (MYO19),
has received a lot of attention in recent years with respect to
mitophagy. MYO19 is a mitochondrial myosin that docks onto
the surface via its interaction with Mitochondrial Rho (Miro)
proteins (López-Doménech et al., 2018; Bocanegra et al., 2020) or
directly through its tail domain. It is involved in the docking and
anchorage of the organelle on actin filaments and proper
segregation of the mitochondria during cytokinesis (Shneyer
et al., 2016). Loss or overexpression of MYO19 results in the
aggregation of the mitochondria near the perinuclear region
indicating its role in the maintenance of mitochondrial
morphology and dynamics (Oeding et al., 2018).

Microtubules, Kinesins and Dyneins
Mitochondrial trafficking majorly occurs along microtubules.
Changes in the arrangement and post-translational
modifications (PTM’s) in microtubules impact mitochondrial
trafficking, positioning, and functionality inside a cell. A major
chunk of the mitochondrial motility is coordinated by the
microtubular tracks and hence any disturbances in its
assembly are manifested as perturbations in fission-fusion
dynamics (Ligon and Steward 2000). In Saccharomyces pombe,
depolymerisation of the microtubules resulted in enhanced
fragmentation of the mitochondria (Tianpeng Li et al., 2015;
Mehta et al., 2019). On the contrary, in the cells of Dictyostelium
discoideum, it led to a decrease in the rate of fission-fusion cycles
(Woods et al., 2016). The proteins associated with the
microtubules (MAPs) also modulate the organisation and
assembly of the organelle. A microtubule stabilising protein
Tau, when stably expressed, resulted in the perinuclear
aggregation of mitochondria and reduced their transport to
the cell periphery in chinese hamster ovary cells (CHO) and
differentiated neuroblastoma N2a cells (Ebneth et al., 1998). In

fission yeast, Schizosaccharomyces pombe, mitochondria were
found to be associated with the microtubules by a linker
protein, microtubule-mitochondria binding protein1 (Mmb1)
and its absence resulted in the fragmentation of the
mitochondria preceded by the dissociation of the organelle
from the track. This study also shows that the physical
association of the microtubular track with the mitochondria
impedes its scission by inhibiting the assembly of the fission-
related protein Dnm1 (DRP1 in mammals) onto the OMM
(Mehta et al., 2019). Ubiquitously expressed neuronal
homologue of microtubule-associated protein 1A and 1B,
MAP1S is reported to inter-bridge three components, the
microtubule, autophagic machinery by interacting with
microtubule-associated protein 1A/1B-light chain 3 (LC3), and
a Parkin interacting protein, leucine-rich PPR-motif containing
protein (LRPPRC) on mitochondria, to initiate mitophagosomal
biogenesis and transport (Xie et al., 2011). Mitochondria remain
anchored at the axonal endings by a microtubule-binding protein
syntaphilin (SNPH). Depletion of SNPH increased mitochondrial
mobility and decreased its density at the axons (Kang et al., 2008).
Release of SNPH from the damaged mitochondria enhanced their
retrograde motility and decreased its PRKN mediated
ubiquitination while overexpression of SNPH inhibited
mitophagy in neurons (Mei-Yao Lin et al., 2017). Dynein
carries the mitochondria in a retrograde fashion and has been
immensely explored for its role in mitochondrial trafficking in
neurons. Majority of dynein associated mutations affect the
overall retrograde transport in the cell. In zebrafish, mutation
affecting the function of dynactin subunit, actin related protein 11
(Arp11)/ACTR10 impaired the binding of dynein with the
mitochondria (Drerup et al., 2017). Similarly, Dynein
Cytoplasmic 1 Heavy Chain 1 (Dync1h1) mutation resulted in
the accumulation of damaged mitochondria in the perinuclear
region of fibroblasts (Eschbach et al., 2013). Defects in retrograde
axonal transport of aged mitochondria by dynein have been
observed to enhance its autophagic turnover at the axonal
endings (Pilling et al., 2006). The retrograde transport induced
by the binding of dynein motor protein to the mitochondria
enhances mitophagy in neurons (Han et al., 2020). Kinesin-1 is
the most documented motor protein driving the anterograde
movement of mitochondria in neuronal and cardiac cells (Pilling
et al., 2006). In vitro studies suggest a role of kinesin family
member 1B (KIF1B) protein in mitochondrial transportation
(Nangaku et al., 1994) and kinesin-like protein 6, KLP6, have
been reported to regulate mitochondrial dynamics and
movement (Tanaka et al., 2011). Trafficking Kinesin Proteins
(TRAK1 and TRAK2), which are mammalian homologues of
Milton in Drosophila melanogaster, act as motor adaptors linking
dynein and kinesin motor proteins to coordinate both
anterograde and retrograde movement of mitochondria
(Fransson et al., 2003; Glater et al., 2006; Brickley and
Stephenson 2011). While TRAK2 binds to dynein and hinders
its association with kinesin-1 motor protein promoting
mitochondrial trafficking in dendrites (van Spronsen et al.,
2013; Loss and Stephenson 2015), TRAK1 binds to both
dynein and kinesin motor proteins and mediates axonal
transport of mitochondria (Glater et al., 2006). Over the past
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FIGURE 1 | Mitochondrial fission-fusion dynamics and mitophagy. A healthy mitochondrion is endowed with proteins on its outer membrane such as SNPH,
MYO19, dynein-dynactin complex, MIRO-TRAK complex, kinesins, which enable efficient trafficking of the organelle on cytoskeletal tracks. Onset of mitochondrial
damage initiates constriction of mitochondrial membrane, wherein ER tightens around the mitochondrial filament mediated by IFN2, mitoSpire1C and NMIIA induced
actin polymerisation. This pre-constriction step results in the recruitment of DRP1 onto the mitochondrial membrane. A burst of actin polymerisation around the
damaged mitochondria is enhanced, resulting in its fragmentation from the healthy pool. Mitochondrial damage also leads to the localisation of PINK1-Parkin complex
onto OMM, initiating a feed forward loop leading to proteasomal degradation of many OMM proteins such as MIRO proteins and MFN2. Degradation of these proteins
results in the detachment of motor proteins and ER tethers. This process arrests trafficking of damaged mitochondria and also increases their distance from ER.
Additionally, it also prevents the fusion of damaged mitochondria to the healthy pool. Actin filamentation now completely cages the damaged mitochondria, recruiting
MYO6 which interacts with both ubiquitin and autophagy adaptor proteins. This whole cascade of events facilitates the engulfment of damaged mitochondria by
autophagic machinery resulting in the formation of a mitophagosome which would eventually fuse with lysosome.
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years, a growing body of evidence has dissected the role of
mitochondrial Rho (MIRO) GTPase proteins in mitochondrial
function, transport, and mitophagy. Miro proteins constitute a
family of atypical GTPases and have two EF-hand motifs, two
GTPase domains and a C- terminal tail domain that anchors the
protein onto theOMM(Fransson et al., 2003; Klosowiak et al., 2016).
Miro1/2 proteins interact with TRAK1/2 forming the Miro-TRAK
complex that is involved in the coordination of mitochondrial
motility on cytoskeletal tracks (Wang and Schwarz 2009; Schwarz
2013). Miro-mediated transport of mitochondria is also dependent
on its acetylation status, where Histone deacetylase 6 (HDAC6)
dependent acetylation at lys105 was observed to be critical for its
motility (Kalinski et al., 2019).

Mitophagy is triggered with the binding of PRKN to the OMM
and subsequent phosphorylation by PINK1 leading to its enhanced
activation, which in turn results in ubiquitination of mitochondrial
proteins on OMM by PRKN. PINK1 has also been reported to
phosphorylate Miro1/2 proteins which promotes PRKN-mediated
ubiquitination of the Miro complex followed by its proteasomal
degradation (Shlevkov et al., 2016; Safiulina et al., 2019).
Phosphorylation of Miro proteins by PINK1 at S156, T298, and
T299 positions serve as mitophagic signals, and each of these
residues have been demonstrated to differentially regulate
mitophagy (Wang et al., 2011). Phosphomimetic mutation at
S156 recruits PRKN but is insufficient to drive mitophagy while
phosphomimetic mutation at positions T298 and T299 inhibited
PRKNmediated ubiquitination and thus mitophagy (Shlevkov et al.,
2016). Loss of Miro proteins from OMM following its proteasomal
degradation resulted in the shedding of MYO19 and kinesin motor
proteins from OMM, arresting the motility of damaged
mitochondria (Oeding et al., 2018; Pickles et al. 2018). This line
of events arrests trafficking of damaged mitochondria enhancing
their isolation and triggering the downstream events which are
marked by “bursts of actin” filamentation-related processes
around the damaged mitochondrion. This also culminates to
enhance the local assembly of autophagic machinery resulting in
clearance (Figure 1) (Kruppa and Buss 2021).

A recently reported process known as “Mitocytosis”
characterised migrasome mediated removal of the damaged
mitochondria. Authors have observed accumulation of
damaged mitochondria inside migrasomes on inducing
mitochondrial stress. According to the study, damaged
mitochondria restricted their binding to dynein, hence
inhibiting their retrograde movement and enhancing its
peripheral localisation. Trafficking of damaged mitochondria
towards the plasma membrane by kinesin family member 1B
(KIF5B) and subsequent anchorage on the plasma membrane by
MYO19 motor protein along with the fission protein complex
orchestrated the efficient loading of damaged mitochondria into
the migrasomes. As the cell underwent migration, migrasomes
were shed off from the cell, thus also clearing the damaged
mitochondria that hitchhiked in it (Jiao et al., 2021).

Mitophagy Pathway
Mitophagy is a complex process wherein several protein
complexes are recruited onto the damaged mitochondrion in a
hierarchical manner targeting it for lysosomal degradation

mediated by the autophagic machinery. Different
mitochondrial stress signals such as hypoxia, membrane
depolarisation, ROS accumulation, mtDNA damage, activate
different pathways that flag the damaged mitochondria,
eventually resulting in their elimination through autophagy
pathway. Activation of these diverse pathways occurs as a
result of PINK1-Parkin dependent ubiquitination of
mitochondrial membrane proteins, ubiquitination independent
receptor mediated pathways (Figure 2A), or Syntaxin17 (STX17)
dependent mitophagy pathway.

