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A B S T R A C T

The lymphatic system plays a crucial, yet often overlooked, role in maintaining fluid homeostasis, and its dysregulation is a key feature of heart failure
(HF). Lymphatic dysregulation in patients with HF typically results from a combination of self-perpetuating congestive mechanisms, such as increased
fluid filtration, decreased lymph drainage into the central venous system, impaired lymph vessel integrity, dysfunctional lymphatic valves, and
dysfunctional renal lymphatic system. These pathomechanisms collectively overwhelm the lymphatic system and hinder its ability to decongest the
interstitial space with subsequent manifestation and progression of clinical congestion. Targeting the lymphatic system to counteract these
congestive pathomechanisms and facilitate interstitial fluid removal represents a novel pathway to treat congestion in HF. In this study, we discuss
the physiological roles of the lymphatic system in fluid homeostasis and the pathophysiological alteration of these roles in HF. We also discuss
innovative technologies that aim to use the lymphatic system pathway to treat congestion in HF and provide future directions related to these
approaches.
Introduction

The circulatory system comprises 2 primary components: the car-
diovascular system and the lymphatic system.1 The cardiovascular
system operates as a closed, high-pressure circulatory system, with
the heart serving as the central pump.1 By contrast, the lymphatic
system functions as an open, low-pressure circulatory system without a
central pump.1 The lymphatic vascular system is present throughout
most tissues, excluding bone marrow, cartilage, and the cornea.1

Beyond its roles in immune cell trafficking, inflammatory modulation,
and blood pressure regulation, the lymphatic system also plays a
significant part in fluid homeostasis within the body. Dysregulation of
the lymphatic system is associated with the development of
self-propagating congestive mechanisms and is a key characteristic of
congestive disorders, such as heart failure (HF).2 The role of lymphatic
dysregulation in patients with HF has been overlooked in the past
decades mainly owing to the inherent complexity in visualizing,
assessing, and accessing the lymphatic vascular system. However,
advancement in imaging and interventional techniques over the past
years along with the persistent need for innovative pathways to
address congestion in HF has positioned the lymphatic as a potential
target for HF therapy.
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Physiological roles of the lymphatic system in fluid homeostasis

The semipermeable membrane within blood capillaries permits the
daily filtration of several liters of fluids into the interstitial space.3 This
filtered fluid serves multiple physiological roles, such as tissue nour-
ishment and hydration.4 The volume of filtered fluid is determined by
the Starling equation for fluid filtration, expressed as JV¼ LpS[(pc� pi)�
σ(πc � πi)].3 In this equation, JV represents the filtered volume per unit
time; Lp, the membrane’s hydraulic conductance; S, the capillary surface
area available for filtration; pc, the hydrostatic pressure within the
capillaries; pi, the hydrostatic pressure within the interstitial space; σ,
the reflection coefficient; πc, the oncotic pressure of plasma proteins;
and πI, the oncotic pressure of interstitial proteins (Figure 1).

In the physiological state, the lymphatic vascular system drains the
accumulated filtered fluid within the interstitial space and returns it to
the central venous system at a rate comparable with its accumulation
rate in the interstitial space.5 This collected fluid, along with immune
cells, antigens, lipids, and proteins generated by tissue metabolic
processes, collectively forms lymph.5 Lymph is returned into the car-
diovascular system through 2 major lymphatic ducts, namely the right
lymphatic duct and the thoracic duct.5 The right lymphatic duct drains
lymph originating from the right side of the head, neck, thorax, and the
mphatic system.
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Figure 1.
Fluid filtration is governed by the Starling equation, which depends on the hydrostatic and oncotic pressures in the capillaries and the interstitium. K, constant; Palv, alveolar
pressure; Ph, hydrostatic pressure; Ponc, oncotic pressure; σ, reflection coefficient. Figure is reproduced from Fudim et al.2
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right upper extremity, emptying into the venous system at the junction
of the right subclavian vein and the right internal jugular vein.5 On the
contrary, the thoracic duct collects lymph from the rest of the body and
empties into the venous system at the junction of the left subclavian
vein and the left internal jugular vein (Figure 2).5
Dysregulation of the lymphatic system in HF

