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Abstract

Sertoli cells (Sc) are unique somatic cells of testis that are the target of both FSH and testos-
terone (T) and regulate spermatogenesis. Although Sc of neonatal rat testes are exposed to
high levels of FSH and T, robust differentiation of spermatogonial cells becomes conspicu-
ous only after 11-days of postnatal age. We have demonstrated earlier that a developmental
switch in terms of hormonal responsiveness occurs in rat Sc at around 12 days of postnatal
age during the rapid transition of spermatogonia A to B. Therefore, such “functional matura-
tion” of Sc, during pubertal development becomes prerequisite for the onset of spermato-
genesis. However, a conspicuous difference in robust hormone (both T and FSH) induced
gene expression during the different phases of Sc maturation restricts our understanding
about molecular events necessary for the spermatogenic onset and maintenance. Here,
using microarray technology, we for the first time have compared the differential transcrip-
tional profile of Sc isolated and cultured from immature (5 days old), maturing (12 days old)
and mature (60 days old) rat testes. Our data revealed that immature Sc express genes
involved in cellular growth, metabolism, chemokines, cell division, MAPK and Wnt path-
ways, while mature Sc are more specialized expressing genes involved in glucose metabo-
lism, phagocytosis, insulin signaling and cytoskeleton structuring. Taken together, this
differential transcriptome data provide an important resource to reveal the molecular net-
work of Sc maturation which is necessary to govern male germ cell differentiation, hence,
will improve our current understanding of the etiology of some forms of idiopathic male
infertility.
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Introduction

Spermatogenesis is a complex process where every step of male Germ cell (Gc) development
are essentially supported by somatic Sertoli cells (Sc) [1]. In response to various hormonal and
biochemical stimulation Sc produce important factors that regulate Ge division and differenti-
ation [1,2]. The functions of Sc are largely governed by the synergistic effect of Follicle Stimu-
lating Hormone (FSH) and testosterone (T) as Sc bear receptors for both the hormones [3].
Although Sc of infant primates and rodents are exposed to sufficient levels of FSH and T,
robust onset of spermatogenesis is not seen during infancy but is discernible only during the
onset of puberty [4,5]. We have demonstrated earlier that a developmental switch, in terms of
hormonal responsiveness, of Sc occurs in rats at around 12 days of postnatal age coinciding
with the rapid transition of spermatogonia A to B [4]. During pubertal development, Sc
become mature further with the changing need of differentiating Gc to support spermatogene-
sis. Therefore, such a pubertal maturation of testicular Sc is considered to be a prerequisite of
male fertility [6].

In rodents, upto 3-5 days after birth, Sc keep proliferating and attract the gonocytes
towards the basement membrane for establishing the spermatogonial stem cell (SSC) niche
[7]. Neonatal Sc continue to proliferate and thereby directly regulating the numbers of SSC
niches in the developing testes [8]. During second week of postnatal life, as the Gc enter into
meiosis, Sc stop proliferating and become enlarged to hold the growing number of G¢ within
their cytoplasmic extensions. The Sc-Sc tight junctions are formed to establish the blood-tes-
tis-barrier (BTB) at the age of 15-16 days after birth [9]. Sc prominently expresses tight junc-
tion and adherent junction proteins to hold various stages from spermatocyte to elongated
spermatids. Besides nurturing, mature Sc also maintain a finite number of Gc by regulating
apoptosis, scavenging dead cells, and changing adherent junctions to release mature sperm
into lumen. By the age of 55-60 days, fully mature sperm are seen in epididymis of rat suggest-
ing that by this time, adult Sc are fully differentiated to extend support to all stages of Gc for
maintaining spermatogenesis [10].

To understand the regulatory mechanism of spermatogenesis, it is imperative to explore
the changing landscape of gene expression during various phases of Sc maturation. Microar-
ray is a powerful technique to study differentially expressed genes in large numbers [11]. Dif-
ferential gene expression during spermatogenesis has been studied by various researchers
using microarray technology studied by us [12,13] and others [14-16]. These gene expres-
sion profiling experiments reveal candidate genes for the regulation of spermatogenesis and
fertility as well as targets for innovative contraceptives that act on gene products absent in
other somatic tissues. Here, using microarray technology, we have compared the hormone
stimulated (FSH and T in combination) differential transcriptome profile of Sc purified and
cultured from immature (5 days old), maturing (12 days old) and mature (60 days old) rat
testes. Our results suggest that transcriptome of Sc during different maturation stages differ
significantly and this information can help advance our understanding of regulatory mecha-
nisms of spermatogenesis.

Material and methods
Animals

Wistar outbred rats (Rattus norvegicus) were procured from colony maintained by Small Ani-
mal Facility, National Institute of Immunology, New Delhi, India. Animals were maintained
in a standard day night cycle with stable temperature and humidity and provided food and
water ad libitum. All the animal experimentations were approved by Institutional Animal

PLOS ONE | https://doi.org/10.1371/journal.pone.0191201 January 17,2018 2/25


https://doi.org/10.1371/journal.pone.0191201

@° PLOS | ONE

Transcriptome profile of developing Sertoli cells

Ethics Committee (IAEC) and performed following standard guidelines of “Committee for the
Purpose of Control and Supervision of Experiment on Animals (CPCSEA),” Government of
India.

Isolation and culture of Sertoli cells from 5 days and 12 days old rat testes

Sc cultures were prepared from 5 days and 12 days old rat testes as described earlier [4]. Briefly,
testes were decapsulated and chopped finely before sequential digestion with collagenase and
pancreatin enzyme at 34°C. Clusters of Sc were separated from mixture of cell suspension by
differential centrifugation. Cultures were maintained in DMEM-F12 HAM media containing
1% FBS for first 24 hrs before replacing with growth factor media (GF media) containing 5 pg/
ml sodium selenite, 10 pg/ml insulin, 5ug/ml transferrin, and 2.5 ng/ml epidermal growth fac-
tor. Sc cultures were maintained in defined GF media for 4 days. On day 3, cells were treated
with 20 mMTris-HCI (pH 7.4) for 3-5 min to get rid of contaminating Ge [17]. In vitro hor-
mone treatment was performed on day 4.

Isolation and culture of Sertoli cells from 60 days old rat

Sc from mature rat testes (60 days old) were isolated and cultured as described earlier [18].
Briefly, testes were decapuslated and seminiferous tubules were chopped, washed and repeat-
edly digested with Img/ml collagenase until most of Sc clusters were released. Sc cells were cul-
tured and maintained for 4 days before initiation of experiments as described previously [4].
On day 3, cells were treated with 20 mMTris-HCI (pH 7.4) for 5 min to get rid of contaminat-
ing Ge [17].

