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Abstract

Urogenital schistosomiasis is caused by the blood fluke Schistosoma haematobium and is

one of the most neglected tropical diseases worldwide, afflicting > 100 million people. It is

characterised by granulomata, fibrosis and calcification in urogenital tissues, and can lead

to increased susceptibility to HIV/AIDS and squamous cell carcinoma of the bladder. To

complement available treatment programs and break the transmission of disease, sound

knowledge and understanding of the biology and ecology of S. haematobium is required.

Hybridisation/introgression events and molecular variation among members of the S. hae-

matobium-group might effect important biological and/or disease traits as well as the mor-

bidity of disease and the effectiveness of control programs including mass drug

administration. Here we report the first chromosome-contiguous genome for a well-defined

laboratory line of this blood fluke. An exploration of this genome using transcriptomic data

for all key developmental stages allowed us to refine gene models (including non-coding ele-

ments) and annotations, discover ‘new’ genes and transcription profiles for these stages,

likely linked to development and/or pathogenesis. Molecular variation within S.
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haematobium among some geographical locations in Africa revealed unique genomic ‘sig-

natures’ that matched species other than S. haematobium, indicating the occurrence of

introgression events. The present reference genome (designated Shae.V3) and the findings

from this study solidly underpin future functional genomic and molecular investigations of S.

haematobium and accelerate systematic, large-scale population genomics investigations,

with a focus on improved and sustained control of urogenital schistosomiasis.

Author summary

More than 100 million people are infected with the carcinogenic blood fluke Schistosoma
haematobium, the aetiological agent of urogenital schistosomiasis—a neglected tropical

disease (NTD). In spite of its major significance, little is known about this fluke, its inter-

actions with the human and snail intermediate hosts and the pathogenesis of the urogeni-

tal form of schistosomiasis at the molecular and biochemical levels. To enable research in

these areas, we report the first chromosome-level genome and markedly enhanced gene

models for S. haematobium. Comparative genomic analyses also reveal evidence of past

introgression events between or among closely related schistosome species. This present

reference genome for S. haematobium and the findings from this study should underpin

future functional genomic and molecular investigations of S. haematobium and accelerate

systematic, large-scale population genomics investigations, with a focus on improved con-

trol of urogenital schistosomiasis.

Introduction

Urogenital schistosomiasis, caused by the blood fluke Schistosoma haematobium, is one of the

most neglected tropical diseases (NTDs) worldwide, afflicting more than 100 million people,

particularly in Africa and the Middle East [1,2]. This disease is transmitted to humans via
aquatic snails (intermediate hosts) typically of the genus Bulinus [3] and is characterised by

granulomata, fibrosis and calcification in the urinary bladder wall and other parts of the uro-

genital tract [4,5], with complications including increased susceptibility to HIV/AIDS [6] and

squamous cell carcinoma of the urinary bladder [7,8].

Although no vaccine is available to prevent urogenital schistosomiasis, affected people can

be treated with the anthelminthic drug, called praziquantel. However, treatment efficacy with

this drug can be variable [9–13], such that mass treatment alone might not achieve a sustain-

able control of this disease. Effective control is achieved by breaking the transmission of infec-

tion/disease, which requires sound knowledge and understanding of the biology and ecology

of S. haematobium.

A number of studies have shown marked molecular genetic variation within S. haemato-
bium [14–17], and some have provided evidence of hybridisation and/or introgression events

occurring between members of the S. haematobium-group (e.g., S. haematobium, S. bovis, S.

curassoni, S. guineensis, S. intercalatum and S. mattheei) in regions of sympatry in continental

Africa and, more recently, in France (Corsica) [18–21]. Most studies utilised nuclear ribosomal

or mitochondrial DNA, or biochemical markers, and genome-wide investigations are starting

to be employed [22]. Thus, it would be highly beneficial to conduct genome-wide analyses of

genetic variation within the species currently recognised as S. haematobium and closely related

species (i.e. of the “S. haematobium-group”) [23,24].
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Central to such expanded analyses will be the availability of a high-quality genome for a

well-defined line of S. haematobium. Although progress has been made in this direction

[25,26], draft genomes for S. haematobium remain fragmented and their gene annotations

incomplete, compromising comprehensive analyses of molecular variation. Here we use a

combination of Hi-C sequencing, and long-read nanopore and PacBio data to produce and

annotate the first chromosome-level genome for a well-defined laboratory line of S. haemato-
bium, and explore the nature and extent of molecular variation within S. haematobium at dif-

ferent stages of development from distinct hosts and from multiple geographic locations in

Africa. We discuss the implications of this work for future, large-scale population genetic

investigations and for the exploration of hybridisation and introgression events in natural

schistosome populations.

Results

Reference genome (Shae.V3)

We assembled a chromosome-level reference genome (Shae.V3) for an Egyptian strain of S.

haematobium [27] from 30,735,883 paired-end Hi-C reads, 4,532,276 Oxford Nanopore long-

reads (S1 Table) as well as mate-pair and PacBio data sets (NCBI accession number

PRJNA78265) available from previous studies [25,26]. Shae.V3 was assembled into 163 scaf-

folds, estimated at 400.27 Mb, 98% of which were represented in eight chromosomes. These

inferred chromosomes have high synteny to those of S. mansoni via 380 linked, syntenic blocks

of genes representing 96% of the S. mansoni genome (Fig 1A). One of the linked blocks repre-

sented a rearrangement between chromosomes 2 and 3 (S2 Table). A comparison of Shae.V3

with assemblies for S. japonicum and S. bovis (Figs 1B and 1C) showed similar levels of synteny

(502 and 339 syntenic blocks, respectively), but a lower percentage of linked scaffolds (83.0%

and 33.8%, respectively). For S. japonicum, eight rearrangements were evident, whereas rear-

rangements were not detected for S. bovis. A comparison of genome Shae.V3 with a previous

assembly for S. haematobium (i.e. Shae.V2 with 130 linked scaffolds) [26] (Table 1; Fig 1D)

showed that Shae.V3 is substantially more contiguous.

Gene models and annotation

We transferred 6277 high-confidence gene models (i.e. 67.4%) from Shae.V2 to Shae.V3, and

inferred 3154 more genes based on evidence from mapped long and short RNA sequence

reads (~ 20.5 million and ~ 277.9 million, respectively) from all key developmental stages and

both sexes of S. haematobium. All 9431 gene models were encoded on 155 scaffolds, with most

(n = 9182; 97.4%) located on the eight scaffolds representing all chromosomes of S.

haematobium.

Of all 9431 genes, 9246 (98%) had orthologs in one or more of three other schistosome spe-

cies (S. mansoni: n = 8462; S. japonicum: 7953; S. bovis: 9246), which clustered into 8370

ortho-groups (S3 Table). All 14,700 isoforms predicted for the 9431 genes were supported by

RNA-Seq data (S4 Table). Short and long-read transcript data also provided support for 12,563

5’- and 12,888 3’-untranslated regions (UTRs).