Receptor-Mediated Mitophagy
In receptor-mediated mitophagy, mitochondrial damage triggers
interaction of mitochondrial membrane proteins with Atg8
family of proteins via their LC3 interacting regions (LIR
motifs), bringing autophagic machinery to the flagged site.
Mitophagy receptors like Atg32, BNIP3, BCL2L13, NIX,
FKBP8, FUNDC1, cardiolipin (Figure 2A), remain inactive
under steady-state levels and are activated by different PTMs
only on specific cues that trigger the mitochondrial damage.
Mitophagy in the budding yeast Saccharomyces cerevisiae is
induced when yeast cells are grown till their stationary phase,
or grown on non-fermentable carbon sources, or subjected to
nitrogen starvation (Kanki and Klionsky 2010; Aoki et al., 2011).
Through two different gene deletion screens, Atg32 was identified
as the key receptor for mitophagy as its deletion was reported to
abrogate the mitophagy pathway (Okamoto et al., 2009). On
induction of mitophagy, Atg32 tends to accumulate on the OMM
and is regulated by phosphorylation in its N-terminal domain at
serine residues 114 and 119. Phosphorylation of Atg32 governs its
interaction with Atg11 and Atg8 (Kanki et al., 2013; Aoki et al.,
2011). Mutations at phospho-sites tend to disrupt the interaction
between Atg32 and Atg11 and thus, Atg32-Atg11 axis is
considered vital for bringing the components of autophagy
machinery in close proximity, facilitating the process of
mitophagy in yeast cells (Aoki et al., 2011; Kanki et al., 2013).
Interestingly, functional homolog of Atg32, Bcl2-like protein 13
(BCL2L13), an OMM protein is also involved in maintaining the
dynamicity of the organelle (Murakawa et al., 2015). In
mammalian cells, BCL2L13 harbours two LIR regions and also
interacts with the Unc-51 like autophagy activating kinase
(ULK1) complex, and therefore might be involved in
recruiting different players of the autophagy pathway to the
site of mitochondrial damage (Murakawa et al., 2015). The
expression level of Bcl2/adenovirus E1B 19 kDa protein-
interacting protein 3 (BNIP3), an adapter for mitophagy, is
transcriptionally upregulated under hypoxic conditions
(Sowter et al., 2001; Chinnadurai, Vijayalingam, and Gibson
2008). While BNIP3 remains as an inactive monomer in the
cytoplasm, following the onset of mitochondrial stress, it forms a
stable homodimer anchoring itself on the OMM via its
C-terminal domain (Chinnadurai, Vijayalingam, and Gibson
2008). Phosphorylation of BNIP3 at Ser17 and Ser24, adjacent
to its LIR region promotes its binding to LC3 and mutations in its
LIR motif have been reported to reduce the mitophagic activity
inside cells (Zhu et al., 2013). NIX (also known as BNIP3L),
another mitophagy receptor, is also induced on hypoxic stress
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FIGURE 2 | Mitophagy pathway. (A) Recruitment of mitophagy related proteins on OMM. On mitochondrial insult, the damaged part of the mitochondrial
network undergoes autophagy mediated degradation. A damaged mitochondria recruits several proteins on their surface that interact with the autophagy machinery in
receptor dependent or PINK1-Parkin dependent manner. Hypoxia induces recruitment of BNIP3 which upon phosphorylation at its Ser17 and Ser24 interacts with Atg8
family of proteins. Nix interacts with LC3 upon phosphorylation at its Ser34 and Ser35 positions. FUNDC1 interacts with the autophagy proteins and this is
regulated by phosphorylation events at Ser13 by CK2 and Tyr18 by Src kinase. FKBP8 selectively interacts with LC3A. Mitochondrial damage results in phosphorylation

(Continued )
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and is involved in the removal of mitochondria from reticulocytes
during its maturation. It shows high sequence similarity to BNIP3
(Sowter et al., 2001) and undergoes homodimerization on
phosphorylation at Ser212 in its C-terminal end that enhances
the localisation of autophagic machinery onto damaged
mitochondria (Marinković et al., 2021). NIX can preferentially
bind to LC3A, LC3B, Gamma-aminobutyric acid receptor-
associated protein (GABARAP), Gamma-aminobutyric acid
receptor-associated protein-like 1 and 2 (GABARAP-L1 and
GABARAP-L2), and phosphorylation at Ser34 and Ser35 near
its LIR motif has been shown to enhance its association with Atg8
family of proteins (Rogov et al., 2017). During ROS induced
mitophagy, NIX also has been shown to associate in a complex
that contains Rheb (Ras homolog enriched in brain, a small
GTPase protein) and LC3 (Melser et al., 2013). Fun14 domain
containing 1 (FUNDC1), is another hypoxia-regulated OMM
receptor that is involved in mitophagy. The functionality of
FUNDC1 as a mitophagy receptor under hypoxic conditions is
regulated by phosphorylation-dephosphorylation events at
positions Ser13 and Tyr18, near its N-terminally located LIR
motif (Liu et al., 2012). Ser13 and Tyr18 are phosphorylated by
casein kinase 2 (CK2) and Src tyrosine kinases respectively.
Phosphorylation of Tyr18 by Src tyrosine kinase negatively
regulates its interaction with LC3. But under hypoxic
conditions, Src gets inactivated, resulting in reduced Tyr18
phosphorylation and relieving the negative regulatory effect on
mitophagy axis (Liu et al., 2012). On mitochondrial
depolarisation (CCCP treatment), FK506-binding protein 8
(FKBP8) through its N-terminally located LIR motif
specifically interacts with LC3A, promoting autophagy-
mediated degradation of mitochondria (Bhujabal et al.,
2017) (Figure 2A). A recent study by employing proximity
labelling based autophagosomal profiling had identified a
novel p62-LC3C dependent piecemeal mitophagy pathway
wherein LC3C was reported to mediate lysosomal
degradation of metaxin 1 (MTX1), and this pathway is
integral for maintaining mitochondrial dynamics at basal
conditions. While the mechanism of interaction of MTX1
with LC3C is not clear, the presence of a non-canonical LIR
motif in MTX1 and its involvement with p62 in this pathway
requires further experimentation (Le Guerroué et al., 2017). In
neuronal cells, upon mitochondrial depolarisation, the
phospholipid cardiolipin, present on IMM, is rerouted to
OMM. The cardiolipin present in OMM interacts with LC3
through LIR, thus recruiting the autophagic machinery,

resulting in the engulfment of depolarised mitochondria
(Chu et al., 2013).

PINK1-Parkin Dependent Mitophagy
PINK1-Parkin dependent mitophagy is the most well dissected
out pathway in the field of mitophagy. PINK1, under basal
conditions translocates to the mitochondria where it gets
imported into the intermembrane space and undergoes
degradation mediated by the proteasome and proteases
(Greene et al., 2012). Upon mitochondrial insult, the import
of PINK1 is prevented leading to its accumulation on OMM
(Narendra et al., 2008). Subsequently, PINK1 phosphorylates
Parkin, an E3 ubiquitin ligase of mitochondria at the Ser65
position in its ubiquitin-like domain (UBL) (Kondapalli et al.,
2012). This phosphorylation initiates a feed forward
amplification loop wherein more Parkin is recruited onto the
OMM (Ordureau et al., 2014). Apart from directly
phosphorylating Parkin, PINK1 also phosphorylates Ub chains
present on the OMM at Ser65, which further serves as a platform
for Parkin recruitment through direct binding (Kane et al., 2014;
Okatsu et al., 2018). The binding of Ub-pSer65 to the ring finger
protein 1 (RING1) domain of Parkin brings about a
conformation change resulting in its activation (Wauer et al.,
2015; Tang et al., 2017). It has also been reported that pSer65 Ub
chains are resistant to the activity of deubiquitinating enzymes
(DUBs) which in turn prolongs their lifespan on OMM and
upregulates the process of mitophagy (Huguenin-Dezot et al.,
2016; Gersch et al., 2017; Sato et al., 2017). Activated Parkin
ubiquitinates different proteins on the surface such as MFN2
(Tanaka et al., 2010), translocase of outer membrane 20 (TOM20)
(Yoshii et al., 2011), voltage-dependent anion channel (VDAC)
(Ham et al., 2020) and Miro (Liang et al., 2015) directing them to
proteasomal degradation (Figure 2A). Phosphorylation by
PINK1 and subsequent ubiquitination by Parkin paves way for
autophagy adaptor proteins and related machinery (discussed in
the upcoming sections) to initiate the autophagic engulfment
process. Several genetic screens have provided insights into the
regulation of PINK1-Parkin activity. A pooled genome-wide
CRISPR/Cas9 knockout screen identified THAP domain
containing 11 (THAP11) as a transcriptional repressor
negatively regulating abundance of Parkin and pSer65Ub on
mitophagic induction (Potting et al., 2018). Another
multidimensional CRISPR–Cas9 genetic screen identified
adenine nucleotide translocator (ANT) complex as a regulator
of PINK1 stabilisation on OMM during mitophagy. ANT

FIGURE 2 | of cardiolipin, that translocates from IMM to OMM and then interacts with autophagic machinery. AMBRA1 acts as amitophagy receptor and is regulated by
IKKαmediated phosphorylation. In yeast, binding of mitophagy receptor Atg32 with Atg11 and Atg8 is governed by phosphorylation at its Ser114 and Ser119 residues.
Initial phosphorylation of Parkin by PINK1 at Ser65 in its ubiquitin domain triggers a feedforward loop recruiting more Parkin onto OMM. Parkin then ubiquitinates various
OMM proteins such as MFN2, VDAC andMiro. This phosphorylation-ubiquitination mediated feed-forward loop amplifies the recruitment of different autophagy adaptor
proteins such as NDP52 and OPTN. The phosphorylation of OPTN and NDP52 is mediated by TBK1. NIPSNAP proteins accumulate on the damaged mitochondria in a
PINK1-Parkin dependent manner and recruit downstream autophagy proteins, promoting mitophagy. (B) Mitophagosome expansion and closure. Recruitment of
mitophagy related proteins on OMM initiates an interaction of the proteins with components of autophagic machinery. The autophagosome then expands around the
damaged mitochondria, engulfing them. This expansion is regulated by MONZ1-CCZ1 Rab GEF mediated Rab5 and Rab7 cycles. Phosphorylation Rab7 by TBK1
enhances its interaction with Atg9 vesicles. Mitochondrial GAPs, TBC1D15 and TBC1D17 functions downstream of Parkin and work in concert with FIS1 and LC3 to
recruit Rab7 onto the mitochondrial surface shaping mitophagosome. Atg9 and Rab cycles mediate expansion of mitophagosome. Subsequently, the closure of
mitophagosome is mediated by the ESCRT complex. Completely sealed mitophagosome then fuses with the lysosome facilitated by fusion proteins such as, PLEKHM1.
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complex was shown to have inhibitory effects on the pre-
sequence of translocase of inner mitochondrial membrane 23
(TIM23) that relays to stabilise PINK1 on OMM (Hoshino et al.,
2019). A siRNA screen combined with high-content microscopy
led to the identification of translocase of outer mitochondrial
membrane (TOMM7), Heat Shock Protein Family A (Hsp70)
Member 1 Like (HSPA1L), BAG Cochaperone 4 (BAG4), Siah E3
Ubiquitin Protein Ligase Family Member 3 (SIAH3) as upstream
regulators of PINK1-Parkin translocation on OMM following
mitochondrial insult (Hasson et al., 2013). Sterol regulatory
element binding transcription factor 1 (SREBF1), F-box and
WD40 domain protein 7 (FBXW7) and ATPase inhibitory
factor 1 (ATPIF1) were identified as positive regulators of
Parkin translocation during mitophagy from a genome-wide
RNAi screen (Lefebvre et al., 2013; Ivatt and Whitworth
2014). In another study, following mass spectrometric analysis
of Autophagy-Linked FYVE (ALFY) and p62 interactors, two
related proteins, NIPSNAP1 and NIPSNAP2 (4-
Nitrophenylphosphatase domain and non-neuronal SNAP25-
like protein homologs), were shown to accumulate on
mitochondrial membrane upon depolarisation and was
dependent on PINK1-Parkin localisation. They appear to have
redundant roles in mitophagy pathway as only double knock-out
of NIPSNAP1 and NIPSNAP2 in HeLa cells seem to abrogate
PINK1-Parkin dependent mitophagy. On accumulating on
damaged mitochondria, they act as “eat-me” signals, further
aiding in the recruitment of Atg8 family of proteins.
Interestingly, knockout of NIPSNAP1 affected mitophagy and
resulted in Parkinsonism in a zebrafish model (Abudu et al.,
2019).