Purity of Sc culture

On day 4, Gc contamination were found to be less than 5% in Sc cultures of all age groups.
Purity of Sc in culture were identified by vimentin staining (Abcam, USA, Ab8978) whereas
Peritubular Cell (PTc¢) or Leydig Cell (Lc) contaminations were determined by the alkaline
phosphatase or the 3B-HSD activity respectively, as described by us before [4,18].

In vitro hormone treatment

On day 4 of culture, cells of all age groups were incubated with GF media containing hor-
mones (50ng/ml o-FSH and 107"M T in combination = FT media) in pulsatile manner (30min
of FT pulse/3hr)The doses of both o-FSH and T were previously found bioactive in cultured Sc
obtained from all three age groups studied [4,18]. Sc were exposed for ¥ hour (hr) to FT
media and then the FT media was removed and replenished with fresh GF media for 2” hr.
This was repeated upto 11 hr. Please note that since the treatment was terminated at 11"hr i.e.
1'/2 after receiving the 4™ pulse of FT media, Sc were in GF media at the time of termination.
This experiment was repeated at least three times in each age group of Sc cultures prepared on
different calendar dates. At the end of the experiments, cells were dislodged, washed and then
suspended in RNA-later and stored at -80°C until RNA extraction.

RNA extraction, labeling and microarray hybridization

Total RNA was isolated from Sc using Qiagen (Valencia, CA) RNAEasy Mini kit according to
the instructions of the manufacturer. Purity of Total RNA was assessed by the NanoDrop™
ND-1000 UV-Vis Spectrophotometer (Nanodrop technologies, Rockland, USA). Total RNA
with OD260/0D280>>1.8 and OD260/0OD270 > 1.3 was used for microarray experiments.
RNA integrity was assessed using RNA 6000 Nano Lab Chip on the 2100 Bioanalyzer (Agilent,
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Palo Alto, CA). For the assessment of total RNA quality, the Agilent 2100 Expert Software
used to determine RNA Integrity Number (RIN) which provided a quantitative value for RNA
integrity. RNA having RIN >9.0 out of maximum scoring of 10 was used for microarray
hybridization. The RNA which passed quality control parameters was labeled with Cy3 dye
and hybridized on rat whole genome 4X44K gene chip (Agilent Technology Inc.) as described
by us earlier [19].

Microarray scanning, feature extraction and array analysis

Hybridized arrays were scanned at 5pm resolution on an Agilent DNA Microarray Scanner,
Model G2565BA. Data extraction from images was done using Feature Extraction software of
Agilent. Hybridization signals were quantified using GeneSpringGx v 11.0.1 software from
Agilent Technologies. Pearson’s correlation coefficients were computed to assess the reliability
of data obtained from RNA preparation for 3 samples each from 5 day, 12 day and 60 day Sc.
The data retrieved from separate membranes with the same RNA samples yielded QC statistics
highly concordant with that of the manufacturer, and it revealed more than 95% confidence
level. In order to identify biological variation, integrated signal analysis for a given membrane
was performed and signal spots that were low after averaging, as compared to average back-
ground plus 2SD values, were removed. Within each hybridization panel, the 50th percentile
of all measurements was used as a positive control for normalization for each gene. Data nor-
malization, averaging, calculation of relative abundance of transcripts, ratio analysis, and fold
changes were performed on log transformed data using GeneSpringGx v.11.0.1 (Agilent Tech-
nologies, Santa Clara, CA, USA). Per-membrane and per-gene normalization were conducted
using GeneSpringGx v 11.0.1 normalization algorithms. Principal Component Analysis (PCA)
was performed for all annotated 5 day, 12 day and 60 day Sc samples for all expressed genes to
assess the similarity in gene expression patterns on the basis of underlying variability and clus-
ter structures using algorithm in Gene- Spring11.0.1 [20].

K-means cluster analysis and unsupervised hierarchic clustering analysis (HCA) was per-
formed using GeneSpringGx v.11.0.1 software. In K-means cluster analysis, gene expression
levels were randomly assigned into distinct clusters and the average expression vector was
computed for each cluster. For every gene, the algorithm then computed the distance to all
expression vectors, and moved the gene to the cluster whose expression vector was closest to it.
The entire process was repeated iteratively until no gene products could be reassigned to a dif-
ferent cluster. To further evaluate the patterns in gene expression profiles, unsupervised hier-
archic clustering (HCA) of data in pairwise comparisons among samples using a standardized
Pearson’s uncentered correlation vector with average linkage for distance measures, and their
visualization in the form of a heat map and dendrogram were performed.

Normalized data were used in pairwise overall comparisons between 5 day, 12 day and 60
day samples. The resulting gene lists from each pairwise comparison only included the genes
that showed a fold change of 2.0 or higher and a p< 0.05 by using a parametric Welch t test
with Benjamini-Hochberg multiple testing corrections for false discovery rate (FDR). All sta-
tistical analyses were performed using GeneSpring v.11.0.1 software. Identification of differen-
tially enriched gene ontology (GO) terms for genes in 4 clusters in K-means analysis, as well
as, those identified in differential expression analysis was carried out using a gene ontology
(GO) tree machine and GeneSpring v.11.0.1. Further, functional analysis of differentially
expressed genes was performed using GeneGo Metacore software (Thermo scientific,

St. Joseph, MI, USA), DAVID online data analysis tool and the Kyoto Encyclopedia of Genes
and Genomes (KEGG) platform (http://www.genome.jp/kegg/) and STRING database for
pathways analysis to link genomic information with higher order functional information. For
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preparation of heat maps of some important differentially expressed genes, a web based appli-
cation matrix2png was used [21]. For making interacting network of genes, STRING database
tool was used [22].

Quantitative RT-PCR

Quantitative RT-PCR (qRT-PCR) amplifications were performed in additional sets of Sc cul-
tures obtained from all 3 age groups with uniform hormonal treatments used in microarray to
validate expression level of various genes as per described by us earlier [4,19,23] Dissociation
curve analysis was performed immediately after amplification to ensure that there was only
one (gene specific) amplification peak. For each sample, the calculated quantity of each gene
was then normalized with relation to the quantity found for Ppia (Cyclophilin A). The relative
quantities of mRNA for target genes were determined by 2"**“* method. The means (+SEMs)
of 3 individual experiments were determined for each treatment group for the target gene. The
list of primers used for Real Time PCR is given in Table 1.