Dysregulation of the lymphatic system in the context of HF is often
overlooked, yet its contributions to the hemodynamic and clinical
congestion in patients with HF play a key role in development and
progression of HF syndrome and significantly modifies its response to
treatments, such as diuretic therapy.2,6 HF is primarily characterized by
venous congestion, and the elevation of central venous pressure (CVP)
plays a pivotal role in adverse clinical outcomes, such as impaired renal
function, and serves as an independent predictor of mortality among
patients with HF.7 Furthermore, the majority of hospitalizations for HF
are associated with signs of venous congestion rather than a decrease in
cardiac output.8 Endothelial cells within the blood vessels can sense
biomechanical forces and respond to increased hydrostatic pressure by
transitioning from a dormant state to an activated state, marked by
inflammation, vasoconstriction, and increased oxidative stress.9

Consequently, prolonged venous congestion can result in organ dam-
age, which may manifest as pulmonary vascular remodeling, hepatic
impairment, and renal damage.9

Similar to venous congestion, lymphatic congestion is a key feature
of HF and plays a central role in the clinical presentation and adverse
outcomes among patients with HF.2,10 In HF, several interconnected
pathophysiological mechanisms contribute to the accumulation of
interstitial fluid, leading to clinical manifestations of congestion, such as
peripheral edema, pulmonary edema, ascites, and renal dysfunc-
tion.2,10 Although, the individual components of these pathophysio-
logical mechanisms are unlikely to result in interstitial congestion; in the
context of congestive disorders, such as HF, these pathophysiological
abnormalities concurrently manifest and work in parallel, leading to
disruption of the homeostasis of the lymphatic system with subsequent
manifestations of clinical congestion. These mechanisms are summa-
rized as follows:
1. Increased fluid filtration: elevated capillary hydrostatic pressure,
essentially caused by venous congestion, results in increased fluid
filtration.11 In the absence of a proportional increase in lymph fluid
drainage, interstitial congestion ensues.11

2. Decreased drainage: elevated CVP hinders the drainage of
lymph through the thoracic duct and right lymphatic duct into the
central venous system. This drainage process is a passive one
that mainly relies on a negative pressure gradient between the
lymphatic ducts and central venous system; therefore, an in-
crease in CVP decreases lymph drainage into the central venous
system.2

3. Impaired lymph vessel integrity and compliance: increased vascular
permeability enhances the leakage of plasma and proteins into the
interstitial space, which contributes to the accumulation of intersti-
tial fluid.12 HF is characterized by systemic inflammation, which in-
creases vascular permeability and allows large molecules such as
proteins to enter the interstitial space.13 This, in turn, reduces
plasma oncotic pressure while increasing interstitial oncotic pres-
sure, resulting in a net increase in filtration volume. As the interstitial
fluid accumulates, lymphatics adapt by altering their contractile
activity. Although this adaptation is effective in acute inflammation,
it decreases significantly in chronic inflammation, such as in HF,
possibly indicating impaired lymph vessel integrity and compli-
ance.14 In addition, infiltrating neutrophils during inflammation
release neutrophil elastase, which degrades elastin microfibril
interfacer 1, weakening the intercellular junctions of lymphatic
endothelial cells and leading to lymphatic vessel collapse.15 In a
recent study examining the concept of impaired lymph integrity in
patients with HF, patients with HF with preserved ejection fraction
exhibited decreased density but increased size of the lymphatic
vessels on skin biopsies.16

4. Dysfunctional lymphatic and lymphovenous valves: lymphatic ves-
sels contain lymphatic valves that regulate unidirectional lymph
flow.17 Dysfunction of these valves can result in lymph reflux and
lymphedema.17 Similarly, lymphovenous valves control the return of
lymph to the cardiovascular system.17 The chronic elevation of CVP
seen in HF with the resultant retrograde pressure changes in the
lymphatic system could potentially lead to dysfunctional lymphatic
and lymphovenous valves.



Figure 2.
The two major lymphatic ducts (the thoracic duct and the right lymphatic duct) return lymph to the cardiovascular system by passively emptying into the venous system.
Figure is reproduced from Fudim et al.2
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5. Dysregulation of the renal lymphatic system: elevated post-
glomerular capillary hydrostatic pressure results in increased fluid
filtration and the accumulation of fluids within the renal interstitial
space.10 The renal lymphatic system attempts to counteract this
accumulation by increasing fluid drainage from the interstitial space,
resulting in elevated lymph flow and pressure.10 The rate of renal
lymph flow is directly linked to CVP and may equal or even surpass
the urinary output from the same kidney.18 However, after a certain
point, the renal lymphatic system becomes overwhelmed and
Figure 3.
Direct interstitial decongestion using the first generation of the WhiteSwell system. Fig
unable to match the increased fluid filtration, ultimately causing
interstitial space congestion and a rise in renal interstitial pressure.19