STX17 Mediated Mitophagy
Molecular players of the mitophagy pathway have been dissected
out by the application of different mitochondrial stress signals
such as membrane depolarisation, ROS accumulation, hypoxic
conditions, and mtDNA damage (Williams and Ding 2018).
Recent evidence suggesting induction of mitophagy through
the STX17-Fis1 axis represents one such pathway wherein
mitophagy is observed without any ectopic stress signals.
OMM protein, Fis1, maintains the mitochondrial dynamics
and also prevents the translocation of STX17 from ER and
mitochondria-associated ER membranes (MAM) onto
mitochondria (Xian et al., 2019). Loss of Fis1 resulted in the
translocation of STX17 onto the mitochondrial surface wherein it
further signalled the hierarchical localisation of other proteins of
the macro-autophagic machinery such as ATG14, WD repeat
domain phosphoinositide-interacting protein 2 (WIPI2), zinc
finger FYVE-type containing 1 (ZFYVE1/DFCP1) to promote
autophagy-mediated engulfment of the mitochondria (Xian et al.,
2019).

Mitophagy Adaptors
Autophagy adaptors act as a bridge, linking the cargo destined for
degradation with autophagy-related proteins. Adaptor proteins
bind to the ubiquitinated cargo through their ubiquitin-binding
domains and also engage with Atg8 family of proteins via their
LIR motifs. Simultaneous genetic knockout of five autophagy

adaptor proteins, p62, Tax1-binding protein 1 (TAX1BP1),
Nuclear Dot Protein 52 kDa (NDP52), Neighbor of BRCA1
gene 1 (NBR1), and Optineurin (OPTN) by Richard Youle’s
group revealed insights into the contribution of each adaptor in
the mitophagy pathway. Through this study, it was reported that
PINK1 mediated phosphorylation of Ubiquitin at Ser65 results in
the recruitment of autophagic adaptors, OPTN and NDP52,
independent of Parkin (Lazarou et al., 2015; Padman et al.,
2019). While the role of adaptor proteins p62 and NBR1 was
reported to be dispensable, OPTN, and NDP52 act as upstream
receptors in the mitophagy pathway (Lazarou et al., 2015). The
recruitment of OPTN onto damaged mitochondria and its
binding with poly-Ub chains is regulated by phosphorylation
at three sites, S177 position adjacent to its LIR motif, S473, and
S513 position in its ubiquitin binding in ABIN and NEMO
(UBAN) domain by TANK binding kinase 1 (TBK1) (Heo
et al., 2015). NDP52 and OPTN have also been reported to
directly engage with autophagy machinery proteins such as focal
adhesion kinase family interacting protein of 200 kD (FIP200)
(Vargas et al., 2019; Zhou et al., 2021), and ATG9A vesicles
respectively (Yamano et al., 2020), thereby initiating the process
of mitophagy. Spatio-temporal imaging in neuronal cells showed
that on mitochondrial insult, fragmented mitochondria are
encapsulated by OPTN, followed by LC3 recruitment onto
them, but acidification of mitophagosomes is a comparatively
slower process and thus forms a rate-limiting step in neuronal
mitophagy (Evans and Holzbaur 2020) (Figure 2A).

Mitophagosome Elongation and Closure
The molecular players involved in regulating autophagosomal
expansion around damaged mitochondria is different as
compared to the canonical autophagy pathway. Endosomal
Rab proteins, Rab associated proteins and proteins of the
ESCRT machinery have been studied for their role in
mitophagosome expansion and closure. Two of the
mitochondrial GTPase activating proteins (GAPs), TBC1
domain family member 15 (TBC1D15) and TBC1 domain
family member 17 (TBC1D17) functioning downstream of
Parkin activation, work in concert with Fis1 and LC3 to
recruit Rab7 onto the mitochondrial surface shaping
mitophagosome during mitophagy (Yamano et al., 2014). It
was observed that absence of TBC1D15 results in the
accumulation of elongated mitophagosomes in cells, suggestive
of its role in mitophagosome expansion (Yamano et al., 2014;
Jimenez-Orgaz et al., 2018). Another CRISPR/Cas9 screen also
identified TBC1D15 as a part of the retromer complex acting
upstream of Rab7. TBC1D15 was also observed to help in
assembling of ATG9A tagged vesicles around the damaged
mitochondria facilitating mitophagy (Jimenez-Orgaz et al.,
2018). Additionally, phosphorylation of Rab7A at Ser72
promotes the recruitment of ATG9A vesicles around the
damaged mitochondria (Heo et al., 2018). Guanine nucleotide
exchange factors (GEFs) of Rab7A, monensin sensitivity protein 1
(MON1) and caffeine, calcium, and zinc 1 (CCZ1) act upstream
to Rab7 localisation and govern the assembly of Rab7A onto damaged
mitochondria in a Parkin dependent manner (Nordmann et al.,
2010). A recent study using proximity-biotinylation approach,
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identified C5orf51, a component of MON1-CCZ1 complex as a
positive regulator of Rab7A translocation to mitochondria upon
membrane depolarisation. C5orf51 was also identified in a
GWAS study pertaining to Alzheimer’s disease, therefore
highlighting the potential role of C5orf51 in Rab7A mediated
mitophagy (Yan et al., 2021). Depleting different subunits of the
ESCRT-III complex resulted in the inhibition of both Parkin
dependent and independent mitophagy. Knockdown of
CHarged Multivesicular body Protein 2A (CHMP2A) subunit
of ESCRT-III complex resulted in the accumulation of unsealed
mitophagosomes suggesting involvement of ESCRT complex
protein in the closure of mitophagosome (Zhen et al., 2020)
(Figure 2B).

Mitophagosome—Lysosome Fusion
Unlike the canonical autophagy pathway, wherein several of
the fusion machinery components such as SNAREs, Rabs
and HOPS complex proteins are involved in the fusion of
mature autophagosomes with the lysosomes (Nakamura and
Yoshimori 2017), the fusion of mitophagosome with lysosome
has been reported to require a different set of proteins.
Parkin dependent mitophagy relies on Pleckstrin homology
domain-containing family M member 1 (PLEKHM1) for the
fusion of mitophagosomes with lysosomes (McEwan et al.,
2015). PLEKHM1 has binding regions for several proteins
involved in autophagic fusion such as Rab7, HOPS and
Atg8 family of proteins (McEwan et al., 2015). PLEKHM1
is reported to preferentially interact with GABARAP to
facilitate the fusion with lysosome in a PINK1-Parkin
dependent manner (Nguyen et al., 2016) (Figure 2B).
Although extensive research to elucidate pathways on
receptor dependent and independent mitophagy is being
done, mechanisms governing mitophagosome expansion and
fusion especially in PINK1-Parkin independent mitophagy is
underexplored and therefore requires detailed mechanistic
dissection.

Post-Translational Modifications in
Mitophagy
Phosphorylation—Dephosphorylation Cascades
Phosphorylation and dephosphorylation of key mitochondrial
and mitophagy-related proteins constitute one of the most
important PTMs in the mitophagy pathway. The initial
phosphorylation of Parkin by PINK1 at Ser65 in its
ubiquitin domain triggers a feedforward loop recruiting
more Parkin from the cytosol onto the mitochondrial
surface (Ordureau et al., 2014; Harper et al., 2018) (as
mentioned in the above sections). Another important
mitophagy related kinase, TBK1, phosphorylates mitophagy
adaptors, OPTN and NDP52 (Heo et al., 2015).
Phosphorylation of OPTN at Ser177 facilitates its binding
with Atg8 family of proteins, while phosphorylation at Ser
residues 473 and 513 in its ubiquitin-binding region enhances
its binding with Ub chains (Heo et al., 2015; Moore and
Holzbaur 2016; Richter et al., 2016). TBK1 is also reported
to phosphorylate Rab7A, thus aiding in the expansion of