Statistical analysis

The differential expression of genes was determined by pairwise comparison of the genes that
showed a fold change of 2.0 or higher and a p< 0.05 by using a parametric Welch t test with
Benjamini-Hochberg multiple testing corrections for false discovery rate (FDR). The statistical
analyses to generate gene expression list were performed using GeneSpring v.11.0.1 software
(Agilent Technologies, Santa Clara, CA, USA). For qRT-PCR experiments, one treatment
group comprised of 3-4 wells of Sc within one culture set. At least 3 such sets of cultures (per-
formed on different calendar dates) were used to interpret the data. Data was expressed as
mean + SEM. Statistical analyses of data were performed by non-parametric student’s t-test for
comparison between two groups. Statistical tests were done using GraphPad Prism 5.01
(GraphPad Software Inc., La Jolla, CA, USA). P values < 0.05 were considered as statistically
significant.

Results and discussion

This study was undertaken to determine the comprehensive gene expression profile of Sc
obtained from different stages of postnatal testicular development. Sc drastically transform
during pubertal maturation to fulfill the changing need of developing Gc. Therefore, the
knowledge of differentially expressed genes by Sc during different postnatal ages will provide a
deeper insight into Sc mediated regulation of spermatogenic onset at puberty and its mainte-
nance in adulthood. Here, we have compared the differential gene expression of maturing (12
days old rats i.e. 12d) and mature (60 days old rats i.e. 60d) Sc, which have been normalized
against that of the immature (5 days old rats i.e. 5d) Sc. Five-days-old (5d) neonatal rats repre-
sent proliferative Sc with the establishment of the spermatogonial stem cell niche on the base-
ment membrane within the seminiferous epithelium; 12-days-old (12d) rats represent
maturing Sc facilitating the robust generation of spermatogonia B [4,24] and 60-day-old rats
(60d) represent fully mature, non-proliferative adult Sc where the blood testis barrier (BTB) is
completely established with the presence of all stages of Gc upto sperm [18,24].

Microarray analyses have been employed by different laboratories to identify independent
action of either FSH [25-27] or T [28-32] on testicular gene expression. Whereas both FSH
and T act synergistically to regulate Sc gene expression for supporting Ge differentiation [2].
Therefore, major aim of the present study was to investigate the age related change in Sc tran-
scriptome that has similar hormonal background. The doses of 0-FSH and T were previously
reported to be bioactive in terms of gene expression in Sc of all the age groups studied [4,18].
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Table 1. Primers used for validation of microarray genes.

Gene Name Accession Number Primer Sequence length Tm °C Product Size (bp)
AaSS NM_013157.3 F ATACAATGAAGAGCTGGTGAG 21 58.5 149
R GCCTCTTTGTCACGGTCTA 19 59.3
ABP NM_053706.1 F AGGGTTTGCTGATTTTGGTG 20 60 129
R GACGGACCCTGAGACACATT 20 60
Ccl5 NM_031116.3 F GCTTTCCTGTCATTGCTTGC 20 64.9 136
R AGGCCATAGGAGAGGACACA 20 63.2
Cldn 11 NM_053457.2 F ACGGTTGCGTATGCTTITGA 19 60 131
R ACACCCATGAAGCCAAATT 19 60
GJA1 NM_012567.2 F GTCTACCCCTCTGGGTGTGA 20 60 180
R AGGACCAGTCGAGGATGATG 20 60
Dmrtl NM_015826.5 F GGTCAGAGCATGTCCCAGAT 20 60 182
R GGTTCAGAGGACGCAGACTC 20 60
GDNF NM_019139.1 F GGCCGACAATGTACGAC 17 60 172
R CCACACCGTTTAGCGGAA 18 60
Ocln NM_031329.2 F CCCAGGTGGCAGGTAGATTA 20 60 193
R GCACCACGTTGGAAAAGAAT 20 58
Ppia NM_008907.1 ATGGTCAACCCCACCGTGT 19 60 101
TCTGCTGTCTTTGGAACTTTGTCT 24 60
PWWP1 NM_133549.2 F GGCTCCCAAGTCATAAGATC 20 60.2 126
R TCAAAGCAGCAGCAGAAGTC 20 62.7
ROBO1 NM_022188.1 F GAGTATGCGGGCCTGAAG 18 62.3 147
R GGGTCTGGCTTTCTGGATTA 20 63.5
SCF NM_021843.4 GTGGATGACCTCGTGGCATGTA 20 60 155
TCAGATGCCACCATGAAGTCC 21 60
Spzl NM_001024297.1 F CGGAAGCAGAAAAGATGGAC 20 63.9 125
R GCGGTTATTTCGAGCCTTCT 20 65.9
Testin NM_173132.1 F GGGTCATTGTGCCTCTAGTTG 21 63.8 117
R CCCATGCAGTCCAGTAGGTT 20 63.7
Tf NM_001013110.1 F TCTGTTTGTTCCGGTCTTCC 20 60 203
R GCACCCACCTCTTGGATTT 19 60
Fat3 NM_138544.1 F GCCCAACTATGAGAGCCAAG 20 64.0 150
R GGGGGTAGCTGATCCTGACT 20 64.5
Msln NM_031658.1 F GGAGGCTTGTGTCGATGGTA 20 64.0 137
R TCAGGGACTCGGGATAGCC 19 66.0
Unc5c NM_199407.1 F TTAGCCAAGTTGCAGGGAAT 20 64.4 146
R CAAGGAGGAAGATGACTGGTT 21 62.4
Wispl NM_031716.1 F AAAGTCGCCTCTGCAACCT 19 63.7 120
R AGCCTGCGAGAGTGAAGTT 19 60.9

https://doi.org/10.1371/journal.pone.0191201.t001

Similar to previous attempts [33,34], recently, Zimmermann and coworkers have reported the
transcriptional dynamics of murine Sc revealing many candidate genes essential for the pro-
gression of first spermatogenic wave [35]. To understand if there are some common conserved
genes between developing mouse and rat Sertoli cells, we have compared 394 differentially
expressed genes obtained from Zimmermann’s data with 4395 genes found by us. We have
identified 98 common genes which are accounted mostly for cell-cell communication, metabo-
lism, energy production and cell growth (S1 Fig). However, it is important to note here that
Zimmerman et.al. have reported Sc transcriptome at different postnatal ages in mouse,
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whereas our study distinctly illustrated rat Sc transcriptome under the influence of uniform
hormonal stimulation.