The gene set inferred for Shae.V3 is superior to that of Shae.V2, achieving a higher overall

BUSCO score, with fewer fragmented or missing BUSCOs (Table 2). It also contains novel

genes, inferred using RNA-Seq evidence for the sporocyst (n = 19), cercaria (9), schistosomule

(2) stages or eggs from urine (15) (S4 Table). Of all 14,700 conceptually translated protein

sequences, 13,649 (92.9%) were annotated using one or more databases (S5–S7 Tables), includ-

ing InterProScan (n = 13,220), eggNOG (12,273) and Kyoto Encyclopedia of Genes and

Genomes (KEGG; 9768).
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Fig 1. Synteny and contiguity of the Schistosoma haematobium reference genome. Comparisons are shown with genomes of A, S. mansoni, B, S. japonicum,

C, S. bovis and D, the published draft genome of S. haematobium (Shae.V2). The eight chromosomes are represented as bars in a circular fashion, are distinctly-

coloured in a dark shade and named according to the S. mansoni chromosomes. Syntenic blocks containing five or more single-copy orthologs (SCOs) between

S. haematobium and the respective other species are shown as ‘links’ and are coloured, in a lighter shade, based on the link that spans the largest portion of the

linked reference scaffold/chromosome. The number of SCOs, syntenic blocks, and linked scaffolds, as well as the percentage of the genome assembly that they

represent are shown for each panel.

https://doi.org/10.1371/journal.ppat.1010288.g001
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Table 1. Key metrics of the Schistosoma haematobium Shae.V3 assembly and comparison with assemblies for other key schistosome species.

Metric S. haematobium V3 S. haematobium V2 S. mansonib S. bovisb S. japonicumb

N50 48,328,128 4,779,868 50,458,499 202,989 1,093,989

L50 3 26 3 498 94

N90 22,148,653 1,076,958 24,989,083 30,057 238,898

L90 7 88 7 2299 348

Longest scaffold 93,306,550 14,276,808 88,881,357 1,115,616 6,264,197

Shortest scaffold 2000 518 1307 2009 1019

Number of scaffolds 163 666 320 4774 1789

Genome size 400,271,889 371,394,055 409,579,008 373,478,075 369,900,518

Number of Ns 23,062 (0.01%) 951,002 (0.26%) 9,332,694 (2.28%) 12,677,721 (3.39%) 26,673 (0.01%)

Number of gaps 45 3128 282 16,814 319

Repeat content 54.3795 53.39 49.23 50.9114 46.87

GC content 35.2 34.4 34.7 33.2 33.8

Complete BUSCOsa 211 (82.7%) 195 (76.5%) 216 (84.7%) 203 (79.6%) 201 (78.8%)

Complete and single-copy BUSCOs 208 (81.6%) 193 (75.7%) 211 (82.7%) 198 (77.6%) 200 (78.4%)

Complete and duplicated BUSCOs 3 (1.2%) 2 (0.8%) 5 (2.0%) 5 (2.0%) 1 (0.4%)

Fragmented BUSCOs 22 (8.6%) 32 (12.5%) 13 (5.1%) 26 (10.2%) 20 (7.8%)

Missing BUSCOs 22 (8.6%) 28 (11.0%) 26 (10.2%) 26 (10.2%) 34 (13.3%)

a Number of Benchmarking Universal Single-Copy Orthologs (BUSCOs) identified (genome mode), and percentage of the 255 genes within the Eukaryota data set.
b NCBI accession numbers: PRJEA36577, PRJNA520774 and PRJNA451066. Data sets were obtained from WormBase Parasite (release WBPS15).

https://doi.org/10.1371/journal.ppat.1010288.t001

Table 2. Features of the gene and protein sets for S. haematobium V3, V2 and other key schistosome species

Feature S. haematobium V3 S. haematobium V2 S. mansonic S. bovisc S. japonicumc

Number of genes/mRNA 9431/14,700 9314/9314 10,172/14,499 11,576/11,576 10,089/16,936

Gene lengtha 23,252 ± 25,748 18,333 ± 20,681 21,682 ± 24,112 12,618 ± 16,045 18,366 ± 21,336

mRNA length 3892 ± 3651 2195 ± 1978 2794 ± 2266 1458 ± 1501 2578 ± 2068

Coding domain length 1600 ± 1659 2004 ± 1881 1775 ± 1895 1458 ± 1501 1537 ± 1498

Exon length 487 ± 1118 263 ± 343 320 ± 468 259 ± 314 333 ± 540

Protein length 532 ± 553 666 ± 625 591 ± 632 485 ± 500 512 ± 499

Number of 5’ UTRs 12,563 3097 14,157 n/ad 12,421

Number of 3’ UTRs 12,888 2935 14,171 n/a 12,503

Complete BUSCOsb 736 (77.1%) 639 (67.0%) 752 (78.8%) 577 (60.5%) 688 (72.1%)

Complete and single-copy BUSCOs 582 (61.0%) 628 (65.8%) 607 (63.6%) 548 (57.4%) 386 (40.5%)

Complete and duplicated BUSCOs 154 (16.1%) 11 (1.2%) 145 (15.2%) 29 (3.0%) 302 (31.7%)

Fragmented BUSCOs 26 (2.7%) 53 (5.6%) 24 (2.5%) 114 (11.9%) 43 (4.5%)

Missing BUSCOs 192 (20.1%) 262 (27.5%) 178 (18.7%) 263 (27.6%) 223 (23.4%)

a Lengths presented as mean ± standard deviation.
b Number of Benchmarking Universal Single-Copy Orthologs (BUSCOs) identified (protein mode), and percentage of the 954 genes for the Metazoa data set.
c NCBI accession numbers: PRJEA36577, PRJNA520774 and PRJNA451066. Data sets were obtained from WormBase Parasite (release WBPS15).
d not available.

https://doi.org/10.1371/journal.ppat.1010288.t002

PLOS PATHOGENS Chromosome-level genome of Schistosoma haematobium

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1010288 February 15, 2022 5 / 25

https://doi.org/10.1371/journal.ppat.1010288.t001
https://doi.org/10.1371/journal.ppat.1010288.t002
https://doi.org/10.1371/journal.ppat.1010288


Molecular variation among individual S. haematobium worms from

distinct geographic locations

Using genome Shae.V3 representing the Egyptian strain of S. haematobium [27], we assessed

the nature and extent of genetic variation between individual male S. haematobium from dis-

tinct geographic locations (Fig 2 and Table 3 and S1–S4 Datasets). Compared with this refer-

ence strain, we identified 1.4 to 2.0 million SNPs, a marked proportion (29.5–54.5%) of which

represented fixed (i.e. unequivocally homozygous) SNPs (Table 3). Of all fixed SNPs, ~ 6%

were within protein-coding regions of Shae.V3, with a notable percentage (12.1 to 36.7%)

being uniquely present in individual samples (Table 3 and Fig 2A). Taken together, fixed SNPs

from all four samples were found in 9129 (96.8%) of all protein-coding genes, and between

9783 (Mali-sample) and 13,564 (Zambia-sample) SNPs were inferred to have a moderate or

high impact on the encoded protein (including a loss of a start codon, gain of a stop codon, or

a non-synonymous alteration).

