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ABSTRACT The ability to switch between proliferation as yeast cells and develop-
ment into hyphae is a hallmark of Candida albicans. The switch to hyphal morpho-
genesis depends on external inducing conditions, but its efficiency is augmented in
stationary-phase cells. Ume6, a transcription factor that is itself transcriptionally in-
duced under hypha-promoting conditions, is both necessary and sufficient for hy-
phal morphogenesis. We found that Ume6 is regulated posttranslationally by the cell
cycle kinase Cdc28/Cdk1, which reduces Ume6 activity via different mechanisms us-
ing different cyclins. Together with the cyclin Hgc1, Cdk1 promotes degradation of
Ume6 via the SCFCDC4 ubiquitin ligase. Since HGC1 is a key transcriptional target of
Ume6, this results in a negative-feedback loop between Hgc1 and Ume6. In addi-
tion, we found that Cln3, a G1 cyclin that is essential for cell cycle progression and
yeast proliferation, suppresses hyphal morphogenesis and that Cln3 suppresses
Ume6 activity both in the heterologous Saccharomyces cerevisiae system and in C. al-
bicans itself. This activity of Cln3 may provide the basis for the antagonistic relation-
ship between yeast proliferation and hyphal development in C. albicans.

IMPORTANCE The yeast to hypha (mold) morphogenetic switch of Candida albicans
plays a role in its virulence and constitutes a diagnostic trait for this organism, the
most prevalent systemic fungal pathogen in industrialized countries. It has long
been known that hyphae are most efficiently induced from stationary cultures. Here,
a molecular basis for this observation is provided. The G1 cyclin Cln3, an essential
promoter of yeast proliferation, was found to suppress hyphal induction. Suppres-
sion of hyphal induction is achieved by inhibition of the activity of the central acti-
vator of hyphal morphogenesis, the transcription factor Ume6. Thus, levels of Cln3
control the switch between proliferation of C. albicans as individual yeast cells and
development into extended hyphae, a switch that may preface the proliferation/
differentiation switch in multicellular organisms.
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Candida albicans is a human commensal fungus that can cause superficial infections
in immunocompetent individuals, as well as life-threatening systemic infections in

immunocompromised patients (1). C. albicans is able to assume different growth forms,
most notably, yeast, hyphal, and pseudohyphal morphologies (2). This ability to switch
between different modes of growth and proliferation appears to be important for
virulence, based on the reduced pathogenicity in a mouse model of infection by
mutants locked in the yeast mode (3, 4).

The cellular morphology is heavily dependent on growth conditions: whereas in
standard rich medium at 30°C, wild-type C. albicans grows usually as yeast, many
growth conditions have been identified that induce the switch to hyphal growth. These
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include an elevated temperature (37°C), elevated CO2, neutral pH, addition of serum, or
various specific growth media that have little in common except that they often impose
a growth limitation (reviewed in reference 5). Additional factors that can influence
morphogenetic switching are the quorum-sensing molecules tyrosol, an inducer of
hyphal growth (6), and farnesol, a repressor (7).

Genetic analysis has elucidated at least part of the regulatory pathways that link
extracellular stimuli to morphogenesis. Several signal transduction pathways, notably,
the mitogen-activated protein kinase (MAPK)-dependent (8) and cyclic AMP (cAMP)/
protein kinase A (PKA)-dependent (9, 10) pathways, that participate in the induction of
filamentation have been identified. A number of transcription factors were identified
that can influence filamentous growth, including Cph1 (11), Efg1 (4, 12), Cph2 (13),
C. albicans Tec1 (CaTec1) (14), CaRim101 (15), CaTup1 (16), CaNrg1 (17), CaMcm1 (18),
CaFkh2 (19), and CaUme6 (20, 21). Some of these transcription factors were found to be
targets of hypha-inducing signal transduction pathways (22, 23). Induction of filamen-
tous morphology by extracellular signals is accompanied by a distinct transcription
program with, notably, expression of genes encoding cell surface components such as
the Hwp1, Ece1, and Als3 proteins (13, 24, 25).

Although several of the transcription factors mentioned above are important for
hyphal growth, ectopic expression of any of these transcription factors by itself is
unable to induce authentic hyphal growth. An exception is CaUme6, which was
reported to induce hyphae upon overexpression (3). Caume6�/� mutants transiently
formed germ tubes when exposed to hypha-inducing conditions but were unable to
sustain hyphal elongation and hypha-specific gene expression under all conditions
tested (20, 21).