Rat is considered a better model (than mice) for understanding the regulation of testicular
functions [36]. Due to larger body size and higher blood volume and litter size, rats are more
favored for surgical, physiological and pharmacological experiments [37,38]. Moreover, in
terms of genetic distance, it is 5 million years closer to human than mice [39,40]. Keeping this
in mind, rat Sc were used in the present study.

Previously flow sorted Sc were directly used for their RNA expression analyses [35]. There-
fore, there is a probability that these cells may not be free from the proteolytic shock generated
by the prolonged enzymatic exposure during the isolation process [41]. Such shock may
induce transcriptional changes in the sorted cells contributing the final readout [42,43]. There-
fore, in this study, instead of direct use of the isolated cells, Sc of all age groups were uniformly
cultured for 4 days, a time period that was enough for stabilization the cells from the shock of
the isolation process.

Pulsatile pattern of hormone release plays a critical role in optimal hormonal action in the
target tissue as suggested by many in vivo studies [44,45]. The importance of pulsatile hormone
treatment to endocrine cells has also been well-characterized in cultured pituitary cells [44]
Administration of pulsatile GnRH (by changing both the amplitude and frequency) to cultured
pituitary cells has been practiced for determining the differential transcriptional regulation of
LH and FSH B subunits [44]. High and slow frequency pulses favor LH and FSH-B mRNAs
expression, respectively [44]. Pulsatile release of gonadotropins is also known to regulate testic-
ular function in vivo [46]. For example, pulsatile LH-releasing hormonal-therapy was found to
be effective over constant GnRH in restoring the normal gonadotropin secretion inducing fer-
tility in men with hypogonadotropic eunuchoidism [47]. We have recently demonstrated that
for hormone induced gene expression study, pulsatile treatment of hormones (both FSH and
T in combination) to cultured Sc from 18 days-old pre-pubertal rats’ shows better readouts as
compare to that of the conventional, constant stimulation with hormones [48]. Although the
establishment of hypothalamo-hypophyseal testicular axis steadily improves with age in
rodents, GnRH pulse generator activity initiates during fetal development [49]. Moreover,
neonatal Sc obtained from 5 days old rats do express both Androgen Receptor and FSH-Re-
ceptors [4]. Therefore, for the present study, cultured Sc of all three age groups were uniformly
stimulated with pulsatile hormones (FSH and T in combination for % hr after every 3hr) on
day 4 of culture to determine age specific, hormone induced differential transcriptome profile.

Microarray analysis

RNA isolated from Sc was labeled with Cy3 and hybridized on Agilent’s rat whole genome
4x44K Gene Chips (Agilent Technologies, Santa Clara, USA). The results of unsupervised
principal component analysis (PCA) of all samples and unsupervised hierarchic clustering
analysis (HCA) revealed a high order of sample homogeneity. Fig 1 A shows the results of the
unsupervised HCA of the gene expression profiles of the 3 samples each of 5d, 12d and 60d Sc.
The principal component analysis (PCA) shows that all the three biological replicates for 5d,
12d and 60d are falling in their respective dimensions (Fig 1B). Volcano plots of genes differ-
entially expressed between 5d and 12d (Fig 1C) and 5d and 60d (Fig 1D) provides a visual pre-
sentation of fold change of genes is respect to p-value.

To identify the clusters of genes whose expression is regulated in a similar way throughout
the samples, K-means clustering tool of GeneSpring software was applied to differentially
expressed genes across the 3 samples each of 5d, 12d and 60d Sc. As shown in S2A Fig, 4
major groups (named as clusters 1, 2, 3 and 4) were identified. Gene Ontology (GO) based
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B. Principal component analysis (PCA)
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Fig 1. Analysis of microarray data for homogeneity of biological replicate samples. (A) Unsupervised hierarchical clustering analysis (B) Principal
component analysis (C) Volcano plot analysis of differentially regulated genes between 5 days and 12 days and (D) Volcano plot analysis of
differentially regulated genes between 5 days and 60 days.

https://doi.org/10.1371/journal.pone.0191201.g001

functionality analysis of K-mean clusters shows distribution of genes among cellular compo-
nent (CC), molecular function (MF) and biological (BP) (S2B Fig). The raw microarray data
has been submitted to NCBI GEO under the accession number GSE48795.

Differential gene expression analysis

The resulting gene lists from each pairwise comparison included the genes that showed a
fold change of 2 (log,) or higher and a P < 0.05 by using a parametric Welch t test with
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5 day Vs 12 day 5 day Vs 60 day

Fig 2. Commonality analysis of differentially regulated genes between 12 days and 60 days Sc in comparison with
5 days Sc.

https://doi.org/10.1371/journal.pone.0191201.g002

Benjamini-Hochberg multiple testing corrections for false discovery rate (FDR). We com-
pared the gene expression data obtained from12d and 60dSc against 5dSc to find differen-
tially expressed genes. Venn diagram in Fig 2 shows that a total of 5074 genes were
differentially regulated of which 3746 were exclusive in 12d and 548 were only in 60d. Out of
3746 total regulated genes in 12d, 1945 were upregulated and 1801 were downregulated (S1
and S2 Tables). Likewise, out of 548 genes regulated in 60d, 360 genes were upregulated and
188 genes were downregulated (S3 and S4 Tables). A possible explanation for this difference
in the number of transcripts differentially regulated in 12d Sc and 60d Sc could be due to
their respective developmental state. We have reported earlier that rat Sc acquire necessary
developmental competence in terms of FSH responsiveness at 12 days of postnatal age coin-
ciding with the rapid transition of spermatogonia A to B [4]. On the other hand, we have also
reported recently that by 60 days of age Sc are fully differentiated and physiologically stable
in terms of responsiveness towards T for supporting the spermatogenesis [18]. Therefore, it
is reasonable to assume that such difference in the Sc physiology might be responsible for
their differential gene expression pattern.

Some of the important and highly regulated genes upregulated in 12d, upregulated in 60d,
downregulated in 12d, downregulated in 60d and differentially regulated in 12d and 60d are
listed in Tables 2, 3, 4, 5 and 6, respectively.