Fig 2. Analysis of single nucleotide polymorphisms (SNPs) of four individual male Schistosoma haematobium worms from distinct geographic location.

A Intersections of unique or shared, fixed SNPs within the predicted coding regions for isolates from Zambia, Senegal, Mauritius or Mali. Total numbers of

SNPs within individual samples are indicated by distinctly-coloured bars (bottom left). B For all samples, density and localisation of SNPs in the S.

haematobium reference genome are shown as histograms in the same colour. Gene densities are shown in a histogram on the innermost track, divided into

1Mb sections along each chromosome. For each sample, SNP-rich regions of which> 20% resembled a genomic reference other than S. haematobium are

labelled (i-xi), and the distribution of matches against the genome of other schistosome species is displayed as a pie chart.

https://doi.org/10.1371/journal.ppat.1010288.g002

Table 3. Summary of the single nucleotide polymorphisms (SNPs) predicted in four representative Schistosoma haematobium males from Zambia, Senegal, Mauri-

tius or Mali.

Geographic location Total SNPs Fixed SNPs (GN = 1/1) Fixed SNPs in protein-coding regions Unique, fixed SNPs in

protein-coding regions

Zambia 1,415,223 771,957 47,491 11,651

Senegal 1,617,886 696,405 42,238 11,600

Mauritius 1,539,711 603,944 37,754 4568

Mali 2,081,064 613,253 36,854 13,516

https://doi.org/10.1371/journal.ppat.1010288.t003
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Across the genome, SNP density was low and did not correlate with gene density; 67.6% to

80% of all SNPs per sample (individual worm) were concentrated in SNP-dense regions, col-

lectively representing ~ 20% of the genome for each sample. Eleven of these SNP-dense regions

(designated i–xi in Figs 2B and S1) contained substantial portions (> 20%) that were most

similar (at the nucleotide level) to genomes of Schistosoma species other than S. haematobium.

Between one and five of these regions were located on chromosomes 3, 4, 5 or 7; their location

differed among samples from different geographic origins (Figs 2B and S1), with the exception

of one region located on chromosome 5 (3–4 Mb) that was detected in three of the four sam-

ples (from Zambia, Mauritius and Mali). Of all samples, three SNP-dense regions identified in

the Mali-sample (ii, iii and vi) and two identified in the Zambia-sample (x and xi) showed the

greatest resemblance to those in the genomes of species other than S. haematobium but within

the S. haematobium group; 20.6–33.9% of the SNP-dense regions ii, iii and vi matched those in

S. bovis and 24.1–25.8% of regions x and xi matched those in S. matthei. For regions iv and v

(Senegal-sample), as well as regions i and viii (Mali-sample), significant portions (11.1–17.6%)

matched those in S. curassoni.

Variations in the transcriptome among developmental stages and sexes of

S. haematobium
We explored variation in the transcriptional profiles of protein-coding genes among seven key

stages/sexes: eggs from urine; eggs from hamster tissues; sporocysts; cercariae; schistosomules;

and adult male and female worms. We showed that 69% to 86.8% of all protein-coding genes

were transcribed in each of these stages/sexes, with varying numbers of transcribed isoforms

overall (54.4–81.2%), and per gene (1.2–1.4) (Tables 4 and S4). For each stage, a small percent-

age of genes (top 1%) showed substantially higher transcription (median TPM: 1391–2435)

than all other genes (median TPM: 5.74–26.3) (Table 4). The functional annotation for these

genes (S8 Table) mostly varied among stages/sexes, although some protein families (represent-

ing RNA transport and ribosomal proteins, for instance) were represented by the top 1% tran-

scripts in more than one stage/sex (Tables 4 and S8).

Table 4. Summary of transcription levels across seven key developmental stages of Schistosoma haematobium.

Developmental

stage

Number of

transcribed genesa

(%)

Number of

transcribed

isoforms (%)

Average (mean) number

of transcribed isoforms

per gene

Median

TPMb
Median TPM of top

1% transcribed

isoforms

Key protein/pathway functions for

top 1% transcribed isoforms

Egg (from urine) 8153 (86.4) 11,106 (75.6) 1.4 15.0 1790 Translation; RNA transport;

ribosomal proteins

Egg (from

hamster)

7446 (79.0) 9584 (65.2) 1.3 9.95 1592 Ubiquitin; protein folding, sorting

and degradation; RNA transport;

ribosomal proteins

Sporocyst 6506 (69.0) 7990 (54.4) 1.2 5.95 1894 Cellular nucleic acid-binding

protein; RNA transport; ribosomal

proteins

Cercaria 7202 (76.4) 9280 (63.1) 1.3 5.74 1607 Calmodulin; cytochrome c
Schistosomule 7696 (81.6) 10,657 (72.5) 1.4 26.3 1391 Peptidyl-prolyl isomerase; 14-3-3

protein beta; RNA transport,

ribosomal proteins

Adult male 8182 (86.8) 11,935 (81.2) 1.5 9.81 1702 Glutathione S-transferase;

peptidases/proteases

Adult female 8112 (86.0) 11,714 (79.7) 1.4 7.79 2435 Peptidases/proteases

a TPM > 0.5
b transcripts per million

https://doi.org/10.1371/journal.ppat.1010288.t004
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Genes with similar transcription profiles and functions among

developmental stages

We hypothesised that transcription profiles that correlated among different developmental

stages would link to common pathways or signalling networks. We established seven distinct

clusters, each containing 817 to 4301 transcripts with similar transcription profiles (Fig 3A

and S4 Table). Each of the seven clusters contained transcripts predominantly transcribed in

one of the seven key developmental stages. For clusters 1 and 5, marked co-transcription was

seen among two to three different stages. By contrast, 22, 3 and 3 transcripts were uniquely

transcribed in the sporocyst, cercaria and schistosomula stages, respectively (clusters 3–5, S4

Table). In the sporocyst stage, unique transcripts encoded peptidases/proteases, CAP domain-

containing proteins (including “venom allergen-like” or SmVAL-like proteins) and a heat

shock protein-associated CDC37 homolog (MS3_00009347.2). CAP protein-encoding

(MS3_00004475.1) and sodium channel-encoding (MS3_00007597.2) transcripts were unique

Fig 3. Analysis of transcription for key developmental stages of Schistosoma haematobium. A Transcription profiles of transcript isoforms across seven

developmental stages/sexes, clustered (Ward; k = 7) by similarity of Z-score-normalised TPM (transcripts per million) values. Key, enriched (q< 0.05)

pathways and/or protein functions are shown to the left of each cluster. Numbers of molecules in round parentheses. B Pairwise comparison of differential

(DE; fold change (FC)> 2, false discovery rate (FDR)< 0.05) transcription between male (blue) and female (red) samples, displayed as a ‘volcano’ plot. Key

pathways and/or protein functions enriched in DE subsets are highlighted. c Percentage of DE transcripts encoded on each chromosome/scaffold for males

(blue) and females (red), respectively; chromosomes/scaffolds enriched (q< 0.05) for male or female DE genes are marked with an asterisk.

https://doi.org/10.1371/journal.ppat.1010288.g003
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to the cercarial stage, and a transcript exclusive to the schistosomula stage encoded a “sperm-

tail PG-rich repeat” protein (MS3_00007199.1).