Cell morphogenesis is closely associated with regulation of the cell cycle, a link that
is best understood in budding yeasts (26, 27). The morphogenetic switch in C. albicans
may therefore be expected to involve regulation at the level of the cell cycle regulatory
machinery as well (28, 29). The notion of a link between cell cycle and morphogenesis
is supported by the observation that various treatments that inhibit cell cycle progres-
sion cause a switch to polarized growth (see, for example, references 30 and 31).
Similarly, depletion of the Polo-like kinase CaCdc5, a mitotic regulator (30), and
depletion of the C. albicans Cln3 homolog, an essential cyclin, were shown to induce
polarized growth (32, 33). Notably, however, in all of the instances mentioned above,
the polarized growth assumed pseudohyphal rather than typical hyphal morphologies
(2), with the possible exception of Cln3 depletion. One mutation that induces true
hyphal growth is the deletion of CaCDC4, which encodes a substrate-recognition
subunit of the SCF ubiquitin ligase (34, 35), the homolog of which is required for cell
cycle progression in Saccharomyces cerevisiae (36, 37).

We had previously identified the cell cycle inhibitor Sol1 as a substrate of Cdc4.
However, deletion of SOL1 failed to suppress the hyphal phenotype of the Cacdc4�/�

deletion, implying that one or more additional SCFCaCDC4 substrates are responsible for
this phenotype. Here, we identified CaUme6 as the SCFCaCDC4 substrate that, together
with Sol1, is responsible for the hyphal phenotype of Cacdc4�/�. SCFCDC4 requires
phosphorylation of its substrates for recognition (38). In a screen for the kinase
responsible for CaUme6 degradation, we identified the CDK1 cyclin CaCln3 as a
suppressor of CaUme6 activity. However, CaCln3 activity led to CaUme6 stabilization
rather than degradation. In contrast, the CDK1 cyclin Hgc1 was required for CaUme6
degradation. Since HGC1 is a key transcriptional target of CaUme6, this generates a
negative-feedback loop in which CaUme6 activity causes its own demise. Suppression
of CaUme6 activity by CaCln3 disrupts this feedback loop, leading to stabilization of
CaUme6.

RESULTS
CaUme6 is a substrate of SCFCaCDC4. The recognition sequence of Cdc4-type

substrate receptors is not well defined but commonly includes a proline residue
following the phosphorylated residue and a proline or other hydrophobic amino acid(s)
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preceding it (39). Analysis of the CaUme6 sequence identified many such potential
recognition sites. To directly test whether CaUme6 degradation depends on the
presence of SCFCaCDC4, we first tested the stability of CaUme6 in wild-type versus
Cacdc53 mutant cells (40). CaCdc53 encodes the cullin subunit, an essential scaffold
subunit common to all SCF complexes. As shown in Fig. 1A, CaUme6 was normally
rapidly degraded upon promoter shutoff but was almost totally stabilized in the
Cacdc53ts mutant, suggesting that SCF activity is required for CaUme6 degradation. We
next tested whether the F-box protein CaCdc4 was required for CaUme6 degradation
by measuring CaUme6 stability by pulse-chase analysis in a strain depleted for CaCdc4.
As shown in Fig. 1B, CaUme6 was rapidly degraded in the control strain, with a half-life
of 15 min, whereas the CaCdc4-depleted strain showed stabilization of CaUme6,
consistent with CaUme6 being a substrate of SCFCaCDC4.

Both CaUme6 and Sol1 contribute to the hyphal phenotype of Cacdc4�/�. In
order to investigate the possibility that CaUme6 is the critical target of SCFCaCDC4,
responsible for the hyphal phenotype of the Cacdc4�/� mutant (34), we performed
genetic epistasis analysis using comparisons between the CaCDC4 and CaUME6 dele-
tion mutants. If CaUme6 stabilization indeed caused the constitutively hyphal pheno-
type of Cacdc4�/�, then deletion of CaUME6 in the Cacdc4�/� mutant should suppress
this phenotype. As shown in Fig. 2, this was not the case: the double Cacdc4�/�

Caume6�/� mutant was still filamentous, albeit mostly pseudohyphal rather than
hyphal. However, we knew from previous work that Sol1, another SCFCaCDC4 substrate,
may also be involved in the filamentous growth of the Cacdc4�/� mutant (34). We
therefore tested the deletion of both CaUME6 and SOL1 together in the Cacdc4�/�

background; the triple mutant lost its hyphal growth phenotype at the levels of both
cell morphology and colony morphology. Reintroduction of a wild-type CaUME6 allele
restored filamentous growth to the mutant (Fig. 2A), consistent with CaUme6 being (to