Gene Ontology (GO) terms analysis was performed using DAVID online resource. GO
term analysis showed enrichment of relevant biological processes such as “Germ cell develop-
ment”, “chemokine pathway”, “water transport”, “cell adhesion molecules”, “growth factors”,
“growth factors binding proteins”, “insulin signaling”, “carbohydrate metabolism”, “lipid met-
abolic pathway”, “programmed cell death”, “cell division”, “differentiation” being the most
prominent terms (Table 7).

» o« » o« » o«

% of DR refers to the percent of differentially regulated transcripts falling under the term;
p-value is the raw p-value from Fishers exact test. GO term analysis was done using DAVID
bioinformatics tool for functional analysis (http://david.abcc.ncifcrf.gov/).
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Table 2. Genes upregulated in 12 days Sc.

Gene Symbol Probe Set ID Gene bank Accession Gene Description Expression Fold change
Tex101 A_44 P209196 NM_139037 Testis expressed gene 101 7.06
Sycp2 A_44_P185215 NM_130735 Synaptonemal complex protein 2 5.62
Sycp3 A_44_P459191 NM_013041 Synaptonemal complex protein 3 5.51
Ccnblipl A_44_P901088 NM_001025141 Cyclin Bl interacting protein 1 5.48
Sycpl A_43_P11573 NM_012810 Synaptonemal complex protein 1 4.76
Ddx4 A_42_P641569 NM_001077647 DEAD (Asp-Glu-Ala-Asp) box polypeptide 4 4.75
F2 A_44_P208138 NM_022924 Coagulation factor II 4.57
Slc30a2 A_42_P663722 NM_012890 Solute carrier family 30 (zinc transporter), member 2 4.57
Nr4a3 A_43_P12619 NM_031628 Nuclear receptor subfamily 4, group A, member 3 4.53
Stcl A_44_P437956 NM_031123 Stanniocalcin 1 4.43
Ednl A_44_P334736 NM_012548 Endothelin 1 4.39
Apoa4 A_44_P1030225 NM_012737 Apolipoprotein A-IV 4.35
Eaf2 A_42_P604033 NM_172047 ELL associated factor 2 431
Lgals4 A_42 P491119 NM_012975 Lectin, galactose binding, soluble 4 4.24

https://doi.org/10.1371/journal.pone.0191201.t002

Table 3. Genes upregulated in 60 days Sc.

From the differential gene expression profile list, our main focus was on the set of genes
which might be important during postnatal maturation of Sc and therefore play crucial role in
spermatogenesis. The gene clusters were selected on the basis of their respective relevance in
spermatogenesis. After initial data analysis, a thorough literature search was done to

Gene Symbol Probe set ID Gene bank Accession Gene Description Expression fold change

Ldhc A_44_P370052 NM_017266 Lactate dehydrogenase C 11.69
Fabp9 A_43_P12321 NM_022854 Fatty acid binding protein 9, testis 10.81
Aqp8 A_44_P244668 NM_019158 Aquaporin 8 9.66
Sycp3 A_44_P459191 NM_013041 Synaptonemal complex protein 3 9.64
Rpgripl A_44_P144765 NM_020366.3 Retinitis pigmentosaGTPase regulator interacting protein 1 9.23
Tex101 A_44 P209196 NM_139037 Testis expressed gene 101 9.07
Sycpl A_43_P11573 NM_012810 Synaptonemal complex protein 1 8.99
Sycp2 A_44 P185215 NM_130735 Synaptonemal complex protein 2 8.94
Spetex-2D A_44 P166068 NM_001011701 Spetex-2D protein 8.91
Crisp2 A_44_P237318 NM_031240 Cysteine-rich secretory protein 2 8.53

https:/doi.org/10.1371/journal.pone.0191201.t003

Table 4. Genes downregulated in 12 days Sc.

Gene Symbol Probe set ID Gene bank Accession Gene Description Expression fold change
MGC108747 A_44_P454376 NM_001009628 Similar to alpha-1 major acute phase protein prepeptide -8.26
Kngl A_44 P151156 NM_012696 Kininogen 1 -8.05667
Upklb A_43_P11086 NM_001024253 Uroplakin 1B -6.98667
Agtr2 A_42_P470283 NM_012494 Angiotensin II receptor, type 2 -6.47
Fmo2 A_44 P486312 NM_144737 Flavin containing monooxygenase 2 -6.38
Cldn9 A_44_P419898 NM_001011889 Claudin 9 -6.34
Caspl A_44 P468258 NM_012762 Caspase 1 -6.12333
Hoxa5 A_44 P262274 NM_019102.3 Homeobox protein Hox-A5 -6.07667
Itm2a A_43_P10269 NM_001025712 Integral membrane protein 2A -6.05
Sponl A_43_P13420 NM_172067 Spondin 1 -5.90667
Mmp7 A_43_P11590 NM_012864 Matrix metallopeptidase 7 -5.88667

https://doi.org/10.1371/journal.pone.0191201.t004

PLOS ONE | https://doi.org/10.1371/journal.pone.0191201

January 17,2018

10/25


https://doi.org/10.1371/journal.pone.0191201.t002
https://doi.org/10.1371/journal.pone.0191201.t003
https://doi.org/10.1371/journal.pone.0191201.t004
https://doi.org/10.1371/journal.pone.0191201

®'PLOS | one

Transcriptome profile of developing Sertoli cells

Table 5. Genes downregulated in 60 days Sc.