In contrast to other organs, the kidney is encased in a rigid and
nonexpandable capsule.19 Consequently, increased renal interstitial
pressure compresses renal structures, such as glomeruli, tubules,
and intrarenal veins, leading to a state akin to “renal tamponade”
with subsequent damage to the renal structures.19 Renal compres-
sion can further exacerbate local inflammation, in addition to the
systemic inflammation present in HF, resulting in further
ure is reproduced from Abraham et al.36



Figure 4.
In the first-in-human use of the direct interstitial decongestion system in a patient with heart failure, decongesting the lymphatic system resulted in a significant increase in
urine output. Figure is reproduced from Abraham et al.36
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compromise of renal blood and lymph vessel integrity and
lymphatic stasis.20,21 Furthermore, increased intrarenal pressure can
potentially hinder kidney perfusion, ultimately contributing to renal
dysfunction.

6. Alteration of cardiac lymphatics: similar to the role of the lymphatic
system in other organs and tissues, cardiac lymphatics play an
important role in regulating myocardial extracellular volume, and
dysregulation of cardiac lymphatics due to maladaptive remodeling
(as seen in various ischemic and nonischemic cardiac diseases) can
result in myocardial edema.22 Myocardial edema can subsequently
trigger myocardial interstitial fibrosis and cardiac dysfunction.22

However, studies aiming at understanding the effect of lymphatic
dysregulation on HF outcomes are sparse. Recent evidence suggests
that the degree of lymphatic dysregulation in patients with HF, as
assessed by the level of the lymphangiogenesis modulator vascular
endothelial growth factor C, is directly associated with adverse HF
outcomes (death and HF hospitalizations).23,24
Imaging modalities to assess the lymphatic system

There are several imaging modalities that can be used to assess and
visualize the central lymphatic system. Although none of these imaging
modalities has been specifically studied in HF, they could potentially be
helpful in assessing the degree of lymphatic dysfunction in HF and aid
future interventional approaches targeting the lymphatic system as
follows:

1. Pedal lymphangiography: this approach entails the insertion of
needles into lymphatic ducts through small incisions on the dorsum
of the feet.25 Then, radiopaque ethiodized oil is injected through
these needles, followed by normal saline.25 This process eventually
leads to opacification and visualization of the cisterna chyli and
thoracic duct.25

2. Intranodal lymphangiography: this technique involves accessing the
bilateral inguinal lymph nodes using 25-gauge spinal needles under
ultrasound guidance.25 Subsequently, oil-based contrast is injected
under fluoroscopic guidance.25

3. Dynamic contrast-enhanced magnetic resonance lymphangiog-
raphy: this imaging modality involves ultrasound-guided injection of
gadolinium-based contrast into the inguinal lymph nodes with
simultaneous dynamic acquisition of magnetic resonance images of
the chest and abdomen.26
Targeting the lymphatic system in HF

The initial management of congestion in HF primarily centers on
alleviating venous congestion, typically through the use of di-
uretics.27,28 This approach aims to modify the Starling forces by
reducing fluid filtration, which results from a decrease in capillary hy-
drostatic pressure, leading to an improvement in interstitial conges-
tion.27,28 However, in certain patients, this strategy often fails, partly
because the self-perpetuating congestive mechanisms (especially renal
congestive mechanisms) persist, hindering the kidney’s response to
diuretics with subsequent manifestation of diuretic resistance. There-
fore, alternative decongestive approaches have been developed to
overcome these limitations in selected patients. Ultrafiltration was
proposed as an attractive strategy to predictably remove sodium and
water from patients with congestion29,30; however, randomized evi-
dence showed conflicting results and did not generally demonstrate
superiority of ultrafiltration (compared with pharmacological strategies)
regarding serum creatinine level and body weight changes but showed
an increased risk of complications.29,30 Although these results may be
partly related to the use of a fixed rate of ultrafiltration irrespective of
the patient’s hemodynamic status and renal function, the efficacy and
safety of ultrafiltration for decongestion in patients with HF are still not
established.29,30 Given the constant need for alternative decongestive
strategies in patients with persistent congestion and the key role that
the lymphatic system plays in congestion, targeting the lymphatic sys-
tem has been proposed a novel pathway for fluid removal in patients
with HF.