mitophagosome (Heo et al., 2018). ULK1, a key initiator
kinase in autophagy process, localises to depolarised
mitochondria. Interestingly, ectopic localisation of ULK1
complex on the mitochondrial surface was observed
sufficient to induce mitophagy (Padman et al., 2019; Vargas
et al., 2019). Leucine-rich repeat kinase 2 (LRRK2) and its
constitutively active mutant (G2019S) are closely associated
with Parkinson’s disease (PD). LRRK2 mediated
phosphorylation of mitochondrial proteins positively
regulates mitophagy. Onset of mitophagic cues triggers
LRRK2 mediated phosphorylation of Miro proteins
resulting in their removal from OMM, which arrests the
trafficking of damaged mitochondrion (Hsieh et al., 2016).
LRRK2 is also reported to phosphorylate Rab10 and OPTN
leading to their recruitment on OMM, enhancing mitophagy
(Wauters et al., 2020). Interestingly, overexpression of
constitutively active LRRK2 disrupted the recruitment of
Parkin and DRP1 onto OMM, thus inhibiting PINK1-
Parkin mediated mitophagy (Bonello et al., 2019). Upon
phosphorylation by IκB kinase α (IKKα), Autophagy and
Beclin 1 Regulator 1 (AMBRA1) functions as a mitophagy
receptor facilitating its interaction with Atg8 family of
proteins, thereby, promoting mitophagy (Di Rita et al.,
2018). Phosphorylation of Atg32 at Ser114 and Ser119
positions is mediated by CK2, and any impairment in its
kinase activity is reported to suppress the interaction
between Atg32 and Atg11, disrupting the mitophagy
pathway (Kanki et al., 2013). Dephosphorylation mediated
by different phosphatases counteract the effects of
phosphorylation in mitophagy. Since, phosphorylation of
Rab7A is an important event in mediating mitophagy, its
dephosphorylation by PTEN (Phosphatase and Tensin
homolog deleted on chromosome 10) might negatively
regulate the process (Shinde and Maddika 2016). An
isoform of PTEN, PTENL is involved in the
dephosphorylation of Ub chains of Parkin, thereby reducing
its translocation onto mitochondrial surface and suppressing
mitophagy (Liang et al., 2015). Upon mitophagic induction,
phosphoglycerate mutase family member 5 (PGAM5),
dephosphorylates FUNDC1 which increases mitochondrial
fragmentation through its interaction with DRP1 in a
STX17 dependent manner (Sugo et al., 2018). Ppg1, a
protein phosphatase 2A (PP2A)-like protein acting in
concert with FAR complex proteins negatively regulate
mitophagy by dephosphorylating Atg32, the mitophagy
receptor in yeast cells (Furukawa et al., 2018).

Ubiquitination—Deubiquitination Cascades
Parkin has garnered a lot of attention and is one the most
studied E3 ubiquitin ligases in the field of mitophagy. Parkin
forms multiple Ub linkages such as poly-K6, -K11, -K48, and
-K63 on its substrates including itself. K6 and K63 Ub linkages
hold importance in mitophagy pathway in comparison to
others as evidenced through Ub-replacement system based
experimental studies (Ordureau et al., 2015). Mitochondrial
ubiquitin ligase activator of NFKB 1 (MUL1), a E3 ubiquitin
ligase is known to positively regulate mitophagy through
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ubiquitination of MFN1 and MFN2 (Yun et al., 2014). The
membrane-associated RING-CH-type finger (MARCH5),
another ubiquitin ligase, appears to have contrasting roles
in mitophagy. Initial recruitment and activation of Parkin
onto damaged mitochondria requires ubiquitination by
MARCH5 (Koyano et al., 2019b), while on the other hand,
it fine-tunes hypoxia induced mitophagy by ubiquitinating
FUNDC1 receptor on OMM. This enhances its proteolytic
degradation preventing exacerbated effects of mitophagy
during hypoxia (Chen et al., 2017). Interestingly,
ubiquitination of MARCH5 at lysine residue 268 by Parkin
upon mitochondrial damage resulted in the extraction and
subsequent translocation of MARCH5 from the damaged
mitochondrion to peroxisomes. The extraction and
translocation of MARCH5 is mediated by p97 and
peroxisomal biogenesis factors 3 and 16 (Pex3 and Pex16).
MARCH5 is a mitochondrion associated ubiquitin ligase, and
this process thus aids MARCH5 to escape the amplified
degradation of OMM proteins following mitochondrial
damage (Koyano et al., 2019a). F-box only protein 7
(FBXO7) is reported to target TOM20, an outer
mitochondrial membrane protein, promoting mitophagy
(Teixeira et al., 2016) and has been reported to positively
upregulate the mitophagy pathway by interacting with Parkin
(Burchell et al., 2013). HECT, UBA and WWE domain
containing E3 ubiquitin protein ligase 1 (HUWE1), like
Parkin can ubiquitinate multiple Ub linkages and activate
Parkin independent mitophagy pathway by inducing IKKα
mediated phosphorylation at Ser1014 that subsequently
activates AMBRA1 to interact with Atg8 family of proteins
(Di Rita et al., 2018). Deubiquitination of Ub chains is achieved
by the action of DUBs. USP30, USP8, USP13 and USP15 are
some of the DUBs that have been studied for their role in
mitophagy. Since DUBs antagonise the action of E3 ligases, it
generally negatively regulates the mitophagy pathway except
for USP8. USP30 has been extensively characterised as a DUB
antagonising the action of Parkin, by deubiquitinating Parkin
substrates such as Miro and TOMM20, thus, suppressing
mitophagy (Bingol et al., 2014; Liang et al., 2015). USP313
directly interacts with Parkin and deubiquitinates it, while
USP15, another DUB is reported to remove poly-K48 and -K63
Ub linkages from Parkin substrates without affecting the
ubiquitination status of Parkin. Downregulation of USP13
or USP15 in mouse and Drosophila models of PD
respectively, led to alleviation of PD-like phenotypes in
these organisms (Cornelissen et al., 2014; Liu et al., 2019).
USP8 unlike the other DUBs positively regulates mitophagy
pathway by selectively removing K6-linked ubiquitin
conjugates from Parkin, a process that enhances Parkin
recruitment to mitochondrial surface, inducing mitophagy
but on the contrary, a recent study reported rescue of PD
like phenotypes in PINK1 knockout (KO) of flies, which
requires further elucidation (von Stockum et al., 2019).

Other PTMs
Members of Sirtuin family of histone deacetylase have been
reported to participate and upregulate mitophagy pathway. In

an attempt to dissect out an interaction network of
mitochondrial sirtuins, Yang et al., employed a proteomics
approach and identified SIRT3 to play a role in mitochondrial
homeostasis. SIRT3 binds to ATP synthase in healthy
mitochondria, but on mitochondrial membrane
depolarisation, SIRT3 disassociates from ATP synthase,
deacetylating mitochondrial matrix proteins (Yang et al.,
2016). SIRT3 is also reported to directly deacetylate PINK1
and Parkin resulting in their induction, thus, promoting
mitophagy (Huang et al., 2019). SIRT1 is involved in
mitophagy through its NAD+–SIRT1–PGC-1α axis (Fang
et al., 2014), and has also been reported to induce
mitophagy by deacetylating PINK1 and Parkin (Yao et al.,
2018). On the contrary, another study reported that the
deficiency of SIRT1 upregulated PINK1-Parkin recruitment
by supressing the activity of superoxide dismutase 2 (SOD2)
(Di Sante et al., 2015). Other PTMs such as SUMOylation,
glycosylation and acetylation have been sparsely reported in
the context of mitophagy and has been discussed in an
excellent review by Wang et al., 2020.

Given the mechanistic aspects of the proteins regulating
the mitophagy pathway, extensive research performed in
exploring the pathogenesis of mutations in mitochondrial
proteins have laid ground for elucidating the involvement
of mitophagy in them. The next part of the review aims to
understand the imbalance in mitophagy pathway implicated in
disease scenario, particularly focusing on neurodegenerative
disorders.

UNRAVELLING THE MOLECULAR
MECHANISMS OF MITOPHAGY
DYSREGULATION IN
NEURODEGENERATIVE DISEASES

Neurodegenerative diseases are a spectrum of complex
heterogeneous disorders characterized by progressive
degeneration of neurons and glia, thereby affecting the
function of both central and peripheral nervous systems.
Extensive research conducted in this field has helped delineate
diverse molecular aspects, both of genetic and sporadic nature. In
neurodegenerative diseases at organellar level, mitochondrial
dysfunction has emerged as one of the predominant
phenotypes. Whether damaged mitochondria are a cause or an
effect of neurodegeneration is currently a hotly debated topic. In
addition, reports on the accumulation of damaged mitochondria
in most neurodegenerative diseases point towards the
dysregulation of the mitophagy pathway. Here, we briefly try
to address the known mechanistic details on mitophagy
dysregulation and the open questions that need to be
addressed to understand how this pathway is affected in
neurodegenerative diseases.

Alzheimer’s Disease
Alzheimer’s disease (AD), a progressive neurodegenerative
disease with characteristic extracellular amyloid-beta plaques
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and intracellular Tau containing neurofibrillary tangles, is the
leading cause of dementia worldwide. The clinical etiology of AD
has been linked to both genetic and sporadic factors, leading to
progressive degeneration of neurons, loss of memory, and
cognitive decline of the affected individual (Long and
Holtzman 2019). Mitochondrial dysfunction is one of the
hallmarks of AD. Both amyloid-beta and pathogenic forms of
Tau were found to interact with mitochondria, initiating a myriad
of mitochondrial abnormalities ranging from impairment in
electron transport chain (ETC), mitochondrial dynamics, ROS
production, mitochondrial transport, lipid peroxidation, reduced
ATP levels, and loss of Δψm (Chakravorty et al., 2019). Together
with mitochondrial dysfunction, reports also suggest
dysregulation of mitophagy pathway in AD.

Dysregulation of Mitophagy in AD
Dysregulation of mitophagy in AD. Impairment in the mitophagy
pathway is a phenotype that has been closely associated with AD.
A study by Fang et al. showed that levels of mitophagy related
proteins such as Bcl2L13, PINK1, BNIP3L/NIX, p-ULK1
(Ser555), p-TBK1, FUNDC1, AMBRA1, and MUL1 is
downregulated in AD patient brains and iPSC-derived cortical
neuronal cultures generated from AD patients, indicative of
defective mitophagy pathway (Fang et al., 2019). However,
Parkin-mediated mitophagy was induced in the early stages of AD
in mutant amyloid precursor protein transgenic (hAPP Tg) mouse
models, where increased recruitment of Parkin and autophagic
markers such as p62 and LC3 have been observed in the disease
model compared to the wild type (Ye et al., 2015). Despite the
initiation of mitophagy pathway in mutant hAPP Tg neurons,
aberrant accumulation of mitophagosomes was also observed in
these neurons, indicating the defective degradation of damaged
mitochondria. Even though mitophagosomes marked with both
p62 and LC3 showed a significant increase in association with
LAMP1 positive vesicles, an increased retention of damaged
mitochondria was observed in clustered and enlarged LAMP1
positive vesicles indicating that the degradative capacity of
lysosomes in these mutant neurons is compromised (Ye et al.,
2015). Studies demonstrated that mutations linked to familial AD
(fAD) in presenilin 1 contributed to reduced lysosomal acidification
due to defective maturation and transport of V-ATPase to the
lysosomes, thereby compromising the degradative capacity of
lysosomes (Ju-Hyun Lee et al., 2010). Additionally, presenilin 2
mutations associated with familial AD was shown to cause
defective autophagosome-lysosome fusion by affecting Rab7
recruitment, which may contribute to the accumulation of auto/
mitophagosomes in AD patients (Fedeli et al., 2019). Furthermore,
a progressive reduction in Parkin expressionwas observed in both AD
patient brains as well as mutant hAPP Tg mouse models, suggesting
an impairment in effective activation of Parkinmediatedmitophagy as
the disease progressed (Ye et al., 2015).