Gene Probe set ID Gene bank Gene Description Expression fold
Symbol Accession change
Agtr2 A_42_P470283 NM_012494 Angiotensin II receptor, type 2 -9.44
Cdh22 A_44 P454259 NM_019161 Cadherin 22 -8.58
Krt2-7 A_44 P1029805| NM_001047870.1 keratin complex 2, basic, gene 7 -8.47
Cxcl12 A_44 P1034439 NM_022177 Chemokine (C-X-C motif) ligand 12 -8.32
Fmo2 A_44 P486312 NM_144737 Flavin containing monooxygenase 2 -7.90
Cdh11 A_43_P21114 NM_053392.1 Cadherin-11 -7.59
Pdgfra A_42_P457003 M63837 Rat alpha-platelet-derived growth factor receptor mnRNA -7.56
Adcy2 A_43_P15311 NM_031007 Adenylate cyclase 2 -7.36
Sfrp2 A_44_P503115 | NM_001100700.1 Putative secreted frizzled related protein -7.22
Adamts5 | A_44_P508162 NM_198761 A disintegrin-like and metallopeptidase (reprolysin type) with thrombospondin type 1 -7.19
motif, 5 (aggrecanase-2)
https://doi.org/10.1371/journal.pone.0191201.t005
Table 6. Differential gene list.
Gene Symbol | Probe Set ID GeneID | Gene description Expression (Fold
Change) in
comparison to 5
day
12day |60 day
Celal A_44_P1050595 24331 chymotrypsin-like elastase family, member 1 -1.08 3.53
RT1-Dbl A_44_P130516 294270 RT1 class II, locus Db1 -1.04 4.69
Tekt2 A_42_P475233 298532 tektin 2 (testicular) -1.29 3.75
Phf7 A_44_P1011595 | 364510 PHD finger protein 7 -1.03 5.49
Akrlc2 A_44_P323773 291283 aldo-keto reductase family 1, member C2 1.58 -2.86
Galntl5 A_44_P590256 499968 UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase-like 5 -1.25 2.9
Marchll1 A_44_P1023058 499558 membrane-associated ring finger (C3HC4) 11 -1.57 6.10
Anol A_42_P598679 309135 anoctamin 1, calcium activated chloride channel -1.41 2.17
Npas2 A_44_P945456 316351 neuronal PAS domain protein 2 -1.38 2.17
Trim2 A_44 P980353 361970 tripartite motif-containing 2 1.04 -4.19
https://doi.org/10.1371/journal.pone.0191201.t006
Table 7. Functional category enrichment analysis based on gene ontology terms.
Biological Process GO Term ID Counts % of Differentially Regulated genes p-Value
Spermatogenesis GO0:0007283 19 7.8 4.1E-9
Microtubule cytoskeleton GO0:0015630 14 5.2 9.8E-4
Hexose biosynthetic process GO0:0019319 4 1.4 0.005
MAPK signaling pathway GO:0051403 11 3.6 2.1E-7
Phosphate metabolic process GO:0006796 107 7.6 7.6E-7
Neuron projection GO:0043005 61 4.3 3.4E-6
Ton homeostasis GO:0050801 58 4.1 8.3E-6
Cell adhesion GO:0007155 64 4.5 1.08E-5
Cytoskeleton GO:0005856 1.6 7.5 2.06E-5
Transcription regulator activity GO:0030528 117 8.3 5.7E-5
Regulation of cell motion GO:0051270 30 2.1 2.8E-4
Regulation of programmed cell death G0:0043067 79 5.6 5.1E-4
Small GTPase mediated signal transduction GO:0007264 33 2.3 9.2E-4
Growth factor binding GO0:0019838 11 3.6 2.6E-6
Vasculature development GO:0001944 15 4.9 1.1E-4
Chemokine signaling pathway GO0:0070098 11 3.6 0.0011
https://doi.org/10.1371/journal.pone.0191201.t007
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understand how these gene clusters obtained in our microarray data were important in the
process of spermatogenesis. Thereafter, the clusters of genes selected were used for further
pathway analysis.

Genes potentially involved in some of the important biological functions related to sper-
matogenesis are discussed below.

Chemokine signaling

Chemokines are small cytokines important for chemotactic migration of cells including pri-
mordial germ cells. The chemokines that are important for homing of Gc, were downregulated
in 12d and 60d Sc when Gc have already established in their respective niche. Since 5d Sc are
actively involved in attracting Gc and creating germinal stem cell niche, higher expression of
chemokine related genes by 5d Sc indicates important role of chemokine in immature testis
(Fig 3A). Interacting network of these chemokine molecules reveals that chemokines and their
receptors are closely related to each other. CXCL12, also known as stromal cell derived factor-
1 (SDE-1), is expressed by Sc and CXCR4 is expressed by the Ge population of the adult
human testes [50]. Interaction between the chemokine CXCLI12 and its receptor CXCR4 is
responsible for the maintenance of adult stem cell niches.

Mitogen Activated Protein Kinase (MAPK) pathway

The MAPK pathway acts to integrate diverse signals to regulate a variety of cellular functions
such as cell cycle progression, cell adherence, motility and metabolism and thereby influence a
number of developmental processes [51]. MAPK pathway is pre-dominant in immature Sc
and downregulate upon maturation of Sc [52]. MAPK pathway genes were differentially
expressed in microarray data. Majority of these genes were downregulated in both 12d and
60d Sc. All of these genes were directly interacting with each other forming strong network
(Fig 3B). Genes which were downregulated in 60d but induced in 12d Sc were dual specificity
phosphatases (Dusp1&7), brain derived neurotrophic factor (Bdnf), nuclear receptor subfam-
ily 4, group A, member 1 (Nr4al) and neurotrophin 3 (Ntf3). MAP3K1 act to regulate or inte-
grate signals during testis development as Map3k1-deficient mice are non-viable [53]. p38
MAPK signaling initiates G1 mitotic arrest in a variety of terminally differentiated cell types
[54]. DUSP and JIK were upregulated in 12d and 60d Sc. [55,56]. These two genes are negative
feedback regulator of MAPK signaling, suggesting predominant role of MAPK signaling is
immature Sc but not upon their differentiation [57].

Cytokine signaling

Cytokines are potent growth factors and their differential expression is important for regulat-
ing different functions in infant and adult testis [58]. Sc produce cytokines such as Interleukins
(ILs), Interferons (IFNs), Tumor necrosis factor (TNF), transforming growth factor (TGF) etc.
which play important role in spermatogenesis [59]. Interleukins were the majority of cytokines
found differentially expressed in our microarray data. With exception of few, most of these IL,
their isoforms and their receptors were downregulated in both 12d and 60d Sc. (Fig 3C). The
Transforming Growth Factor beta (TGFp) superfamily of ligands, including TGFBs, activins,
bone morphogenetic proteins (BMPs), nodal, and growth and differentiation factors (GDFs)
govern Ge development [60]. TGF-b3 regulates the permeability of Sc tight junctions helping
spermatogonia to cross BIB during progression of spermatogenesis and release of mature
sperm while spermiation [61,62, 63]. IL-10. is the most abundant Sc growth factor in the
pubertal and adult testis while IL-1p is a potent growth factor for immature rat Sc [64]. Activin
regulate number of Gc in the fetal testis and Gc maturation at the onset of spermatogenesis,
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Fig 3. An overview of some important pathways differentially regulated in 12d and 60d Sc as compared to 5d Sc and their interactome map.
Chemokine signaling (3A), MAPK signaling (3B), Cytokine signaling (3C) and Growth factors (3D). The heatmap shows differential expression of
some selected pathways genes across three biological replicates in 12d and 60d Sc. Interacting network analysis of these genes shows how these genes

interact with each other and form a network.

https://doi.org/10.1371/journal.pone.0191201.g003

contributing to the complex signaling networks that govern normal testis development [65].
Network analysis shows that interleukins and transforming growth factor molecules make two
distinct networks which are connected to each other.