A number of early animal and human studies explored the feasibility
and effectiveness of lymphatic drainage in HF. In a dog model of right
HF through the combination of tricuspid insufficiency and pulmonary
stenosis,31 the construction of a thoracic duct-to-pulmonary vein shunt
resulted in a rapid reduction in systemic venous pressure and an in-
crease in urinary sodium and water excretion.31 The initial documented
attempt to target the lymphatic system for fluid removal in human dates
back to 1963; in a study involving 5 patients with HF and intractable
congestion despite diuretic therapy, passive lymph drainage through
cervical thoracic duct cannulation resulted in a significant fall in CVP in
all patients with improvement in congestive symptoms and signs (ie,



Central Illustration.
Several self-propagating congestive mechanisms are involved in lymphatic dysregulation in heart failure. Although targeting the lymphatic system can potentially provide a novel
treatment pathway in heart failure, there remain significant gaps in our understanding of this approach and its feasibility. HF, heart failure.
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distended jugular veins, peripheral edema, and ascites).32 A subse-
quent study in 1969 examined cervical thoracic duct cannulation in 12
patients with HF and intractable congestion.33 Thoracic duct cannula-
tion in these patients resulted in a significant reduction in CVP (from a
mean of 32.9-14.0 cm H2O).33 This reduction was also associated with
an increase in urine output and improvement in clinical status.33

After these early studies, targeting the lymphatic system in patients
with HF remained quiescent for several decades, mainly owing to sig-
nificant advancement in medical therapy for HF over the following
decades. However, given the increased complexity and rising burden of
congestion over the past years coupled with major advances in imaging
and transcatheter approaches,34,35 novel approaches targeting the
lymphatic system in patients with HF have been developed.
Direct interstitial decongestion

Direct interstitial decongestion using the WhiteSwell system (White-
Swell) is a transcatheter delivered, device-based approach that comprises
a multilumen catheter equipped with 2 compliant balloons, 1 positioned
proximally and the other distally.36 It also includes a blood pump
mechanism that enables blood withdrawal between the balloons and its
return through the distal end.36 The system reduces local venous pres-
sures within the region enclosed by the balloons, thereby promoting the
drainage of interstitial fluid while ensuring the continued flow of blood
through the left internal jugular and left subclavian veins.36 To achieve this,
a catheter with 2 balloonsplaced at intervals is insertedacross the junction
of the jugular and innominate veins.36 When inflated, these balloons
isolate the thoracic duct outflow.36 Both balloons incorporate built-in flow
paths to facilitate jugular and subclavian blood flow, and a blood pump is
used to lower the pressure within the isolated area (Figure 3).36

This approach was initially studied in a sheep model of acute
decompensatedHF. Deployment and activation of theWhiteSwell device
resulted in a reduction in the extravascular lung water with a moderately
lower left ventricular filling pressures and increased urine output.36

Subsequently, the system was examined in a patient with HF with pre-
served ejection fraction who was admitted for acute HF and received
intravenous diuretics for 2 days with persistent congestion.36 Introduction
of the WhiteSwell device in this patient resulted in a significant
improvement in urine output, reduction in CVP and N-termi-
nal-pro-B-type natriuretic peptide, and improvement in orthopnea and
edema (Figure 4).36 The Safety and Feasibility of the WhiteSwell System
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for the Reduction of Interstitial Fluid Overload in Patients With Acutely
Decompensated HF ([SWIFTHF] NCT02863796) is an ongoing U.S. Food
and Drug Administration early feasibility study that aims to evaluate this
approach in the treatment of congestion in patients with acute HF.
Conclusion and future directions

The lymphatic system plays an integral but underappreciated role in
fluid homeostasis and its dysregulation is a key characteristic in patients
with HF. Dysregulation of the lymphatic system in patients with HF
stems from several self-propagating congestive mechanisms that work
concurrently and result in overwhelming of the interstitial drainage
process with subsequent manifestations of congestion. Therefore, tar-
geting the lymphatic system to counteract these congestive mecha-
nisms and aid in direct interstitial decongestion represents a novel and
attractive decongestive approach in patients with HF. However, as
feasibility studies of this approach are underway, there is a pressing
need for studies aiming at understanding the full dimensions of the
relationship between lymphatic dysregulation and HF, such as different
HF phenotypes and acuity (ie, acute vs chronic HF) and the implications
of lymphatic dysregulation on HF outcomes. In addition, studies aiming
to understand the short-term and long-term outcomes of targeting the
lymphatic system are needed. Finally, there is a need for the develop-
ment of tools and biomarkers to assess the degree of this dysregulation
because this would help select patients with HF who may benefit the
most from lymphatic interventions (Central Illustration).
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