Studies from Amadoro and Calissano’s group reported that
expression of NH 2 -truncated hTau in vitro and in vivo AD
models caused dysregulation in the mitophagy pathway by
enhancing the recruitment of Parkin and Ubiquitin-C-terminal
hydrolase L1 (UCHL-1) to the mitochondria. The authors also
described that partially suppressing mitophagy in these models

rescued the truncation induced neurotoxicity and restored
mitochondrial density in the synapses (Corsetti et al., 2015).
Contradictory to the observation of enhanced mitophagy in Tau
AD models, recent investigations revealed that overexpression of
human and pathogenic forms of Tau impaired mitophagy. For
instance, Hu et al. showed that overexpression of hTau in both
in vitro and in vivo model systems caused hyperpolarization of
mitochondrial membrane potential and decreased recruitment of
PINK1 and Parkin, leading to impaired mitophagy (Hu et al.,
2016). Cummins et al. reported that overexpression of both hTau
and frontotemporal dementia (FTD) mutant Tau (hP301L)
blocked mitophagy in neuroblastoma cells by reducing Parkin
translocation. A similar effect was observed in C. elegans, where
the hTau overexpression reduced mitophagy levels, and mutant
Tau inhibited mitophagy. According to this study, the underlying
mechanism of reduced Parkin recruitment was not attributed to
change in mitochondrial membrane potential but due to the
aberrant interaction of Parkin with the projection domain of Tau,
thereby sequestering Parkin in the cytosol (Cummins et al., 2019).

Apart from neurons, mitophagy in glial cells is also affected in
AD. Among the glia, microglial cells from AD mouse
hippocampus exhibited accumulation of damaged
mitochondria with almost 60% reduction in mitophagy. As
microglia perform high energy-dependent functions such as
phagocytosis, accumulation of damaged mitochondria together
with compromised mitophagy could impair microglial function,
further contributing to AD pathogenesis (Fang et al., 2019).
Collectively, studies indicate that the mitophagy pathway is
affected at multiple steps, from recognition of damaged
mitochondria, to their degradation in lysosomes. Additional
investigations into the detailed mechanism of mitophagy
impairment in specific AD models are required to validate and
dissect the exact molecular mechanism of the defects in the pathway
and its contribution to the establishment and progression of AD.

The Unknowns
Even though studies probing the mechanism of mitophagy
impairment in AD, with a predominant focus on Parkin
mediated mitophagy, are emerging recently, detailed
mechanistic studies exploring the status of different mitophagy
pathways, both Parkin dependent and independent, in AD
models is still lacking. The predominant observation in reports
that examine mutant APP and Aβ mediated mitophagy
dysfunction is that mitophagy-related protein levels are
significantly decreased in AD models. However, these studies
reveal neither the mechanism behind the downregulated
expression of mitophagy-related proteins nor the quantitative
assessment of how the mitophagy flux is regulated in these
models. While few studies on Tau mediated mitophagy
dysfunction have probed into the underlying mechanism,
additional research is required to provide more insights into
the mechanism of mitophagy impairment in both sporadic and
familial AD.

Parkinson’s Disease
Parkinson’s disease (PD) is one of the common
neurodegenerative diseases characterized by progressive loss of
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dopaminergic neurons in the substantia nigra pars compacta
(SNpc), leading to classic Parkinsonian motor symptoms such as
tremor, bradykinesia, rigid muscles, involuntary movements, and
postural instability (Balestrino and Schapira 2020). Lewy bodies
with aggregated α-synuclein accumulation in SNpc and other
affected brain regions are considered as the pathological
hallmarks of PD (Kalia and Lang 2015). PD has been closely
associated with mitochondrial dysfunction and impairment in
mitochondrial quality control, as the mutations known to cause
familial PD are mostly in proteins that maintain mitochondrial
homeostasis. Initial research that linked mitochondrial
dysfunction to PD was based on the observation that toxins
such as 1-methyl-4-phenyl-1,2,3,6,-tetrahydropyridine (MPTP),
that inhibit mitochondrial complex I function, caused loss of
dopaminergic neurons leading to Parkinsonism. Moreover, PD-
affected patient brains also manifested decreased mitochondrial
complex I activity, thereby associating mitochondrial dysfunction
with PD (Davis et al., 1979; Langston et al., 1983; Schapira et al.,
1990). A recent report by Rodríguez et al. described that
disrupting the mitochondrial complex I in mouse
dopaminergic neurons triggered a progressive loss of the
dopaminergic phenotype accompanied by deficits in motor
learning, reaffirming that mitochondrial complex I dysfunction
is sufficient to cause human-like Parkinsonism in mouse models
(González-Rodríguez et al., 2021). Mitochondrial dysfunction in
PD has also been triggered by pathogenic α-synuclein that
preferentially interact with mitochondria bringing about a
block in mitochondrial protein import, mitochondrial
membrane depolarisation, mitochondrial permeability
transition pore (MPTP) opening, impairment in ETC,
increased ROS, and induction of mitochondrial fragmentation
(Malpartida et al., 2021). Finally, along with mitochondrial
dysfunction, mitophagy pathway is also affected in PD.

Dysregulation of Mitophagy in PD
Impairment of mitophagy was initially associated with PD based
on the observation that PD patient brain samples showed
accumulation of autophagosomes containing damaged
mitochondria (Zhu et al., 2003). In addition, mutations in
PINK1 and Parkin that are the predominant proteins involved
in mitophagy, were shown to contribute to the early onset of
autosomal recessive PD (Valente et al., 2004; Lücking et al., 2000).
Examining the mechanisms of both PINK1 and Parkin mutations
showed that mutant proteins impair mitophagy by affecting
different stages of the pathway. The mutation R42P in Parkin
blocked its recruitment to damaged mitochondria upon stress,
whereas R275W Parkin mutant localised to depolarised
mitochondria but did not induce perinuclear mitochondrial
aggregation. On the contrary, mutations A240R and T415N in
Parkin neither blocked its recruitment to depolarized
mitochondria nor the formation of mitochondrial aggregates,
but instead decreased the ubiquitination of damaged
mitochondria. This further impaired the recruitment of p62
and HDAC6 thereby preventing the clearance of damaged
mitochondria (Joo-Yong Lee et al., 2010). Similar results of
decreased ubiquitination and clearance of OMM proteins
upon stress was observed in patient derived cells expressing

PINK1 and Parkin homozygous mutations (Rakovic et al.,
2011). Recently, evidences from PD patient brains showed
enhanced pS65-Ub levels in sporadic PD. However, substantia
nigra from Parkin and PINK1 mutant cases showed diminished
pS65-Ub levels reiterating the impairment of mitophagy pathway
in PD (Hou et al., 2018). The loss of function of PINK and Parkin
leading to PD-like phenotype was recapitulated inDrosophila and
rat models. In PINK1 or Parkin loss of function model in
Drosophila, mitophagy pathway was impaired leading to
accumulation of swollen and damaged mitochondria with
disintegrated cristae, dopaminergic degeneration, locomotion
defects, severe flight muscle degeneration, male sterility, and
reduction in life span (Greene et al., 2003; Clark et al., 2006;
Whitworth et al., 2005; Cornelissen et al., 2018). Similarly, PINK1
KO rat models exhibited dopaminergic cell loss, progressive
nigral neurodegeneration and motor deficits further pointing
toward the role of impaired mitophagy in developing PD
pathology. Surprisingly, Parkin loss of function models in rat
displayed normal behaviour without any pathological phenotype
indicating the possible involvement of other ubiquitin ligases that
compensate the loss of Parkin (Dave et al., 2014). Contrary to the
observations in Drosophila and rat models, PINK1 and Parkin
KO mouse models exhibited very subtle or no robust PD related
phenotypes (Perez and Palmiter 2005; Kitada et al., 2007). The
possible explanation could be the presence of compensatory
mitochondrial quality control mechanisms or activation of
PINK1-Parkin independent mechanisms that could alleviate
the expected phenotype, in a species-specific manner.
However, when these KO mice were challenged with stressors,
the results similar to the Drosophila and rat models were
obtained. The stressors were either genetically created by
crossing with mtDNA mutator mice and thereby inducing
mitochondrial DNA mutations or by inducing intestinal
bacterial infection (Pickrell et al., 2015; Matheoud et al., 2019).

Apart from mutations in PINK1 and Parkin, mutations in
several other genes associated with PD pathogenesis also show
impairment in mitophagy pathway. Mutations in the leucine-rich
repeat kinase 2 (LRRK2, PARK8) gene is known to cause
autosomal dominant form of PD and accounts for most of
familial PD cases (Tolosa et al., 2020). The pathogenic
mutations of LRRK2 were observed to have
hyperphosphorylated kinase activity and emerging reports
suggest that these mutations impair the mitophagy pathway
thereby contributing to PD pathogenesis (Singh and Ganley
2021). During PINK1-Parkin mitophagy, the transport of
damaged mitochondria is arrested by degradation of Miro1, a
component of the primary motor/adaptor complex that helps in
anchoring the motor protein kinesin to the mitochondria, in a
PINK1-Parkin dependent manner (Wang et al., 2011). LRRK2
aids this process by forming a complex with Miro1 and targeting
it for degradation via the proteasome. This function of LRRK2
was shown to be disrupted in PD patient-iPSC-derived neurons
with pathogenic LRRK2G2019S mutation. In patient cell lines,
the mutant LRRK2 does not interact with Miro1, thereby
resulting in reduced degradation rates of Miro1 which slows
down the arrest of damaged mitochondria and further delays the
initiation of mitophagy (Hsieh et al., 2016). Two independent

Frontiers in Cell and Developmental Biology | www.frontiersin.org March 2022 | Volume 10 | Article 83733713

Jetto et al. Mitophagy and Neurodegeneration

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


investigations conducted in patient-derived cells with LRRK2
mutations showed reduced mitophagy flux (Bonello et al., 2019;
Korecka et al., 2019). Additional research revealed new insights
into the mechanism of mitophagy impairment in LRRK2
mutations. While Bonello et. al. uncovered that mutant
LRRK2-G2019S disrupts interactions between Parkin and
OMM proteins in a kinase dependent manner, Wauters et. al.
identified a new mechanism wherein the two LRRK2 mutations
(G2019S and R1441C), impaired mitophagy by decreasing the
recruitment of OPTN to damaged mitochondria (Bonello et al.,
2019; Wauters et al., 2020). This was mediated through enhanced
phosphorylation of threonine 73 of Rab 10 by the mutant LRRK2
which disrupted the interaction of Rab10 with OPTN thereby
restricting its recruitment to damaged mitochondria (Wauters
et al., 2020). The impairment in mitophagy flux due to LRRK2
mutations was recapitulated in mouse models carrying the
G2019S mutation, where reduced mitophagy flux was observed
in dopaminergic neurons and microglia in brain, validating the
effect of LRRK2 mutations in mitophagy pathway (Singh et al.,
2021).