FIG 1 CaUme6 is stabilized in the absence of SCFCaCDC4 activity. (A) CaUme6-6xMyc was expressed from
the MAL2 promoter of plasmid KB2147 in either wild-type (WT; KC2) or Cacdc53�/ts (KC363) cells by
inducing the cultures for 3 h with maltose. Aliquots were taken at the indicated times after glucose
addition, and CaUme6 was visualized by Western blotting. C, no-tag control. (B) The TETp-CaCDC4 strain
contains a single copy of the CaCDC4 gene under the regulation of the TEToff promoter; i.e., the
promoter is shut off in the presence of tetracycline. Myc epitope-tagged CaUme6 was expressed from the
CUP1 promoter of plasmid KB1994 in strain KC200 (TETp-CaCDC4). Degradation of CaUme6 was moni-
tored by [35S]methionine pulse-chase analysis in a culture preincubated for 3 h with tetracycline versus
a control culture. Both cultures were incubated for 15 min with 0.1 mM copper prior to labeling. For each
time point, equal radioactivity counts were subjected to immunoprecipitation with anti-Myc antibodies,
and the immunoprecipitate was loaded onto the gel. In the presence of tetracycline, a slower-migrating
form of CaUme6 accumulates. The graph indicates the amount of CaUme6 signal at each time point,
relative to the 0 time point. C, no-tag control.
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a major extent if not exclusively) responsible for the hyphal phenotype of the
Cacdc4�/� mutant. In addition to this morphological analysis, we also measured
expression levels of two hypha-specific genes, HWP1 and ECE-1, in the Cacdc4�/� strain
versus the Cacdc4�/� Caume6�/� strain. In the absence of CaUME6, the increase in
hypha-specific gene expression in the Cacdc4�/� strain was largely abolished, even in
the presence of SOL1 (Fig. 2B).

Recapitulation of CaUme6 degradation in S. cerevisiae. F-box proteins of the
Cdc4 type universally require phosphorylation of the substrate at one or multiple sites
for recognition (36, 41–43). Consistent with the consequent assumption that CaUme6
requires phosphorylation for recognition by the SCFCaCDC4 ligase, a lower-mobility
species of CaUme6 was seen to accumulate in CaCdc4-depleted cells (Fig. 1B). Thus, in
order to understand the regulation of CaUme6 degradation, it was important to identify
the kinase(s) that phosphorylates CaUme6 at the CaCdc4 recognition sites. Because of
the difficulty of carrying out extensive genetic screens in C. albicans, we tested whether
S. cerevisiae could serve as a model organism for the investigation of CaUme6 degra-
dation. Strikingly, expression of CaUME6 under the control of the strong inducible GAL1
promoter in S. cerevisiae was toxic, and this toxicity was exacerbated in the cdc4-1
mutant and in cdc53-1, a mutant of the SCF cullin subunit (Fig. 3A). This hypertoxicity
of CaUme6 correlated with partial stabilization of CaUme6 in the cdc4-1 hypomorphic
mutant (Fig. 3B). Interestingly, substituting CDC4 with CaCDC4 in S. cerevisiae restored
the strain to normal sensitivity to CaUme6 (Fig. 3A), suggesting that the CaUme6-
CaCdc4 interaction could be reconstituted in S. cerevisiae.

Identification of a potential CaUme6 kinase in S. cerevisiae. The degradation of
CaUme6 by SCFCDC4 or SCFCaCDC4 in S. cerevisiae implies that one or more kinases in
that organism are capable of phosphorylating CaUme6. We therefore next addressed
the identity of the CaUme6 kinase, using the toxicity phenotype of CaUme6 overex-
pression in S. cerevisiae as the initial assay. Since Cdc4 substrates are often phosphor-
ylated by cyclin-dependent kinases (43), we started by assaying CaUme6 sensitivity in
a mutant of the main cell cycle CDK, Cdk1/Cdc28. We found that cdc28-1N cells were
hypersensitive to CaUme6 overexpression (Fig. 4A). Furthermore, CaUme6 was strongly
stabilized in the cdc28-1N mutant (Fig. 4B).