Growth factors

A number of growth factors are expressed in testis which control migration, differentiation,
and proliferation of primordial germ cells and Sc [66]. Majority of these growth factors are
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https://doi.org/10.1371/journal.pone.0191201.g004

Insulin-like growth factors, Fibroblast growth factors and their receptors and binding proteins.
Growth factors provide signals for developing Sc and hence their expression is increased in
12d Sc. Elevated expression of these genes up to 12d of age in Sc signifies their role in migra-
tion of Gc in SSC niche, proliferation of spermatogonia, entry of spermatogonia in meiosis
and Sc-Gc interaction. Some genes i.e. PDGFa, Mstl, KitL, GDNF, TFF2 and GDF15 were
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induced in 12d Sc and were persistently expressed in 60d Sc also (Fig 3D). These genes interact
with each other and forms strong network. These genes are implicated in proper germ-line
development and regulation of proliferation and differentiation of Gc during spermatogenesis
[66,67]. Genes of the IGF signaling pathway has been shown to express in testis, especially in
Sc. They act as strong mitogenic and anti-apoptotic signal during proliferation of Sc. IGF1
inhibits differentiation of Gc [68]. FGFs are involved in the proliferation and differentiation of
testicular cells and involved in the regulation of spermatogenesis [69]. In contrast to other
growth factors, FGF18 was upregulated in both 12d and 60d Sc. FGF18 plays role in pre-Sc
functions but its role after birth has yet not been assigned.

Small GTPases and cytoskeleton maintenance

Small GTpases are involved in regulating Sc-Gc tight junctions, Gc movement, and cell divi-
sion [62]. Small GTPase which are upregulated in both 12d and 60d Sc were guanine nucleo-
tide binding protein, alpha 13 (Gnal3), muscle and microspikes RAS (Mras), Ras-related
protein Rab-1B (Rablb), ras homolog gene family, member V (Rhov), disabled homolog 1
(Dab1l) and Rho GTPase activating protein 5 (Arhgap5). Members of Rho GTPases are
important part of the signaling pathway that is involved in inducing cytoskeletal changes,
lamellipodia and filopodia formation and the promotion of cell motility [70]. Activation

of RhoBGTPases modulates the actin cytoskeleton network resulting in adjacent junction
disruption and germ cell loss from the seminiferous epithelium [62]. Sc have a highly
developed membrane trafficking system that might be regulated by small GTPases [71]

(Fig 4A). Network analysis reveals that these genes make two networks which are
interconnected.

Many genes involved in cell-cell junctions were found well expressed in 12d and 60d Sc.
These genes such as Integrin alpha 6 subchain (Itga6), vinculin (Vcl), V-raf murine sarcoma
viral oncogene B1-like protein (Braf), laminin, alpha 1 (Lamal), Collagen alpha 2 (Cola2) and
reelin (Reln) forms important interacting component of Sc-Sc and Sc-Ge junctions. We found
Integrin alpha 4 subchain (Itga4) and Integrin alpha 5 subchain (Itga5) downregulated in both
12d and 60d Sc. These two genes are reported to be highly expressed in embryonic and infant
testis as they are crucial for making spermatogonial stem cell niches [70].

Apoptosis and phagocytosis

Many of the genes involved in programmed cell death were induced in 12d Sc. The genes upre-
gulated in both 12d and 60d were Microphthalmia-associated transcription factor (Mitf), Cbp/
p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal domain, 2 (Cited2), Bcl-
2-related ovarian killer protein (Bok), crystallin, alpha B (Cryab). Fos-like antigen 1 (Fosl1)
and cyclin-dependent kinase 5, regulatory subunit 1 (p35) (Cdk5r1) were upregulated in 12d
but remain unchanged in 60d Sc. The genes which were upregulated in 12d but downregulated
in 60d were hormone-regulated proliferation associated protein 20 (Hrpap20), Fas ligand
(TNF superfamily, member 6) (Faslg), endothelin receptor type B (Ednrb), glutamate receptor,
ionotropic, delta 2 (Grid2) and similar to zinc finger protein mRitl beta (Bcll1b) (Fig 4B).
Many of the genes in this pathway are connected with each other in a network. However, this
network is not very strong as compared to other networks.

Genes involved in phagocytosis were dynein, cytoplasmic, heavy polypeptide 2 (Dnch2),
cartilage oligomeric matrix protein (Comp), mannose receptor, C type 1 (Mrcl) and phospho-
lipase A2 receptor (Pla2r1). These genes were upregulated in 60d Sc. These genes were either
slightly downregulated or remained unaltered in 12d Sc.
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Genes involved in homeostasis

Another major group of genes conspicuously expressed by mature Sc are the genes which are
important for maintenance of homeostatic environment inside seminiferous tubule. This
included genes from sodium and potassium ion channels, water transporters, voltage gated
ion channels, voltage dependent chloride channels etc. Sc play a key role in the establishment
of an adequate luminal environment in the seminiferous tubules of the male reproductive
tract. Secretion of the seminiferous tubular fluid (STF) is important for successful completion
of spermatogenesis as it provides the medium of transport to maturing spermatozoa [72]. STF
release begins during sexual development and is dependent on FSH [73,74]. Sc regulate the
passage of ions and the selective flow of water, steroids and carbohydrates into the tubular
lumen [75].

Spermatogenesis

The genes which are important for maturation of sperm in adult were found to upregulated in
60d Sc. The example of some of these genes are Spermatogenesis Associated 20 (Spata20), Cap-
ping Actin Protein Of Muscle Z-Line Alpha Subunit 3 (Capza3), Phosphoglycerate Mutase 2
(Pgam2), DnaJ Heat Shock Protein Family (Hsp40) Member B13 (Dnajb13), Heat Shock
Protein Family A (Hsp70) Member 2 (Hspa2), Thioredoxin Domain Containing 8 (Txndc8),
P-element Induced WImpy testis in Drosophila 11 (Piwill), glycerol kinase-like 1 (GK-rs1)
and Gametogenetin Binding Protein 1 (Ggnbp1) (Fig 4C).