A recent study by Grossmann et. al. identified mutations in
Miro1 that are linked to PD pathogenesis (Grossmann et al.,
2019). In addition to its role in mitophagy, Miro1 is also known
to be involved in modulating mitochondrial calcium
homeostasis and in maintaining the integrity of ER-
mitochondria contact sites (Lee et al., 2016). Miro1-R272Q
mutant iPSC-derived neurons exhibited decreased
mitochondrial motility, reduced capacity to modulate
calcium levels in response to increase in cytosolic calcium,
alteration in ER-mitochondria contact sites and impaired
mitophagy flux (Berenguer-Escuder et al., 2019; Berenguer-
Escuder et al., 2020). Further studies are required to
understand the mechanistic aspects of the mitophagy block
in Miro1 PD associated mutants and questions pertaining to
this are yet to be addressed.

As lysosomes are the end points for the degradation of
damaged mitochondria via mitophagy, PD associated
mutations that affect the function of lysosomes also impair
mitophagy, further contributing to the PD pathogenesis.
Heterozygous mutations in glucosylceramidase beta (GBA),
a lysosomal enzyme that converts glucosylceramide to
ceramide and glucose, is one of the most common genetic
risk factors for PD pathogenesis, contributing to 7–20% of all
PD cases (Stoker et al., 2018). Interestingly, homozygous
mutations in GBA cause Gaucher disease (GD), the most
common lysosomal storage disorder. Studies conducted in
conditional KO mouse models of GBA reported decreased
mitochondrial membrane potential, mitochondrial
fragmentation, reduced complex I, II and III activities,
decrease in oxygen consumption rate and impaired
mitophagy in neurons and astrocytes, in addition to the
compromised lysosomal activity (Osellame et al., 2013). A
recent study by Li et. al. investigated the effect of PD
associated heterozygous mutation of GBA L444P, in a
knock-in mouse carrying one copy of the L444P mutant
Gba allele (GbaL444P/WT) (Hongyu Li et al., 2019).
Neurons expressing L444P mutation exhibited decreased

mitochondrial membrane potential, increased ROS levels
and mitochondrial mass suggesting mitochondrial
dysfunction and defective clearance of damaged
mitochondria. The study also explored the status of
mitophagy and found that mutant neurons expressing
L444P mutation were impaired in the recruitment of Parkin,
NBR1, and LC3 to damaged mitochondria and had reduced
mitophagy flux reiterating the impairment of mitophagy
pathway (Hongyu Li et al., 2019). Initiation of autophagy
and lysosomal function was also impaired in the mutant
neurons. The mitochondrial pathology was further analysed
in the brains of PD patients with L444P mutation, wherein
increased level of mitochondrial proteins, defects in respiratory
complex functions and impaired autophagy was observed,
further corroborating the results obtained in the mouse
models (Hongyu Li et al., 2019).

Collectively, mitochondrial dysfunction and impairment in
the mitophagy pathway can be considered as one of the strong
candidates contributing to PD pathogenesis, owing to its
predominant occurrence in various PD models. Therefore,
therapeutic interventions targeting mitochondrial health
and mitophagy together with the existing PD medications
could be developed as potential treatment strategies for
alleviating PD pathogenesis.

The Unknowns
Since the discovery of the link between PD and the key players of
mitophagy pathway - PINK1 and Parkin had been made,
extensive research has gone into elucidating the pathway and
identifying the effect of PD associated mutations on PINK1-
Parkin pathway. Mechanistic details of mitophagy impairment in
different PD models carrying specific mutations are emerging
recently. While mutations in key genes like PINK1, Parkin,
LRRK2, GBA are explored in more detail, there still remains
the need for investigations in greater depth to identify the
mechanisms in less explored PD associated genes. As PINK1
and Parkin KO mice fail to exhibit PD related phenotypes, the
existence of compensatory mitophagy pathways that are PINK1-
Parkin independent requires further exploration. Additionally,
detailed research is also required in exploring the status of
mitophagy pathway in sporadic PD. Understanding the
molecular mechanisms of mitophagy impairment in these
models will help to devise efficient therapeutic strategies to
alleviate the disease.

Huntington’s Disease
Huntington’s disease (HD) is an autosomal dominant
neurodegenerative disorder caused by the abnormal expansion
of CAG repeats that encodes the polyQ tract at the N- terminus of
the huntingtin protein. In the normal population, CAG repeats of
huntingtin protein ranges from 6 to 35 units, whereas the affected
individuals show CAG repeats more than 35 units which
progressively triggers the disease process leading to
characteristic disease symptoms such as chorea, dystonia,
impaired gait and posture, cognitive decline and psychiatric
disorders (Bates et al., 2015). Mutant huntingtin (mHTT)
protein can cause dysfunction of multiple intracellular processes
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such as proteostasis, transcription and cell signaling, endocytic and
secretory pathways, intracellular trafficking, and mitochondrial
homeostasis (Wanker et al., 2019). Similar to other
neurodegenerative disorders mitochondrial health and quality
control is reported to be dysregulated in HD. Mitochondrial
dysfunction in HD causes decreased mitochondrial biogenesis
due to downregulation of PGC-1α, altered functioning of
respiratory chain complexes II, III, and IV, increased ROS
production, enhanced mitochondrial fragmentation due to
interaction of mutant HTT with DRP1, impaired mitochondrial
trafficking, and inhibition of mitochondrial protein import due to
interaction of mHTT with TIM23 complex, thereby leading to
disruption of mitochondrial homeostasis (Johri et al., 2013;
Yablonska et al., 2019). Reports also suggest dysregulation of
mitophagy in HD, the details of which are discussed below.

Dysregulation of Mitophagy in HD
A study by Khalil et.al. described the accumulation of damaged
mitochondria in Drosophila expressing mHTT (Httex1p Q93),
suggesting an impairment in its clearance (Khalil et al., 2015).
Similar results were observed in mouse striatal HdhQ7 and
HdhQ111 cell lines with CAG repeats 7 and 111 respectively,
wherein degradation of damaged mitochondria was impaired.
Further research into the mechanism uncovered that Parkin
recruitment and subsequent ubiquitination was unaffected, but
the colocalization of ubiquitinated mitochondria with LC3 was
significantly decreased in HdhQ111 versus HdhQ7 cells,
suggesting an impairment in the targeting of damaged
mitochondria to autophagosomes (Khalil et al., 2015).

mt-Keima mouse model expressing human Huntingtin’s
transgene (HTT) also showed marked reduction in mitophagy
(Sun et al., 2015). A study by Martinez-Vicente et. al. reported
that interaction of mHTT with p62, an autophagy adaptor,
disrupted the transport of autophagosomes in neurons,
possibly contributing to ineffective clearance of damaged
mitochondria (Martinez-Vicente et al., 2010). In addition,
mHTT interaction with GAPDH disrupted trafficking of the
damaged mitochondria resulting in dysfunctional micro-
mitophagy (Hwang, Disatnik, and Mochly-Rosen 2015). A
recent study investigating the mechanism of mitophagy
impairment in HD described that in differentiated striatal
ST-Q111 cells (111 CAG repeats), mHTT impaired the
initiation of mitophagy by increasing the stability of ULK1
and mTOR complex thereby maintaining ULK1 in its inactive
form (Franco-Iborra et al., 2021). mHTT further interacts with
Beclin1 (BECN1) leading to its degradation and hence
downregulates the formation of the BECN1-PIK3R4/VPS15
complex. Further findings from the study reported that mHTT
did not affect the ubiquitination of damaged mitochondria but
impaired the interaction of mitophagy adaptors OPTN,
CALCOCO2, SQSTM1/p62 and NBR1 with LC3 (Franco-
Iborra et al., 2021). Contrary to the studies showing
mitophagy impairment in HD, an independent study from
Guo et. al. reported that mHTT recruits valosin-containing
protein (VCP) to the mitochondria, which promotes excessive
mitophagy leading to neuronal death (Guo et al., 2016).
However, further studies investigating the effect mHTT on

mitophagy by different research groups showed an impairment
in the pathway. Therefore, detailed research investigating the
mechanisms of mitophagy dysregulation in HD is required and
findings from these studies will provide more insights on
proteins involved in the mitophagy impairment in HD,
which can then be used for developing potential therapeutic
strategies.

The Unknowns
In the recent years, studies probing the mechanism of
mitophagy impairment in multiple HD model systems have
been emerging. Independent studies showed that mHTT
affected multiple steps in the mitophagy pathway such as
initiation, cargo recognition, interaction with
autophagosomes and transport of autophagosomes, thereby
impeding the clearance of damaged mitochondria. The major
studies have predominantly focused on PINK1-Parkin
mitophagy although the status of Parkin independent
mitophagy pathways in HD remains unexplored. Also,
comprehensive mechanistic studies probing the effect of
varying number of CAG repeats on mitophagy impairment
is lacking. These detailed studies, if performed, can provide
insights into the degree of mitophagy impairment caused due
to the varying number of CAG repeats - an information which
can then be used to develop effective and personalized
therapeutic strategies to ameliorate the HD pathology.