Overall, all seven clusters showed significant enrichment for protein families (n = 35) and/

or pathways (47) (Fig 3A and S9 Table), including those linked to transport and catabolism in

both adult stages (clusters 6 and 7), as well as molecules related to the exosome in the cercaria

stage and both adult sexes (clusters 4, 6 and 7). Additionally, peptidases and peptidase inhibi-

tors were enriched in clusters 3 (sporocyst) and 7 (adult female).

Distinct isoform usage in different developmental stages

Next, we investigated genes that encoded distinct isoforms in multiple transcription-clusters,

reflecting variation in isoform usage for different developmental stages/sexes. We identified

2648 of such genes with distinct isoforms present into two (n = 2102) to six (1) clusters (S4

Table). We hypothesised that this isoform switching is driven by alternative splicing and is

either facilitated by genes encoding small exons (microexons of� 54 nt) or many exons.

Although there was no overall correlation between the number of isoforms in distinct clusters

and the number of microexons (Pearson’s R = 0.23) or exons (R = 0.3) per gene, we did find

evidence of genes encoding microexons and multiple isoforms in distinct clusters. For exam-

ple, of the genes containing inferred microexons (n = 2996), two genes encoded isoforms that

were present in five of the seven clusters, and were comprised of 7–10 exons and 0–2 microex-

ons. These isoforms were assigned to clusters 2–6 (MS3_00008061) and 3–7 (MS3_00004678),

and encoded a MYND-type zinc finger domain-containing protein (IPR002893) and a small

GTPase (IPR001806), respectively. We provided evidence for the differential usage of two iso-

forms transcribed predominantly in males (cluster 6) or females (cluster 7), respectively, by

mapping transcripts assembled from mixed-sex, long-reads to the genomic region encoding

MS3_00004678 (chromosome ZW, positions 87,941,969 to 87,954,222; Fig 4).

Sex-linked transcription

A comparison of transcription levels in the male and female adult stages of S. haematobium
showed that 1512 transcripts were significantly upregulated in female compared with male

Fig 4. Long-read, full-length transcripts supporting differential isoform usage in male and female Schistosoma haematobium. The gene model

MS3_00004678 encodes a small GTPase on chromosome ZW. Exons are depicted as blocks and introns as arrowed lines, indicating the coding strand.

Reference transcripts are shown at the bottom in red (female; MS3_00004678.7, transcription cluster 7) and blue (male; MS3_00004678.1; transcription cluster

6) with narrow blocks at the end of the gene models representing untranslated regions (UTRs). Full-length, long-read transcripts that matched the intron-exon

structure of the isoforms inferred to be transcribed in the male and female adult stage, respectively, are coloured accordingly. Transcripts that support distinct,

alternative exon-intron boundaries are shown in black.

https://doi.org/10.1371/journal.ppat.1010288.g004
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worms (Fig 3B and S10 Table), and that the genes encoding these transcripts were over-repre-

sented (Fisher’s exact test, adjusted p-value < 0.05) on chromosomes 1 and 3 and on the larg-

est, “unplaced” scaffold (no. 194) of Shae.V3 (Fig 3C). None of the 10 genes encoded in this

scaffold were upregulated in males, and all had very low transcription levels (mean TPM

of� 0.57) in males.

In Schistosoma, sex is determined by a ZW chromosomal system, whereby maleness is con-

ferred by a ZZ composition and the absence of the female-specific W chromosome. Unlike in

most XY systems, where double-dosage of X transcripts is prevented by transcriptional sup-

pression in XX individuals, schistosomes have a limited suppression of Z chromosomes [28].

Consistent with a ZW chromosomal system, genes located on the S. haematobium ZW chro-

mosome encoded markedly more of the 1963 sexually-upregulated transcripts, with 670

(34.1%) upregulated in males and 279 (18.5%) in females (Fig 3B and 3C and S10 and

S11 Tables).

Of the transcripts upregulated in females, there was significant enrichment of those encod-

ing proteins linked to progesterone-mediated oocyte maturation, cell cycle and ribosome, and

proteins involved in DNA replication and chromosome-related functions (S12 Table). Pro-

teins encoded by transcripts upregulated in male worms were significantly enriched for roles

in 50 different pathways, including those involved in signal transduction associated with envi-

ronmental information processing (329 proteins), and endocrine (251), nervous (148) and

digestive (106) systems linked to 5 to 11 pathways. Enriched protein families included those

related to the cytoskeleton (n = 99), transport (membrane trafficking: n = 195; exosome: 184;

transport system: 95) and signalling (ion channels: n = 45; G protein-coupled receptors: 31)

(S12 Table).

Distinctive transcription in eggs, depending on host origin

We hypothesised that the transcription in S. haematobium eggs derived from human urine

would differ from eggs isolated from hamster livers. A comparison revealed 1143 transcripts

that were unique to eggs from urine, including a hepatotoxic ribonuclease omega-1 (UniProt

identifier: Q2Y2H5) homolog (69% amino acid similarity (BLAST); MS3_00010006.1;

TPM = 11.0–111.9). To investigate whether this homolog was structurally similar to the S.

mansoni omega-1 protein, we predicted the structures of all seven S. haematobium omega-1
homologs using AlphaFold [29]. The alignment of these predicted structures using TM-align

[30] showed that six of these homologs (including MS3_00010006.1) aligned well (RMSD:

1.15–2.2Å; TM-score: 0.69–0.85) with 74.7–90.2% of the S. mansoni omega-1 structure, despite

limited overall sequence identity (33.5%-50.6%, based on structural alignment) (S13 Table).

Additional 4965 transcripts had substantially higher TPMs (> 112) in eggs from human

urine, including an “interleukin (IL)-4-inducing principle of S. mansoni eggs” (M-IPSE/alpha-
1; UniProt identifier: Q869D4) homolog (H-IPSE; MS3_00010265.1). The proteins encoded

by 6108 transcripts linked predominantly to spliceosome (n = 89 proteins), membrane traffick-

ing (221), as well as transferase (537) and hydrolase (443) activities. Enriched were protein

families that related to chromosomes (n = 358) and mRNA biogenesis (n = 180). By contrast, a

kappa-5 (UniProt identifier: Q2KMJ3) homolog (MS3_00010619.1) had a higher level of tran-

scription (TPMs > 112) in eggs from hamster liver than from human urine.