Cdc28 in S. cerevisiae is activated by nine cyclins—three G1 cyclins and six B-type
cyclins—which also contribute to the substrate specificity of the kinase (44). In other
instances of CDK-mediated protein degradation, the overexpression toxicity of SCF
substrates could be partially suppressed by co-overexpression of the cyclin required for
their degradation (45, 46). We therefore next tested whether CaUme6 toxicity could be
suppressed by overexpression of a Cdc28 cyclin. Whereas B-type cyclin overexpression

FIG 2 Genetic epistasis analysis of the C. albicans cdc4 mutant together with the sol1�/� and Caume6�/� deletions.
(A) Strains KC2 (wild type), KC138 (Cacdc4�/�), KC196 (Cacdc4�/� Casol1�/�), KC449 (Cacdc4�/� Caume6�/�), KC462
(Cacdc4�/� Casol1�/� Caume6�/�), and KC533 (Cacdc4�/� Casol1�/� Caume6�/� �CaUME6�) were grown for
2 days at 30°C on yeast extract-peptone-dextrose (YPD) plates (top) or in liquid YPD to mid-log phase (bottom). The
rightmost panels show the phenotype of the CaUME6 reintegrant, which was obtained by reintegration in the triple
mutant of the CaUME6 open reading frame carried on a CaURA3-marked plasmid at the CaUME6 locus. (B) The
induction of hypha-specific genes by the deletion of CaCDC4 is largely restored by the further deletion of CaUME6.
The wild-type starting strain and the Cacdc4�/� and Cacdc4�/� Caume6�/� mutants (two independently con-
structed strains each) were grown in regular YPD medium at 30°C. mRNA levels of the hypha-specific genes ECE1
and HWP1 were detected by Northern blotting. rRNA served as loading control.
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did not suppress CaUme6 toxicity (data not shown), the G1 cyclin Cln3 (but not Cln2)
was able to partly suppress CaUme6 toxicity when overexpressed (Fig. 4C, top panel).
The C. albicans homolog of this gene, CaCLN3 (32, 33), was similarly able to partly
suppress CaUme6 toxicity in S. cerevisiae (Fig. 4C, bottom panel).

CaCln3 suppresses CaUme6-induced filamentation in C. albicans. Ectopic over-
expression of CaUME6 can induce hyphal growth, even in rich medium (20, 21). To test
whether the suppression of CaUme6 by CaCln3 can be recapitulated in C. albicans, we
assayed the effect of ectopic overexpression of CaCln3 on the CaUme6-induced hyphal
growth. While CaUME6 expression under the control of the MAL2 promoter indeed
induced robust hyphal growth, co-overexpression of CaCLN3 suppressed this effect in
a large measure and left the cells for the most part in the yeast morphology (Fig. 5A).
This microscopic morphology was mirrored in the sedimentation of the culture: while
elongated cells typically sediment faster than yeast cells, the cells in a culture overex-

FIG 3 CaUme6 is recognized by SCFCDC4 in S. cerevisiae. (A) SCFCDC4 mutants are hypersensitive to
CaUme6 overexpression. Fivefold dilutions of S. cerevisiae cells carrying the indicated mutation (KY337,
KY440, KY442, or KY879) and harboring either a vector plasmid or a plasmid carrying CaUME6 under the
regulation of the GAL1 promoter (KB2028) were spotted on synthetic dropout plates with either glucose
(GAL1-repressing) or galactose (GAL1-inducing) as the carbon source. Plates were incubated for 2 days
(glucose) or 3 days (galactose) at 30°C. (B) CaUme6 is stabilized in the S. cerevisiae cdc4-1 mutant.
Degradation of epitope-tagged CaUme6 expressed from the GAL1 promoter (plasmid KB2117) was
monitored in the indicated strains by [35S]methionine pulse-chase analysis at 30°C. For each time point,
equal radioactivity counts were subjected to immunoprecipitation with anti-Myc antibodies, and the
immunoprecipitate was loaded onto the gel. The graph indicates the amount of CaUme6 signal at each
time point, relative to the 0 time point. C, no-tag control.