Amyotrophic Lateral Sclerosis
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative
disease characterized by progressive degeneration of motor
neurons that arise from both brain and spinal cord, thereby
causing muscle weakness, muscular atrophy, dysarthria and
paralysis in affected individuals (Taylor et al., 2016).
Approximately 10% of the ALS cases are familial and mostly
follow an autosomal dominant inheritance pattern, while the rest
are sporadic. Mutations of over 20 genes have been associated
with ALS - the prominent ones being C9orf72, superoxide
dismutase 1 (SOD1), fused in sarcoma (FUS), TAR DNA
binding protein (TDP-43), OPTN, TBK1 and SQSTM1/p62,
that accounts for 60% of familial and 11% of sporadic ALS
cases. As the genes associated with ALS are involved in
multiple cellular processes, the possible pathogenic
mechanisms of ALS include dysregulation of proteostasis,
RNA toxicity, defective axonal transport, oxidative stress,
excitotoxicity, and mitochondrial dysfunction, thereby making
ALS a multifactorial disease (Taylor et al., 2016). In ALS patient
motor neurons, accumulation of aggregated, swollen and
vacuolated mitochondria have been observed (Ruffoli et al.,
2015). Further investigations showed a multitude of ALS
associated mitochondrial defects such as defective oxidative
phosphorylation, increased ROS production, impaired
mitochondrial dynamics and transport, disrupted ER-
mitochondria contact sites, dysregulated mtDNA transcription
and defects in calcium buffering capacity (Smith et al., 2019). In
addition to mitochondrial defects, mitophagy pathway is also
reported to be compromised in ALS, which further contributes to
the pathogenesis.
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Dysregulation of Mitophagy in ALS
Impairment in mitophagy pathway is emerging as a predominant
phenotype contributing to the pathophysiology of ALS (Madruga
et al., 2021). In ALS mouse models expressing SOD1G93A

mutation, while degenerated mitochondria accumulated in
neuromuscular junctions (NMJs), a concomitant increase in
the number of mitophagosomes was not observed, suggesting
compromised mitophagy. Furthermore, levels of mitophagy
proteins like Parkin, PINK1, BNIP3 and p62 was also reduced
in SOD1G93A mice (Rogers et al., 2017). A recent examination of
the mechanism of mitophagy impairment in SOD1 mutations

showed that N2A cells expressing A4V and G93A mutations
exhibited strong interactions with the mitophagy adaptor
OPTN. Moreover, it was observed that OPTN is sequestered
in SOD1 mutant aggregates and this leads to a decrease in
mitophagy flux in cells expressing the mutants (Tak et al.,
2020). On the contrary, a study by Palomo et. al. reported
enhanced mitophagy flux in the spinal cords of SOD1G93A

mouse model. Surprisingly the mutant mice manifested
reduced levels of Parkin and KO of Parkin in these mice
reduced the protein aggregates, delayed motor neuron loss,
decreased NMJ degeneration and increased life span (Palomo

FIGURE 3 | Mechanisms of mitophagy dysregulation in neurodegenerative disorders. AD: (A) AD associated mutations in presenilin 2 (mPS2) blocks
mitophagosome to lysosome fusion by affecting the Rab7 recruitment, leading to accumulation of mitophagosomes. (B) AD associated mutations in presenilin 1 (mPS1)
gene decrease the lysosomal acidification by impairing the transport of V-ATPase thereby blocking the clearance of damaged mitochondria. (C) Pathogenic Tau (mTau)
interacts with Parkin with its projection domain, inhibiting the recruitment of Parkin to damaged mitochondria. (D) AD models also show down regulation of
mitophagy associated proteins PINK1, BNIP3L/NIX, Bcl2L13, p-ULK1, p-TBK1, FUNDC1, AMBRA1, andMUL1 (The red arrow in the figure represents downregulation).
PD: (E) PD associated mutations affect the role of Parkin in two ways. Mutations either block Parkin recruitment to damaged mitochondria or impair the ubiquitination
capacity of Parkin, both of which impairs themitophagy pathway. (F) PD associatedmutations in LRRK2 impair mitophagy pathway at different stages. Based on specific
mutations, LRRK2 hyperphosphorylates Rab10, which prevents its interaction with OPTN thereby blocking its recruitment to damaged mitochondria. Mutant LRRK2
has been shown to prevent the interaction of Parkin with OMM proteins. Mutant LRRK2 also inhibits Miro1 degradation, an essential step for arrest of damaged
mitochondria, further impairing the pathway. (G) PD associated mutations in GBA inhibit recruitment of Parkin, NBR1 and LC3 to the damaged mitochondria. HD:
Dysregulation of mitophagy pathway by mutant HTT (mHTT) involves multiple mechanisms. (H)mHTT blocks the recruitment of OPTN, NBR1, CALCOCO2 and p62. (I)
mHTT stabilizes the interaction of inactive ULK1 to mTOR, thereby impairing the formation of autophagy initiation complex. mHTT promotes degradation of Beclin1,
which also prevents the formation of autophagy initiation complex. ALS: (J)Mutant SOD1 (mSOD1) aggregates sequester OPTN preventing its recruitment to damaged
mitochondria. (K) ALS associated mutations in OPTN (mOPTN) blocks its recruitment to damaged mitochondria and also impairs its interaction with myosin VI, thereby
restricting the localization of mutant OPTN in cytoplasm. (L) ALS linked mutations in TBK1 (mTBK1) blocks its recruitment to damaged mitochondria, impairs its
interaction with OPTN and impedes the recruitment of LC3 to damaged mitochondria. (M) In addition, mitophagy related proteins PINK1, Parkin, p62, and BNIP3 are
downregulated in ALS (The red arrow in the figure represents downregulation).
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et al., 2018). The authors propose that in ALS, Parkin mediated
mitophagy may be neuroprotective in the initial stages of disease
progression. However, elevated mitophagy flux if sustained for a
prolonged duration could have a negative effect on the neuronal
survival due to enhanced depletion of mitochondria. Therefore,
detailed studies are required to understand the exact status of
mitophagy in the SOD1 mutant models. Impaired mitophagy in
ALS can also be due to mutations in adaptor proteins. For
example, about 40 fALS associated mutations have been
observed in OPTN, an autophagy/mitophagy specific adaptor
(Ayaki et al., 2018; Madruga et al., 2021). In cells expressing
OPTN mutant E478G, the recruitment of the mutant OPTN to
damaged mitochondria was disrupted, thereby impairing the
clearance of damaged mitochondria (Wong and Holzbaur
2014). Further studies in motor neuron-like NSC-34 cells
showed that the mutations Q398X and E478G in OPTN
impeded its ability to interact with myosin VI leading to its
abnormal diffused cytoplasmic expression. In these mutants,
mitophagosome-lysosome fusion was also blocked, resulting in
the accumulation of mitophagosomes (Sundaramoorthy et al.,
2017). Mutations in another autophagy adaptor, SQSTM1/p62
are also linked to ALS pathogenesis (Fecto et al., 2011).
Investigations in patient fibroblasts carrying ALS linked p62
mutations and SH-SY5Y cells with loss of function of p62
exhibited a decrease in mitochondrial membrane potential,
increased ROS production, reduced complex I activity
indicating compromised mitochondrial health (Bartolome
et al., 2017). However, the mechanism of the effect of ALS
linked SQSTM1/p62 mutations on mitophagy pathway is yet
to be explored. For efficient binding of OPTN and p62 to
ubiquitinated cargo, the adaptors undergo a post translational
modification by a serine-threonine kinase, TBK1. About 80
mutations are reported in the TBK1 gene that are associated
with ALS pathogenesis (Oakes et al., 2017; Madruga, Maestro,
and Martínez 2021). Mutations in TBK1 affect mitophagy
pathway at different stages, for example, mutations E696K,
M559R, G217R in TBK1 impaired its recruitment to damaged

mitochondria, p.690-713del and E696K in the CCD2 domain of
TBK1, inhibited its interaction with OPTN. Additionally, G217R
and M559R-TBK1 mutants blocked the recruitment and
formation of LC3 rings on damaged mitochondria (Harding
et al., 2021; Freischmidt et al., 2015). Even though studies
exploring the mechanisms of mitophagy impairment in ALS
are emerging, detailed research is required to clear the
contradictions and to understand the contribution of
mitophagy impairment in the pathophysiology of ALS.

The Unknowns
Investigations into the mechanisms of mitophagy dysregulation in
ALS, suggests that multiple stages such as cargo recognition, adaptor
recruitment and interaction of damaged mitochondria with
mitophagosomes are impaired. Currently, the effect of mutations
in only a few genes such as OPTN, TBK1 and SOD1 are being
explored. Further studies on other ALS associated genes linked
to mitophagy impairment are essential to achieve a detailed
understanding on the effect of specific mutations on the
pathway. As with the other neurodegenerative diseases, status of
parkin independent mitophagy in ALS still remains to be explored.
Contrary to impairedmitophagy, an independent study using SOD1
mouse model described that prolonged enhancement of mitophagy
due to persistent mitochondrial damage could be detrimental to
neuronal survival. If modulation of mitophagy as a therapeutic
strategy for ALS has to be developed, detailed investigations are
required to explore both the dysregulation of mitophagy in different
stages of disease progression and to understand the contradictory
reports obtained in the disease models.

In conclusion, mitophagy dysregulation is emerging as one of
the predominant contributing factors in the pathophysiology of
neurodegenerative disorders. Studies elucidating the mechanism
of impaired mitophagy provide new insights in understanding
how this pathway is affected in specific disease conditions
(Figure 3). Apart from the major neurodegenerative disorders
discussed above, role of mitophagy is emerging in other
neurodegenerative disorders such as multiple sclerosis (MS),

TABLE 1 | Reporter proteins and model systems used to study mitophagy.

Sl. No Reporter protein Model system and cell lines Reference

1 mito-QC SH-SY5Y Allen et al. (2013)
2 mt-mKeima HeLa Sun et al. (2017)
3 mito-QC U2OS Allen et al. (2013)
4 mito-SRAI MEF, H4 Katayama et al. (2020)

5 mito-Rosella Caenorhabditis elegans Palikaras, Lionaki, and Tavernarakis (2015),
Cummins et al. (2019)

6 mt-mKeima Drosophila melanogaster Lee et al. (2018)
7 mito-QC Lee et al. (2018)

8 mt-mKeima Danio rerio Wrighton et al. (2021)
9 mito-EGFP mCherry Wrighton et al. (2021)

10 mito-QC Mus musculus McWilliams et al. (2016)
11 mt-mKeima Sun et al. (2015)
12 Mito-Timer Wilson et al. (2019)
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TABLE 2 | Therapeutic interventions in neurodegenerative disorders (ND) via the modulation of mitophagy pathway.