Genes expressed in nervous system

The genes which are normally expressed in neuronal processes were found to be expressed by
Sc. Interestingly, genes which are prominently expressed in nervous system were found upre-
gulated in 12d and 60d Sc. Sortilin1 (Sortl) is expressed in brain, spinal cord and muscles but
also has roles in embryogenesis [76-78]. It acts as receptor for neurotensin and co-receptor for
Nerve Growth Factor (NGF) and Brain Derived Neurotrophic Factor (BDNF) mediating cell
survival and apoptosis. Nerve growth factors have been shown to play important role in Sc-Sc
interaction [79,80]. Caveolae are small invaginations of the plasma membrane which plays
important roles in signal transduction, cholesterol transport, and endocytosis [81,82]. Caveo-
lin2 are more abundant in terminally differentiated cells [83]. Most of such genes were upregu-
lated in both 12d and 60d Sc. (Fig 4D).

Metabolism

Sc possess specialized metabolic mechanisms to meet specific energy demand of developing
germ cells [84]. Sertoli cells convert glucose into lactate which is preferentially uptake up by
germ cells. In our microarray results, most of the genes which are associated with glucose
metabolism were induced in 60 day Sc. These genes were either remained unaltered or slightly
downregulated in 12d Sc. The example of such genes are aminoadipate-semialdehyde synthase
(Aass), betaine-homocysteine methyltransferase (Bhmt), glucokinase activity, related sequence
2 (Gk-rs2), hypoxanthine guanine phosphoribosyl transferase (Hprt), inositol 1,4,5-trispho-
sphate 3-kinase A (Itpka), Pyruvate carboxylase (Pc) and phosphoglycerate mutase 2 (Pgam2).
fructose-1,6- biphosphatase 1 (Fbp1) was downregulated in 12dSc (Fig 4E).

Wnt signaling

The wingless-related MMTYV integration site (WNT) gene family encodes a large number of
secreted signaling glycoproteins that are involved in many biological processes including
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embryonic development, adult tissue homeostasis, maintenance of progenitor cell types and
cell fate determination and differentiation [85]. Differential expression of Wnt signaling is
important for proper functioning as Sc specific constitutive activation of WNT/CTNNB path-
way causing sterility. Wnt ligands (Wnt4, Wnt5a) were upregulated and Wnt pathway inhibi-
tors (sFRP) were downregulated in 12d and 60d Sc. Wnt 4 is important for proper functioning
of Sc after birth as differentiation of Sc becomes compromised in Wnt4 mutant testes [86].
There are no reports of Wnt 2 expression in Sc hence upregulation of Wnt 2 in only 60d Sc
may be intriguing. WNT5a has been shown to promote SSC self-renewal [87]. Secreted Friz-
zled-related proteins (sFRPs) are secreted glycoproteins that can antagonize WNT mediated
signaling by direct competitive interaction with WNT ligands [88,89]. sFRP1 has been shown
to downregulate in mature testis showing its importance in regulating spermiation in adult rat
testis [90] (Fig 4F). Network analysis reveals that all the Wnt ligands and receptors form strong
network and are closely related. The other members of the pathway form another network and
both these networks are connected together.

qRT-PCR validation of genes identified by microarray

In order to authenticate the array data the expression patterns of some of the genes were vali-
dated by quantitative reverse transcription PCR (q-RT-PCR) with additional sets of Sc culture
obtained from all three age groups with consistent hormonal treatments (pulsatile FSH and T
in combination for 11hr) and were compared with that of the array data. The genes considered
were divided in five groups: 1) FSH responsive genes like SCF, GDNF, ABP, Transferrin and
Dmrtl in both 5d and 12d as reported earlier either by us or others [2-4]. T responsive genes
like Claudin11, Occludin and Connexin43 in both 5d and 12d as reported earlier either by us
or others [3,4,91]. Genes downregulated in both 12d and 60d [UNC-5 family of netrin recep-
tors (Unc5c), Mesothelin (Msln), FAT Tumor Suppressor Homolog 3 (Fat3), Roundabout
homolog 1 (Robol) and WNT1-inducible-signaling pathway protein 2 (Wisp)]; 2) genes
downregulated in 12d but upregulated in 60d [Alpha-aminoadipic semialdehyde synthase
(Aass), Chemokine (C-C motif) ligand 5 (Ccl5)], and 3) genes upregulated in both 12d and
60d [Hepatoma derived growth factor 1 (Pwwp1), spermatogenic zip 1 (Spz 1) and Testin].
For each sample, the calculated quantity of each gene was normalized with the endogenous
control Ppia (Cyclophilin A). The relative quantities of mRNAs for all target genes were
determined by 2**“' method as reported by us before [4,19]. It is important to note that,

like the array data, the gene expression values obtained from 12d and 60d Sc by q-RT-PCR
were normalized against that found in 5d Sc. Expression patterns of both FSH or T responsive
genes (Fig 5A and 5B) and some other selective genes (Fig 6) generated by qRT-PCR analyses
were consistent with their expression pattern found in microarray. This observation further
strengthens the authenticity of our array data.

Conclusion

Postnatal maturation of testicular Sc is critical in regulating male fertility. Therefore, it
becomes essential to investigate the genes expressed by Sc during this phase of development.
Our microarray results have indicated differential expression of genes associated with cyto-
architecture, metabolism, cytokines, chemokines, growth factors, MAPK signaling and Wnt
signaling among others. Taken together, this differential transcriptome data provide an impor-
tant resource database to reveal the molecular network of Sc maturation which is necessary to
govern male germ cell differentiation. This information will improve our current understand-
ing of the etiology of some forms of idiopathic male infertility with persistent immature Sc
even in adulthood.
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Supporting information

S1 Fig. Comparison of gene sets between the present study and the data published by Zim-
merman et.al. There are 96 genes common between our data and Zimmerman’s data and
these genes are mainly involved in signal transduction, cell-cell communication, energy and
metabolism and cell growth.

(TIF)

S2 Fig. K-mean analysis of co-expressed genes. (A) Entity based clustering analysis of co-
expressed genes identified four clusters of co-expressed genes. (B) Gene Ontology (GO) based
functional analysis of genes grouped under four clusters. Functional analysis was performed
for molecular function (MF), cellular components (CC) and biological processes (BP).

(TIF)

S1 Table. Genes upregulated in 12d Sc.
(XLS)

$2 Table. Genes downregulated in 12d Sc.
(XLS)

$3 Table. Genes upregulated in 60d Sc.
(XLS)

$4 Table. Genes downregulated in 60d Sc.
(XLS)
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