FIG 4 CaUme6 overexpression toxicity in S. cerevisiae CDK mutants and cyclin-overexpressing strains. (A)
CaUME6 was expressed from plasmid KB2117 either in wild-type S. cerevisiae (KY337) or in a mutant of
the main cell cycle CDK CDC28 (KY414). The indicated strains were spotted and incubated as described
for Fig. 3A, except the incubation was performed for 4 days at 24°C. (B) CaUme6 degradation was
measured using the strains described in the panel A legend by shifting cells expressing CaUme6-6xMyc
from galactose to glucose and following CaUme6 levels by Western blotting. The graph indicates for each
time point the amount of CaUme6-6xMyc remaining relative to the 0 time point, normalized to the actin
signal. (C) The G1 cyclins Cln2 (plasmid KB1826), Cln3 (KB991), and CaCln3 (KB2144) were co-
overexpressed with CaUme6 (KB2117) as indicated and incubated were for 3 days (galactose) or 2 days
(glucose) at 30°C.
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pressing CaUME6 formed extended hyphae to such an extent that a never-sedimenting
mycelium was formed in the test tube (Fig. 5B). In contrast, cells co-overexpressing
CaCLN3 with CaUME6 sedimented normally. A corresponding effect was also seen at the
level of colony morphology: the crenellated morphology, characteristic of filamentous
growth, induced by CaUme6 was largely suppressed by co-overexpression of CaCln3
(Fig. 5C). Finally, we concomitantly tested expression of the hypha-induced genes
HWP1, ECE1, and HGC1 by Northern blotting in cells overexpressing CaUME6, alone or
together with CaCLN3. All three genes were strongly induced upon CaUME6 induction
alone, but this induction was strongly suppressed by co-overexpression of CaCLN3
(Fig. 5D). CaUME6 expression was barely affected by CaCLN3 co-overexpression, con-
firming that the effect of CaCln3 on CaUme6 is posttranscriptional.

Role of Cdc28 cyclins in CaUme6 degradation. Following the suppression of
CaUme6 activity by CaCln3, we tested whether CaCln3 overexpression induces CaUme6
degradation. Unexpectedly in view of the previous results, rather than causing CaUme6
degradation, co-overexpression of CaCln3 caused stabilization of CaUme6 (Fig. 6A). This
occurred in spite of the fact that in the same cells, co-overexpression of CaCLN3— but
not of other G1 cyclins—with CaUME6 caused suppression of the hyphal induction (see
Fig. S2 in the supplemental material). Since Cdc28/Cdk1 had been found to be involved
in CaUme6 degradation in S. cerevisiae, we screened additional Candida albicans Cdc28
cyclins for effects on CaUme6 degradation. Among the cyclins tested, only Hgc1
overexpression induced an acceleration of CaUme6 degradation (Fig. 6A). Conversely,
a mutant lacking HGC1 showed almost complete stabilization of CaUme6, placing the
Cdc28 cyclin Hgc1 within the degradation pathway of CaUme6 (Fig. 6B) (a mutant
lacking CaCLN3 was not tested since that mutant was inviable). Surprisingly, alongside
stabilization of CaUme6, the hgc1�/� mutant also exhibited markedly reduced steady-
state levels of CaUme6. We tested whether this was due to reduced mRNA expression
in the hgc1�/� strain. However, levels of CaUme6 mRNA expressed under the control
of the MAL2 promoter were very similar in the wild-type and hgc1�/� backgrounds

FIG 5 CaCln3 suppresses CaUme6 activity. (A) CaUme6 was ectopically expressed in C. albicans under the control
of the maltose-inducible MAL2 promoter (strain KC651), either alone or in the presence of overexpression of
CaCLN3 (plasmid KB1831). The control strain was KC271. Stationary cell cultures were diluted into yeast extract-
peptone (YEP)–2% maltose medium and photographed at the indicated times with a 40� objective and Nomarski
optics. (B) Cultures of C. albicans expressing either CaUme6 alone (left tube) or CaUme6 in the presence of CaCLN3
overexpression (right tube) were grown overnight in YEP–2% maltose. The tubes were subjected to vortex mixing
and photographed immediately or after standing for 60 min. (C) Suspensions of C. albicans cells expressing the
indicated genes were inoculated onto a YEP–2% maltose agar plate and incubated 2 days at 30°C. The control strain
was KC271. (D) Northern blotting of hypha-specific gene expression in strains overexpressing CaUME6 in the
presence or absence of CaCLN3 overexpression. Cells were grown overnight in YEP–2% raffinose and then diluted
in YEP–2% maltose. Aliquots for RNA extraction were taken 1 and 2 h after maltose induction. The transcript
intensities (arbitrary values) were obtained by measuring the band intensities by the use of a phosphorimager. The
gene-specific signals were normalized to the 18S rRNA signal for each lane. A total of 2 to 4 clones were tested for
each condition; the bar graph indicates the average value, with the error bars indicating the variance. The original
Northern blots are displayed in Fig. S1.
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(Fig. S3). We next tested whether this was an idiosyncrasy of our specific hgc1�/�

mutant strain by constructing a new hgc1�/� mutant by clustered regularly interspaced
short palindromic repeat (CRISPR) mutagenesis (47). In this new strain set, CaUme6 was
still stabilized but showed lower expression levels. In order to test whether these lower
levels were due to lower translation levels, cells were subjected to pulse-labeling with
[35S]methionine (Fig. 6C). In three independent experiments, levels of CaUme6 were
65% � 15% lower in the hgc1�/� mutant than in the wild-type strain, suggesting that,
in addition to promoting CaUme6 degradation, Hgc1 promotes CaUme6 translation.