ND Compounds Related pathway Model used in the study Reference

Alzheimer’s
disease

Rapamycin mTOR pathway Apolipoprotein E4 transgenic mice,
AAV-based mouse model of early-
stage AD-type tauopathy, 3xTg-AD,
Tg2576 mice, primary neuronal cell
culture

Majumder et al. (2011), Tian et al. (2011),
Caccamo et al. (2014), Siman, Cocca,
and Dong (2015), Lin A. L. et al. (2017)

Memantine GSK3β mediated phosphorylation Tg2576 mice and 3xTg-AD mice Martinez-Coria et al. (2010)
Metformin AMPK pathway P301S transgenic mouse Barini et al. (2016)
Resveratrol Enhancement of mitophagy pathway Aβ1–42 in PC12 cells Wang et al. (2018)
NMN (Nicotinamide
mononucleotide)

Precursor of NAD+, enhances
deacetylation of autophagy related
proteins through SIRT1 pathway and
regulates JNK pathway

APPswe/PS1dE9 (AD-Tg) mice Fang et al. (2014), Yao et al. (2017)

NR (Nicotinamide
riboside)

Precursor of NAD+, decreases Aβ
toxicity through PGC-1α-mediated
degradation of BACE1 and activation
of SIRT1, FOXO signalling and
mitoUPR pathways

Tg2576 mice, C. elegans and
HEK293T cell line

Cantó et al. (2012), Gong et al. (2013),
Mouchiroud et al. (2013)

NAM (Nicotinamide) Increases mitochondrial integrity
through SIRT1, CREB, Akt and MAPK
activation

3xTgAD mice and primary rat cortical
neuronal culture

Dong Liu et al. (2013)

Urolithin A Upregulation of mitophagy proteins
such as PINK1-PRKN, AMBRA1,
FUNDC1, OPTN and autophagy
pathway proteins

APP/PS1 mouse model, SH-SY5Y cells
and C. elegans

Fang et al. (2019), Ryu et al. (2016)

Actinonin Upregulation of PINK1 expression and
enhanced mitophagy

SH-SY5Y cells, C. elegans and APP/
PS1 transgenic mouse

Fang et al. (2019)

Nilotinib Elevates expression of Parkin and
enhances its interaction with Beclin1
resulting in amyloid clearance

C57BL/6 mice injected with Aβ1–42 Lonskaya et al. (2014)

Parkinson’s
disease

Metformin AMPK pathway SH-SY5Y cells and MPTP treated mice Lu et al. (2016)
Kinetin triphosphate Upregulation of PINK1 activity SH-SY5Y cells and rat primary neuronal

culture
Hertz et al. (2013)

SR3677 ROCK inhibitor, induces HK2
mediated recruitment of Parkin

Drosophila melanogastermodel treated
with PD-causing toxin paraquat and
differentiated SH-SY5Y cells

Moskal et al. (2020)

T0466 and T0467 Activation of PINK1-Parkin pathway Differentiated dopaminergic neurons
and myoblasts from human iPSCs,
Drosophila melanogaster

Shiba-Fukushima et al. (2020)

T-271 Parkin dependent induction of
mitophagy pathway

H4 cells Katayama et al. (2020)

Rapamycin mTOR pathway and inhibition of
RTP801 induction

Mice treated with MPTP to induced
Parkinsonism, PC12 cells

Malagelada et al. (2010), Kangyong Liu
et al. (2013)

PMI (p62 mediated
mitophagy inducer)

Induces signalling and expression
of p62

SH-SY5Y and MEF cells East et al. (2014)

Carnosic acid (CA) Induction of PINK1-Parkin pathway SH-SY5Y cells Lin and Tsai (2019)
Salidroside Induction of PINK1-Parkin mitophagy

pathway
C57BL/6 mice treated with MPTP Li and Chen (2019)

Huntington’s
disease

Rapamycin and CCI-
779 (Rapamycin
analog)

mTOR pathway PC12 and COS7 cells, HD model of
Drosophila melanogaster and mice

Ravikumar et al. (2004)

Thiazolidinedione and
rosiglitazone

Agonist of PPARγ, enhanced
recruitment of PPARγ to Htt
aggregates

R6/2 mice and N2A cell line Chiang, Chern, and Huang (2012)

Metformin Activation of AMPK pathway 128Q HD model of C. elegans,
HdhQ111 knock-in mouse model, and
HD patients

Vázquez-Manrique et al. (2016), Hervás
et al. (2017)

Trehalose Upregulation of autophagy pathway
resulting in reduced ROS

R6/2 transgenic mice and fibroblasts
derived from HD patients

Tanaka et al. (2004), Fernandez-Estevez
et al. (2014)

HV-3 peptide Inhibition of mtHtt and VCP
interaction, thereby preventing VCP
induced excessive mitophagy

HdhQ111 striatal cells, HD patient
derived fibroblasts and R6/2 mice
model

Guo et al. (2016)

(Continued on following page)
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vascular dementia (VD), mixed dementia (MD), and ataxia
telangiectasia (A-T). Both MS and VD disease models showed
elevated levels of autophagy and mitophagy related proteins in
patient sera as well as enhanced mitophagy. While A-T disease
models exhibited defective mitophagy, MD patients sera showed
reduced levels of autophagy and mitophagy proteins (Fang et al.,
2016; Castellazzi et al., 2019; Hassanpour et al., 2020; Patergnani
et al., 2021; Zheng et al., 2021). However, mechanisms of
mitophagy dysregulation in these models are yet to be
explored. Information gleaned from studies investigating the
mechanisms of mitophagy dysregulation using different
mitophagy reporters and model systems (Table 1, Box 1) can
be further used to devise potential therapeutic strategies to
alleviate neurodegenerative disorders. In this direction,
emerging literature focusing on pharmacological interventions
in neurodegenerative disorders has been summarized in Table 2.

CONCLUSION

Mitophagy pathway encompasses autophagy-mediated degradation
of damaged mitochondria. Scientific contributions spanning over
2 decades have unraveled several molecular players governing
mitophagy, which include mitochondrial fission-fusion dynamics,

different post-translational modifications that fine-tune the process
and recruitment of autophagy-related adaptor proteins on OMM.
Mitochondrial membrane dynamics closely orchestrate the
mitophagy pathway by either facilitating fission mediated
separation of the damaged part or re-fusing the impaired
mitochondria to the healthy pool to dilute out the impact of
dysfunction. Mitochondrial damage initiates a series of events
resulting in the localization of several proteins onto OMM. The
recruitment of these proteins is very context-dependent and is also
regulated by different post-translational modifications. There are
only a few pieces of evidence wherein late-stage regulators such as
SNARE and Rab proteins of the mitophagy pathway have been
identified. Therefore, more studies characterising the functional
players involved in mitophagosome expansion and fusion is
required. Although well explored, the mitophagy pathway is
surrounded with several controversies. Mitochondrial fission has
been believed to precede mitophagy, but recent studies on MiD51,
DRP1 and STX17 suggest otherwise. There are contrasting reports
with respect to mitochondrial fission-fusion dynamics and
mitophagy, and therefore careful spatio-temporal characterisation
of proteins is required. As mitophagy is a predominant quality
control pathway for maintaining mitochondrial homeostasis, any
dysfunction in this highly orchestrated pathway leads to a myriad of
disease conditions. Neurodegeneration is one such disease, and

TABLE 2 | (Continued) Therapeutic interventions in neurodegenerative disorders (ND) via the modulation of mitophagy pathway.

ND Compounds Related pathway Model used in the study Reference

Amyotrophic
lateral sclerosis

Trehalose Upregulation of autophagy genes
such as Lc3, Atg5, Beclin1, and p62

SOD1G86R and SOD1G93A transgenic
mice model of ALS

Castillo et al. (2013), Zhang et al. (2014)

Rilmenidine Elevated levels of mitophagy NSC-34 cell culture and SOD1G93A

transgenic mouse model of ALS
Perera et al. (2018)

BOX 1 | Fluorescent reporter proteins for monitoring mitophagy

1) Tandemly tagged pH sensitive reporters to analyze mitophagy flux.
a. mito-QC: A pH sensitive mitophagy reporter protein with a tandemmCherry-GFP tag is attached to mitochondrial targeting sequence (MTS) of FIS1 (residues

101–152), an OMM protein Allen et al. 2013.
b. mito-Rosella: Amitophagy reporter protein with pH-insensitive RFP variant, DsRed.T3 and a pH-sensitive GFP variant, pHluorin, tandemly tagged to MTS of

citrate synthase at its N-terminus Rosado et al., 2008.
c. mito-mRFP-EGFP: A pH-sensitive reporter protein constructed by inserting MTS sequences of human cytochrome C oxidase subunit VIII, N-terminally in

frame with mRFP-EGFP Kim et al., 2013.
All the above-mentioned reporter proteins share similar principle for monitoring mitophagy flux. Upon induction of mitophagy, mitochondria expressing the tandem
reporters are targeted to lysosomes, where the pH sensitive (GFP, pHluorin, EGFP) fluorophores get quenched and pH insensitive (mCherry, DsRed.T3, mRFP)
fluorophores show stable expression. This differential quenching property of these tandem mitophagy reporters help to visualize and quantitate the mitochondria
targeted to lysosomes as a read out of mitophagy flux.

2. mt-mKeima: A pH sensitive mitophagy reporter protein developed by tagging tandem repeats of COX VIII MTS to mKeima. Keima is pH sensitive protein exhibiting
dual excitation spectra and is stable at lysosomal pH. Upon mitophagy induction, the mitochondria expressing mt-mKeima targeted to lysosomes show an excitation
peak at 550 nm whereas the mitochondria in cytosol shows an excitation peak at 438 nm. The dual excitation of the reporter helps to distinguish the mitochondria in
lysosomes and cytosol, and hence can be used as a readout for mitophagy Katayama et al., 2011.

3. MitoTimer: A fluorescent reporter protein constructed by tagging MTS of COX VIIIA to DsRed1-E5 (Timer). The fluorescence of DsRed1-E5 shifts from green to red,
as the protein matures Terskikh et al., 2000. The MitoTimer, therefore can be used as reporter for spatio-temporal monitoring of mitochondrial turnover and dynamics
Hernandez et al., 2013.

4. mito-SRAI (Signal Retaining Autophagy Indicator): A novel fluorescent mitophagy reporter protein constructed by fusing a tandem repeat of cytochrome C
oxidase subunit VIII MTS to N-terminus of TOLLES-YPet (SRAI) fusion construct. TOLLES (TOLerance of Lysosomal EnvironmentS) is an acid-fast CFP that is stable at
lysosomal pH whereas YPet is a YFP variant that is both acid and protease sensitive and hence gets degraded in lysosomes. Due to the differential stability of these
fluorescent proteins in lysosomes, mito-SRAI can be used as a mitophagy reporter that can distinguish and quantitate the mitochondria in cytosol and lysosomes
Katayama et al., 2020.
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recent studies investigating the molecular details of mitophagy
dysregulation in these disorders shed light into the mechanistic
aspects of the disease pathology. However, extensive studies probing
the mechanism of mitophagy dysregulation in neurodegenerative
disorders is required to address the contradictory results and for
better understanding of this pathway. The research outcome from
such studies will help provide new insights for developing novel
therapeutic strategies to ameliorate these debilitating diseases.
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