Discussion

The assembly of the chromosome-contiguous reference genome (Shae.V3) for a well-defined

Egyptian strain [27] of S. haematobium has underpinned an exploration of molecular variation

within S. haematobium at key stages of development from different hosts and from multiple
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geographic localities in Africa, with important implications for investigating natural schistosome

populations as well as urogenital schistosomiasis and associated bladder cancer in humans.

The substantial genetic variation observed among four S. haematobium samples from four

disparate locations in Africa (Zambia, Senegal, Mauritius and Mali) was associated with

unique genomic ‘signatures’ matching species other than S. haematobium. This finding sup-

ports the proposal that schistosome species within the S. haematobium-group form a complex

genetic landscape, resulting from genomic admixture and introgression upon hybridisation

[21,31]. The presence of such hybridisation/introgression events raises the importance of

exploring natural populations of members of this group and establishing their biological traits

in relation to host affiliations/range, pathogenicity, susceptibility to praziquantel and, particu-

larly, carcinogenicity. In this context, the fragmented nature of the existing assemblies for

some members of the S. haematobium-group and the lack of draft or reference genomes for S.

guineensis, S. intercalatum and S. leiperi represents a hurdle to more detailed explorations of

the extent and size of such introgression events. Clearly, future genome sequencing efforts

should place emphasis on creating reference genomes for all other members of the S. haemato-
bium group, to complement the S. haematobium reference genome (Shae.V3).

The present genome, comprehensive transcriptomic profiling and long-read evidence

allowed us to refine gene models and annotations, discover ‘new’ genes (n = 45) and define

UTRs, which will enable further molecular explorations of S. haematobium. Variation in the

transcription profiles of genes likely relate to molecular alterations during developmental,

infection and/or disease processes. For instance, genes exclusively transcribed in the sporocyst,

cercaria and schistosomule stages encoding peptidases/proteases (including leishmanolysins,

metalloendopeptidases and trypsins) or SCP/TAPS superfamily members (e.g. venom-allergen

like proteins, VALs [32]) likely play roles in egress, invasion, digestive processes and/or

immune evasion in the molluscan or vertebrate hosts [33–35]. Sex-specific molecules identi-

fied likely associate with roles in development and/or reproduction in the female, and signal-

ling, transport and catabolism in the male [25,36–38]. It is noteworthy that many genes on the

Z chromosome are upregulated in ZZ males, consistent with a lack of widespread transcrip-

tional dosage compensation of the Z chromosome [28]. The lack of transcription in ‘male’

genes encoded on the largest “unplaced” scaffold (no. 194) of Shae.V3 suggests that this scaf-

fold represents a female-specific portion of the W chromosome. However, the complete W-

specific region (WSR) is likely much larger based on evidence for S. mansoni, whose highly-

repetitive WSR is estimated at 18–46 Mb [39]. Future work is warranted to fully resolve the sex

chromosomes of S. haematobium using long-read data from individual worms (females and

males) as a foundation for detailed explorations of sex-determining genes and sex- and devel-

opmentally-regulated gene expression.

We propose that variation in transcription levels between eggs from hamster liver and

those from human urine relate to differences in host-parasite relationship and to the ability of

eggs to induce immunopathological changes and disease (which is pronounced in humans,

but not in the hamster), including the presence of S. mansoni homologs of IPSE/alpha-1
[40,41], kappa-5 [42] and ribonuclease omega-1 [43]. Intriguingly, as omega-1 was not detected

previously in proteomic investigations of egg-secreted antigens (ESAs) of S. haematobium
[44,45], or known to induce a humoral antibody response in people and not detected in the

urine from S. haematobium-infected people [44], this ESA was considered as S. mansoni-spe-

cific [40]. However, to some extent, structural modelling supports the presence of those mole-

cules in S. haematobium eggs from human urine. Whether the transcripts of these homologs

are specifically transcribed in the eggs from urine from infected human patients and encode

immunogens that involved in the egg-directed immune responses in the human host warrants

investigation. In this context, the enriched transferase-encoding transcripts in urine-derived S.
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haematobium eggs might relate to roles in glycosylation of immunomodulatory glycoproteins

such as omega-1 and kappa-5, likely required for protein function, as described for S. mansoni
[46,47]. The findings from this study lay a critical foundation for investigation of ESAs in S.

haematobium and can complement efforts to understand the pathogenesis of urogenital schis-

tosomiasis [48–50].

The chromosome-level genome assembly for an Egyptian strain of S. haematobium adds

important resources to the schistosome ‘-omics’ reference toolkit. For example, this genome

should accelerate large-scale population investigations and provide a unique opportunity to

study the implications of genomic admixture, including its effect on biological and/or disease

traits, morbidity and/or the effectiveness of control programs [51,52], including mass drug

administration (MDA) [53]. The present resource should also enable future functional geno-

mics investigations of S. haematobium [54–56] and facilitate investigations of the fundamental

pathobiology of this important parasite using an integrative proteomic, glycomic and lipido-

mic approach. Insights into these areas could significantly assist in ongoing control and elimi-

nation efforts of urogenital schistosomiasis. We expect that the long-read sequencing

technologies used herein will facilitate future investigation of schistosome chromosomes and

transcriptomes, particularly differential isoform transcription and alternative splicing in sex

determination, development and reproduction.

Methods

Ethics statement

Approval to maintain the life cycle of S. haematobium using Mesocricetus auratus (hamster;

mammalian definitive host) and Bulinus truncatus as the snail intermediate host at the Bio-

medical Research Institute (BRI), Rockville, Maryland, USA was obtained from the NIH Office

of Laboratory Animal Welfare [OLAW]: D16-00046 (A3080-01). Ethics approval for the col-

lection of blood fluke parasite materials for the Schistosomiasis Collection at the Natural His-

tory Museum (SCAN) was obtained from the Home Office, project license number 70/4687

[14]. Approval to collect urine from schoolchildren was obtained from the administrative

authorities, school inspectors, directors and teachers. The objectives of the study were

explained to schoolchildren and their parents or guardians, and to participants from whom

written informed consent was obtained. The study was also approved by the National Ethics

Committee (Nr 2016/11/833/CE/CNERSH/SP) and the Ministries of Health and Education of

Cameroon, and from the Liverpool School of Tropical Medicine Research Ethics Committee

(M1516-18 and M1516-06).

Parasite material

Different developmental stages of S. haematobium were obtained from experimental and natu-

ral hosts and distinct geographical regions. Adult, egg and schistosomule stages of S. haemato-
bium originating from Egypt) [27] and maintained routinely in M. auratus (hamster;

mammalian definitive host) using B. truncatus as the snail intermediate host at the BRI, Rock-

ville, Maryland, USA. Hamsters exposed to 1,000 cercariae in pond water (200 ml) were eutha-

nised after 90 days of infection. Paired S. haematobium adults were perfused from the

mesenteric/intestinal vessels with physiological saline (37˚C) using an established method

[25]. Schistosomules were prepared by mechanical transformation [57] of ~10,500 cercariae

shed from infected B. truncatus, followed by culture for 24 h [58]. All of these developmental

stages were prepared and stored at -80˚C or -196˚C.