The stabilization of CaUme6 observed in C. albicans hgc1�/� prompted us to revisit
degradation of CaUme6 in S. cerevisiae. By sequence alignment, the closest homologs
in S. cerevisiae to C. albicans Hgc1 are the G1 cyclins Cln1 and Cln2 (48, 49). We had
found that Cln2 overexpression was unable to suppress CaUme6 toxicity in S. cerevisiae
(Fig. 4C). Indeed, in S. cerevisiae, neither overexpression of Hgc1 nor overexpression of

FIG 6 Hgc1 is responsible for CaUme6 degradation. (A) CaUme6-6xMyc was ectopically expressed in
C. albicans under the control of the doxycycline-inducible Tet-on promoter of plasmid KB2270, either alone
or together with overexpression under the control of the MAL2 promoter of HGC1, CaCLN3, or CCN1
(plasmids KB1615, KB1697, and KB1698). Cells were shifted from YEP-raffinose to YEP–maltose–50 �g/ml
doxycycline for 3 h and then washed three times with the same medium without doxycycline, and
CaUme6-6xMyc levels were followed by Western blotting. (B) CaUme6 was ectopically expressed in
C. albicans under the control of the MAL2 promoter of plasmid KB2147 either in the wild-type strain (KC274)
or in the hgc1�/� strain (KC532). Cells grown in YEP-raffinose were induced for 2 h with 2% maltose, and
then 2% glucose was added and CaUme6-6xMyc levels were followed by Western blotting. (C) Pulse-
labeling of CaUme6 ectopically expressed in C. albicans under the control of the MAL2 promoter of plasmid
KB2147 either in the wild-type strain (KC965) or in the hgc1�/� strain (KC1014). Cells were shifted from
raffinose to maltose for 2 h and then washed in labeling medium and subjected to pulse-labeling with
[35S]methionine for 8 min. CaUme6-6xMyc was immunoprecipitated with anti-Myc. The asterisk indicates a
nonspecific band. (D) CaUme6 was ectopically expressed in S. cerevisiae under the control of the galactose-
inducible GAL1 promoter of plasmid KB2117, either in the wild-type strain (W303) or in the cln1� cln2�
strain (KY387). The graphs indicate for each time point the amount of CaUme6-6xMyc remaining relative
to the 0 time point, normalized to the actin signal.
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Cln2 induced any acceleration of CaUme6 degradation (Fig. S4). However, in the
reciprocal experiment, deleting both the CLN1 and CLN2 HGC1 homologs from the
S. cerevisiae genome resulted in almost complete stabilization of CaUme6 (Fig. 6D). This
suggests that the kinase responsible for SCFCDC4-mediated CaUme6 degradation in
S. cerevisiae is Cdc28-Cln1/2, the closest homolog of C. albicans Cdc28-Hgc1.

DISCUSSION

The observation that a mutant of CaCDC4, one of the substrate recognition factors
of the SCF ubiquitin ligase, is locked in the hyphal morphology demonstrated the
involvement of ubiquitin-mediated protein degradation in C. albicans morphogenesis
(34). Here, we identify a key hyphal morphogenesis transcription factor, CaUme6, as the
critical SCFCaCDC4 substrate responsible for the hyphal phenotype of the Cacdc4�/�

mutant. Like all known SCFCDC4 substrates, CaUme6 was expected to require phos-
phorylation in order to be recognized by its ubiquitin ligase. We identify here the Cdc28
cyclin Hgc1 and, in S. cerevisiae, the Cdc28 kinase, together with the G1 cyclins Cln1 and
Cln2, as kinases that are required for CaUme6 degradation.

The C. albicans G1 cyclin Hgc1 was shown to be absolutely necessary for hyphal
growth (49). Specific substrates phosphorylated by Hgc1 under hyphal growth condi-
tions include the septin Cdc11 (50), the Cdc42 GTPase-activating protein (GAP) Rga2
(51), and the transcription factor Efg1 (52). HGC1 is an essential transcriptional target of
CaUme6 in the hyphal induction pathway (53). Thus, the Hgc1-mediated degradation
of CaUme6 leads to a negative-feedback loop that keeps cellular CaUme6 levels in
check (Fig. 7), similarly to the negative-feedback loop between the transcription factor
Gcn4 and the cyclin Pcl5 in both C. albicans and S. cerevisiae (45, 46). Complicating the
picture, however, we also found a stimulatory effect of Hgc1 on CaUme6 translation, via
an unknown mechanism. The translational effect shown here does not depend on the
extended 5= untranscribed region (5= UTR) of the native CaUME6 transcript (54), since
this region is absent from our MAL2 promoter-driven CaUME6 expression construct.
Thus, Hgc1 exerts both positive and negative effects on CaUme6 levels. Further
elucidation of the mechanism of CaUme6 translational regulation by Hgc1 will be
required to understand how Hgc1 affects net CaUme6 levels under different conditions.