Single adult males of S. haematobium from four disparate geographic locations in Africa

(Zambia, Senegal, Mauritius and Mali) were obtained via SCAN [59]. Adult worms were
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perfused at 90 days from M. auratus infected in the laboratory with from individual Bulinus
wrighti snails infected with miracidia from eggs from urine samples from individual patients

(n = 3), or from hamsters infected with cercariae from naturally infected snails (B. truncatus)
(n = 1) (S14 Table). These worms were frozen in liquid nitrogen until use.

Eggs were collected from the urine from ~6 to 10 year-old children attending schools near

Loum, Cameroon, with approval from the administrative authorities, school inspectors, direc-

tors and teachers. Individual eggs were isolated microscopically and stored in RNAlater at 4˚C

(Thermo Fisher Scientific, Waltham, MA, USA).

DNA sequencing and genome assembly

The S. haematobium reference genome (designated Shae.V3 – representing the Egyptian refer-

ence strain [27], maintained at BRI) was assembled from data produced by Oxford Nanopore

long-read and Hi-C sequencing and from previous short-read data sets produced using Illu-

mina or Dovetail technology [25,26] using the following approach:

First, long-read data (SRA accession numbers SRR15400746 and SRR15400747; via Oxford

Nanopore technology [60]) were used for initial contig assembly employing the program Canu

v.1.9 [61], setting a genome size estimate of 400 Mb. Errors in these data were corrected using

medaka_consensus in the Medaka package v.1.0.3 (https://github.com/nanoporetech/

medaka). Redundancy was removed using purge_haplotigs v.1.1.1 [62] and using depths of 8,

35 and 100 reads (low, medium and high, respectively). Contigs were first scaffolded using

available short-read and mate-pair library data [25] using Platanus-allee v.2.0.2 [63], using a

minimum of 15 links to join contigs into contiguous scaffolds. Further scaffolding was done

using long-range, paired-read data (‘Dovetail’) using the HiRise pipeline v.2.0.5 [64], as

described earlier [26]. Then, scaffolds were polished using available short-read and mate-pair

library data employing pilon v.1.23 [65].

Next, in situ Hi-C sequencing was performed as described previously [66]. High molecular

weight DNA from 100 S. haematobium adults was restriction-digested with equal concentra-

tions of CviAII and MseI (New England Biolabs); the library was constructed and then

sequenced using the NextSeq550 platform (Illumina, San Diego, CA, USA). Scaffolds were

combined with the in situ Hi-C data using Juicer v.1.6 [67], 3D-DNA v.180922 [68] and

Juicebox Assembly Tools v.1.9.8 [69] to scaffold, inspect and manually curate results to achieve

chromosome-length scaffolds. The sequence data are available via the DNA Zoo SRA reposi-

tory (PRJNA512907); interactive Hi-C contact maps before and after the Hi-C-guided assem-

bly are available on the DNA Zoo website (https://www.dnazoo.org/assemblies/Schistosoma_

haematobium). Gaps in scaffolds were closed using long-reads that had been error-corrected

using the -correct and -trim steps within the program Canu employing the program TGS-Gap-

Closer v.1.0.3 (https://github.com/BGI-Qingdao/TGS-GapCloser). The gap-closed scaffolds

were then polished employing published data sets (produced from 500-bp and 800-bp librar-

ies) [25] and the error-corrected long-reads using the software HyPo v.1.0.3 [70].

Repeats in the final, gap-closed and polished assembly were identified and masked using

RepeatMasker v.4.1 (http://www.repeatmasker.org) employing the DFAM v.3.1 library and a

published S. haematobium repeat [25].

Synteny analysis

Genome-wide synteny between the repeat-masked Shae.V3 genome and the repeat-masked

scaffolds or chromosomes of other schistosome species was assessed by linking single-copy

orthologs (SCOs) (for each species-pair). Coordinates of SCOs were used as links between

scaffolds and were bundled using bundlelinks in circos tools v.0.23 [71], setting the minimum
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bundle size at 10,000 nt, with� 5 SCOs per bundle, and allowing the gap between members of

the same bundle to be at most 100,000 nt. Scaffolds were ordered and displayed using circos

v.0.69–8 [71].

RNA sequencing and data sets

Total RNA samples were isolated from (i) adult worms (50 worm pairs; three biological repli-

cates), (ii) individual male and female worms separated from pairs (six biological replicates for

each sex), (iii) cercariae and (iv) mechanically-transformed schistosomules of S. haematobium
using the TriPure Isolation Reagent (Sigma Aldrich, St. Louis, MO, USA). Each RNA sample

was treated with DNase (TURBO DNA-freeTM kit, Thermo Fisher Scientific, Waltham, MA,

USA) and messenger RNA (mRNA) was purified (Dynabeads mRNA purification kit, Thermo

Fisher Scientific, Waltham, MA, USA). The size, integrity (i.e. RNA integrity number, RIN)

and concentration of RNA were estimated using a 4200 TapeStation System RNA ScreenTape

Assay (Agilent Technologies, Waldbronn, Germany) and a Qubit 3.0 Flourometer RNA High

Sensitivity Assay (Life Technologies, Carlsbad, CA, USA). TruSeq Stranded mRNA (Illumina,

San Diego, CA, USA) short-read libraries (150 bp, paired-end) were prepared from from indi-

vidual mRNA samples, according to the manufacturers’ instructions and sequenced on an Illu-

mina NextSeq 500 instrument.

Total RNA samples were also prepared from S. haematobium eggs (~ 500 to 1000 each), iso-

lated from urine samples from three different individuals, using the TRIzol Plus RNA purifica-

tion kit (Thermo Fisher Scientific, Waltham, MA, USA) and non-stranded, paired-end

libraries (145 bp) were constructed (TruSeq Non-Stranded Kit, Illumina, San Diego, CA,

USA) and sequenced on an Illumina HiSeq 4000 platform at BGI International (Shenzhen,

China).

All short-read data produced here were filtered for quality and adapters removed using the

program fastp v.0.20.1 [72]. Then, reads representing technical artefacts (including PCR dupli-

cates) or contamination were removed by mapping all quality-filtered and trimmed reads to

published genome scaffolds [26] using HISAT2 v.2.1.0 [73] with the options-fr for upstream/

downstream mate orientations for Illumina paired-end sequencing and-dta (“downstream

transcriptome analysis”). Mapped reads were then retained by filtering sam files using the -F4

flag in samtools v.1.9 [74] and the remaining reads were separated into files with mapped,

paired reads and mapped, unpaired reads using the options -f1 and -F1, respectively. The pro-

gram centrifuge v.1.0.4 [75] was then used to confirm no contamination was present.