CaUme6 degradation was previously found to be regulated by external conditions
such as high CO2 and low O2 concentrations, in part via binding of the C terminus of
Ofd1 (55). However, the negative-feedback regulation described here is operative in
rich media under nonfilamentous growth conditions and appears thus to be distinct
from this previously described regulation of CaUme6 degradation by CO2 and O2.

In the course of our search for the Cdc28 cyclin involved in CaUme6 degradation, we
identified Cln3 as a cyclin that antagonizes CaUme6 activity. In the heterologous

FIG 7 Model of the regulation of CaUme6 by Cdk1 (Cdc28) with the Hgc1 and CaCln3 cyclins. (Right side,
blue color) CaUme6 induces HGC1 alongside additional hypha-specific genes (HSGs), and Hgc1 together
with Cdk1 induces SCFCaCDC4-mediated degradation of CaUme6. Hgc1 also stimulates CaUme6 transla-
tion via an unknown pathway. (Left side, green color) The inducer of proliferation CaCln3 is activated by
nutrients and represses the activity of CaUme6 and thus hypha formation. Black, new regulations of
CaUme6 identified in the present study.
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S. cerevisiae system, the toxicity of CaUme6 was suppressed by Cln3/CaCln3 overex-
pression. In C. albicans, in the presence of elevated CaCln3 levels, the ectopic induction
of hyphal growth by CaUme6 overexpression was abolished. It is worth mentioning that
under standard physiological hyphal induction conditions (37°C, 10% serum), overex-
pression of CaCLN3 also suppressed hyphal morphogenesis (T. Gildor and D. Kornitzer,
unpublished data). The suppression of the CaUme6 phenotypes by CaCln3 in C. albicans
was accompanied by a dramatic reduction in the CaUme6-induced expression of its
target genes. The reduction in CaUme6 activity was also accompanied by a strong
stabilization of CaUme6, which was initially surprising. However, the identification of
the CaUme6-Hgc1 negative-feedback loop immediately suggests a solution to this
apparent paradox: if CaCln3 affects CaUme6 transcriptional activity, then it would also
disrupt the CaUme6-Hgc1 feedback loop by interfering with expression of HGC1,
causing stabilization of CaUme6 (Fig. 7).

If CaCln3 suppresses CaUme6 transcriptional activity, then deletion of CaCLN3
should lead to increased CaUme6 activity. CaCLN3 is an essential gene and cannot be
deleted; however, when CaCLN3 was placed under the control of a repressible pro-
moter, it was found that yeast cells depleted of CaCln3 arrested in G1, grew in size, and
eventually formed hypha- or pseudohypha-like extensions (32, 33). Interestingly,
CaCln3-depleted cells were found to exhibit increased HGC1 expression, which is
consistent with an increase in CaUme6 activity (33).

The simplest explanation for the effect of HGC1 and CaCLN3 on CaUme6 activity and
stability is that Cdc28-Hgc1 and Cdc28-CaCln3 directly phosphorylate CaUme6. We
were, however, unable to produce sufficient recombinant full-length CaUme6 to re-
constitute these reactions in vitro. Instead, we were able to reconstitute in S. cerevisiae
both the Cdc28-Cln1/2 dependence of CaUme6 degradation and the suppression of
CaUme6 activity by Cdc28-Cln3/CaCln3. Reconstitution of these effects in a heterolo-
gous organism, in the absence of additional C. albicans factors, reinforces the assump-
tion of direct phosphorylation of CaUme6 by these kinases in S. cerevisiae and, conse-
quently, by their homologs Cdc28-Hgc1 and Cdc28-CaCln3 in C. albicans. Nonetheless,
the possibility of an indirect effect of these kinases on CaUme6 via a third factor present
in both organisms cannot be excluded.