Publicly-available short-read data sets for (i) S. haematobium eggs isolated from hamster

liver, pooled adult female or male worms of S. haematobium and pooled sporocysts produced

previously [25,76] were obtained from the Short Read Archive (SRA; accession nos.

SRR6655493, SRR6655495, SRR6655497 and SRR13147979).

Long-read RNA sequence data were produced from mRNA from pooled adult worms

(both sexes) using Oxford Nanopore technologies (Oxford, UK). Two direct RNA-sequencing

libraries using the SQK-RNA002 kit (which selects for full-length mRNAs with polyA tails),

and one cDNA-PCR long-read sequencing library using the SQK-PCS109 kit were con-

structed. PCR-amplification (SQK-PCS109) was conducted for 14 cycles using an extension

time of 3 min. All libraries were sequenced using a MinION device for 48–72 h using an

EXP-FLP002 flow cell priming kit and three R9.4.1 flow cells (FLO-MIN106). Reads were

obtained from raw fast5 files using a GPU-enabled version of the program Guppy v.3.2.4, pro-

viding the configuration file rna_r9.4.1_70bps_hac.cfg (for SQK-RNA002) or

dna_r9.4.1_450bps_hac.cfg (for SQK-PCS109). Reads that did not meet the quality required

(Q� 7) by Guppy were removed.
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Prediction of protein-coding genes

Gene models predicted for the S. haematobium Shae.V2 draft genome [26] were transferred to

the new genome assembly (Shae.V3) using liftOver (release 8 April 2020; [77]). First, a chain

file was created using the published [26] and new genome assemblies and using the doSame-

SpeciesLiftOver.pl script. Next, Shae.V2 gene models were transformed from genome feature

format (GFF) to gene prediction (GP) format and transferred to the Shae.V3 genome using the

liftOver chain file.

For gene prediction, quality-filtered and mapped paired-end reads from all 24 short-read

libraries were combined and supplied to the programs StringTie v.2.1.4 [78] and TransDeco-

der v.5.5.0 [79]. Then, to infer transcripts from long-reads, long-reads were mapped to the ref-

erence genome using minimap2 v.2.17-r941[80] employing the options -ax splice, -uf and -k14.

The program FLAIR (release Oct 2020) [81] was subsequently employed to correct splice junc-

tions created by mapped long-reads using high-quality, mapped short-reads and to collapse

mapped long-reads into transcripts using the-stringent option.

Gene models transferred from Shae.V2 and those inferred based on short- and long-read

RNA-Seq evidence were merged using StringTie with the-merge option and were used as

‘hints’ for gene prediction using the software AUGUSTUS v.3.4.0 [82]. Next, to create a train-

ing set for AUGUSTUS, redundant, duplicate, and incomplete gene models and transcript iso-

forms were removed, retaining only the most highly transcribed isoform per gene and those

that had a transcripts per million (TPM) value of� 1 and were covered by mapped reads

across their entire length. Additionally, for each gene the isoform with highest sequence iden-

tity to a S. mansoni transcript sequence was also retained. Gene models that did not pass the

NCBI quality checks using the program table2asn v.25.8 (https://www.ncbi.nlm.nih.gov/

genbank/tbl2asn2/) were removed.

Genes were predicted using AUGUSTUS with the- species schistosoma2 option and were

subsequently refined by adding UTRs and transcript isoforms using the program PASA

(docker image 8b604b34971f) [83] employing long-read transcripts as evidence. All non-

redundant, complete gene models from the initial StringTie predictions and the AUGUSTUS/

PASA predictions were retained as the final gene set. The completeness of the gene set was

assessed using the program BUSCO v.4.0.6 [84] using the -l metazoa_odb10 (release 10 Sept

2020) and- update-data options and was compared to published gene sets of S. haematobium,

S. mansoni, S. japonicum and S. bovis.

Functional annotation of inferred proteins

Protein sequences conceptually translated from predicted gene models were functionally

annotated using an established approach [85]. In brief, protein sequences were assessed for

conserved protein domains using InterProScan v.5.44–79.0 [86] employing default settings.

Next, using the program diamond v.0.9.24.125 (E-value� 10–8), amino acid sequences were

searched against the Kyoto Encyclopedia of Genes and Genomes (KEGG) database [87] to

infer pathway associations, and against Swiss-Prot within UniProtKB [88] to infer homologs.

Additionally, EggNOG mapper v.5.0 [89] was used to name protein sequences based on their

closest match to the EggNOG database [90].

Orthologs between the inferred proteome for Shae.V3 and available proteomes of

S. mansoni [91]; NCBI accession number PRJEA36577), S. japonicum [92]; NCBI accession

number PRJNA520774) and S. bovis [31]; NCBI accession number PRJNA451066) down-

loaded from WormBase Parasite (release WBPS15; [93]) were determined using OrthoFinder

v.2.5.2 [94].
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Analysis of genetic variation within S. haematobium among disparate

geographic locations

High molecular weight genomic DNA was isolated from single adult males of S. haematobium
from four distinct geographic locations (Zambia, Senegal, Mauritius and Mali) using the Che-

magic STAR DNA Tissue kit (Perkin Elmer, Waltham, MA, USA). The DNA yield was esti-

mated spectrophotometrically using the Qubit 3.0 Flourometer dsDNA HS kit (Life

Technologies, Carlsbad, CA, USA), and DNA integrity was assessed by agarose-gel electropho-

resis and then using a Bioanalyzer 2100 (Agilent Technologies, Waldbronn, Germany). High-

quality genomic DNA was used to construct short-insert libraries (500 bp) using a TruSeq

DNA library construction kit (Illumina, San Diego, CA, USA) and paired-end sequenced as

100 nt reads using the HiSeq-2500 platform (Illumina, San Diego, CA, USA).

Low-quality bases (Phred quality: < 20), adapters and reads of< 70 nt in length were

removed using Trimmomatic v.0.32 [95], and sequence quality was confirmed using FastQC

v.0.11.2 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Subsequently, high-

quality reads were mapped to scaffolds of the Shae.V3 genome using Bowtie2 v.2.4.2 [96], and

read alignments were stored in the BAM format. The mapped data were then used to record

single nucleotide polymorphisms (SNPs) at individual positions in relation to the references

using the Genome Analysis Toolkit (GATK v.4.0.8.1; [97]). In brief, base-quality scores of

‘raw’, aligned read data were re-calibrated twice based on predicted variants; subsequently,

SNP sites were identified for each sample using the GATK HaplotypeCaller [97] and merged

into one ‘variant call format’ (VCF) file listing all variable sites for all samples using GATK

CombineGVCFs and GenotypeGVCFs. Raw SNP sites were filtered for quality using GATK

VariantFiltration and following GATK best-practice guidelines. Specifically, SNP sites were

selected if read mapping depth (DP) was> 10, variant confidence (QD) > 2.0, strand bias (FS)

< 60.0, mapping quality (MQ) > 40.0, mapping quality (MQRankSum) > -12.5 and read posi-

tion bias (ReadPosRankSum) > -8.0. VCF files for reported SNPs in each sample were anno-

tated based on their genomic locations and predicted coding effects using snpEff v.5.0e [98]

and a GFF annotation file for the reference genome. Descriptive statistics were obtained from

snpEff output and using bcftools v.1.11 [74] and filtered VCF files.

The fixed SNPs (genotype call = 1/1) for each individual male of S. haematobium were

selected and transferred onto the reference sequence using FastaAlternateReferenceMaker in

GATK v.4.2.0.0. The genomic locations of fixed SNPs in coding regions were then compared

within and among the four individuals, and were displayed using the UpSet v.1.4.0 package in

R [99]. For each sample and each S. haematobium chromosome, the number of SNPs per 1Mb

non-overlapping region was determined, and regions with equal or more SNPs than 80% of all

1Mb regions per chromosome (80th percentile) were selected as ‘SNP-dense’ locations. Each

chromosome was then fragmented into 2000 nt sections and nucleotide similarity searches

were undertaken using minimap2 (-x asm20 -N 5- secondary = no) and a nucleotide database

of schistosome genomes, which consisted of the available genomes of key members of the S.

haematobium group (S. haematobium (Shae.V3, this study), S. bovis (PRJNA451066), S. curas-
soni (PRJEB519), S. mattheei (PRJEB523) and S. margrebowiei (PRJEB522) as well as S. man-
soni (PRJEA36577), S. rodhaini (PRJEB526) and S. japonicum (PRJNA520774).

The number of unique SNPs in coding regions within 2000 nucleotide regions along each

chromosome were then plotted and labelled according to the species with the greatest nucleo-

tide sequence homology match (requiring > 90% query coverage) using ggplot2 in R. SNP-

dense locations for which > 20% of the 2000 nt sections (i.e. > 100 sections) matched those of

a species other than S. haematobium, were considered to have a ‘non-S. haematobium SNP sig-

nature’. For these regions, the number of matches against each species in the database was
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represented in a pie chart. To assess the extent of false-positive species signatures in SNP-

dense regions, sequence regions were also subjected to homology searches against a reference

with no mutations (identical to the Shae.V3 genome sequence) and against one containing

random mutations introduced at the rate of 1934 nucleotide mutations per 1 Mb of genome

scaffold using msbar in the emboss package v.6.6.0.0 [100].

Analysis of transcription

For each developmental stage, we aligned length- and quality-filtered, short-read data to the

Shae.V3 genome using HISAT2, and inferred the transcription level for each transcript

employing StringTie2 and the Shae.V3 gene set GFF file. Transcripts were clustered employing

the Ward clustering method based on the Euclidian distance of their TPM values, that were Z-

score-normalised across seven developmental stages. For stages with multiple samples, the

median TPM was employed. TPM values were then ordered according to their cluster mem-

bership and displayed in a heatmap using the tidyheatmap package (https://github.com/

jbengler/tidyheatmap) in R.

Differential transcription analysis for libraries derived from individual male and female

worms (six biological replicates each) was conducted using Ballgown v.2.22.0 [101], employing

a two-group comparison and performing library size adjustment by using the sum of the log

non-zero expression measurements for each sample, up to the 75th percentile of those mea-

surements. Transcripts with a false discovery rate of< 0.05 and a fold-change (FC) of� 2

were considered differentially transcribed (i.e. upregulated). Individual stages/clusters were

tested for enrichment of KEGG pathways and KEGG BRITE terms (requiring a minimum

BRITE protein family size of 10), using Fisher’s exact test and correcting for multiple testing

by calculating the q-value and applying a cut-off of< 0.05.

Supporting information

S1 Fig. Analysis of Schistosoma haematobium genome regions of four individual male

worms from distinct geographic locations. For isolates from Zambia, Senegal, Mauritius or

Mali, density and localisation of SNPs in the S. haematobium reference genome are shown in 2

kb non-overlapping regions, with each point coloured by the species with the closest nucleo-

tide sequence homology. For each sample, SNP-rich regions (light green blocks) of

which> 20% resembled a genomic reference other than S. haematobium are labelled (i-xi).

(TIFF)

S1 Dataset. Variant call format (VCF) file, including single nucleotide polymorphisms

(SNPs) reported in an individual male Schistosoma haematobium worm from Mali (Mi).

(ZIP)

S2 Dataset. Variant call format (VCF) file, including single nucleotide polymorphisms

(SNPs) reported in an individual male Schistosoma haematobium worm from Mauritius

(Ms).

(ZIP)

S3 Dataset. Variant call format (VCF) file, including single nucleotide polymorphisms

(SNPs) reported in an individual male Schistosoma haematobium worm from Senegal (S1).

(ZIP)

S4 Dataset. Variant call format (VCF) file, including single nucleotide polymorphisms

(SNPs) reported in an individual male Schistosoma haematobium worm from Zambia
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(Z1).

(ZIP)

S1 Table. New Schistosoma haematobium sequence data produced in this study and linked

to NCBI sequence read archive submission details.

(XLSX)

S2 Table. Synteny and contiguity of the Schistosoma haematobium reference genome

(Shae.V3), compared with that of other schistosomes.

(XLSX)

S3 Table. Orthologs of Schistosoma haematobium in S. mansoni, S. japonicum and S. bovis
inferred using OrthoFinder.

(XLSX)

S4 Table. Transcription levels for Schistosoma haematobium genes, determined using

StringTie2.

(XLSX)

S5 Table. Annotation of inferred Schistosoma haematobium proteins using InterProScan.

(XLSX)

S6 Table. Annotation of inferred Schistosoma haematobium proteins based on matches to

the EggNOG database.

(XLSX)

S7 Table. Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology, pathway annota-

tion, BRITE and enzyme classification for Schistosoma haematobium proteins.

(XLSX)

S8 Table. Functional annotation of the five most highly transcribed sequences in seven key

developmental stages of Schistosoma haematobium.

(XLSX)

S9 Table. KEGG terms significantly enriched (q-value < 0.05) in clusters of distinct tran-

scription profiles for Schistosoma haematobium.

(XLSX)

S10 Table. Differentially transcribed isoforms in adult female Schistosoma haematobium,

compared with adult males. Fold change, q-value and TPM (transcript per million) for each

library are shown.

(XLSX)

S11 Table. Differentially transcribed isoforms in adult male Schistosoma haematobium,

compared with adult females. Fold change, q-value and TPM (transcript per million) for

each library are shown.

(XLSX)

S12 Table. KEGG terms significantly enriched (q-value < 0.05) among transcripts differ-

entially expressed in adult male or female Schistosoma haematobium.

(XLSX)

S13 Table. Modelling of the predicted structures of seven Schistosoma haematobium
omega-1 homologs using AlphaFold and alignment employing TM-align.

(XLSX)
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S14 Table. Information on collection site, host, year and Natural History Museum refer-

ence code for four isolates of adult male Schistosoma haematobium from Africa.

(XLSX)
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