The transcription factor CaUme6 lies at the heart of hyphal regulation in C. albicans
as a necessary and sufficient factor for hyphal growth (3, 20) and as a key transcriptional
target for the various signal transduction pathways that mediate hyphal induction
stimuli (21). Here, we show that in addition to its transcriptional regulation, CaUme6 is
also regulated posttranscriptionally by CaCln3. Whereas the transcriptional regulation
of CaUME6 mediates the response to extracellular signals that induce hyphal growth,
the CaCln3-mediated regulation may represent the input of cellular physiology in the
dimorphic switch decision. The notion that cellular physiology affects responsiveness to
hyphal induction is not new: for example, it was shown that stationary cells released in
fresh hyphal induction medium exhibit more robust hyphal morphogenesis than
mid-log-phase cells (24). This phenomenon could be explained in part by release from
the inhibition mediated by the quorum-sensing molecule farnesol but likely involves
cell-autonomous effects as well. However, the mechanism for this link between cell
physiology and hyphal induction was unknown.

Our observation that CaCln3 suppresses CaUme6 activity provides a plausible mecha-
nistic explanation for the antagonistic relationship between yeast proliferation and
hyphal morphogenesis. Cell proliferation in all organisms is regulated by nutrient
availability. The S. cerevisiae ortholog of CaCln3, Cln3, is the most upstream regulator at
the start of the cell cycle (56, 57) and is subject to several transcriptional and posttran-
scriptional regulations linking its levels to the nutritional state of the cell (58–60). The
regulation of CaCLN3 has not been investigated, but as an essential regulator of cell
proliferation, it is likely to be similarly regulated by the physiological state of the cell.
Thus, by responding inversely to CaCln3 levels, CaUme6 activity would be lower under
optimal growth conditions and higher under nutrient-limiting conditions.

The proliferation-differentiation antagonism is well established in animal cells (61).

C. albicans Ume6 Regulation by Cdk1

March/April 2017 Volume 2 Issue 2 e00248-16 msphere.asm.org 9

msphere.asm.org


In particular, cyclin D1, the functional homolog of fungal Cln3, has been widely shown
not only to promote proliferation but also to inhibit epithelial differentiation (62) as
well as myogenesis and neurogenesis (63). To the extent that the switch between
proliferation as yeast cells and differentiation into hyphal cells prefaces differentiation
pathways in higher organisms, the role of Cln3 in hyphal morphogenesis may mirror
the antagonistic role of the cell cycle apparatus, and of cyclin D in particular, in
multicellular differentiation systems.

MATERIALS AND METHODS
Plasmids and strains. (i) Plasmids. The CaUME6 deletion plasmids KB2022 and KB2023 were

generated by cloning the 5= region (position �640 to position �1; SacI-SpeI) and 3= region (position
�2537 to position �3315; HindIII-KpnI) into KB985 and KB986 (34), respectively. KB2028 is CaUME6
(position �1 to position �3315; HindIII-KpnI) cloned into p416-GalI (64). KB2073 contains the CaUME6
region from position �1500 to position �2900; NotI-KpnI) cloned into BES116 (65). KB2117 was
constructed by first introducing the single Myc epitope sequence of KB1321 (34) into p415GAL1 (64) to
generate KB1319; the CaUME6 sequence was then fused downstream of the epitope tag sequence of
KB1319. KB1994 is CaUME6 cloned at BamHI-HindIII and fused to the Myc epitope of KB1321. KB2147 was
constructed by first cloning the CaUME6 open reading frame (ORF) (position �1 to position �2529) at
EcoRV-HindIII under the control of the MAL2 promoter of BES119 (65), followed by introduction of the
6xMyc-ScCYC1 terminator sequence of KB1578 (34) at HindIII-KpnI downstream of CaUME6. For KB2270,
first, a Tet-on vector plasmid (KB1868) was constructed by introducing an XmaI-EcoRI-NotI multicloning
site between SalI and BglII of pNIM6 (66), followed by cloning of CaUME6-6xMyc-CYC1t amplified from
KB2147 between SalI and NotI. KB1615, KB1697, and KB1698 were previously described (48). KB1831 is
CaCLN3 cloned at ClaI-ApaI under the control of the MAL2 promoter of KB1817 (67). KB991 is a URA3 2�

GAL1-CLN3 plasmid obtained from Gerry Fink. KB1826 contains the CLN2 open reading frame cloned at
EcoRI-XbaI between the galactose (GAL) promoter of plasmid p415GalL (64) and the 3xMyc tag of
plasmid KB891 (41). KB2144 contains the CaCLN3 sequence (position �1 to position �2083), PstI-XhoI,
first cloned into p424-Gal1 (64) and then transferred as a Gal1-CaCLN3 fragment, at SacI-XhoI, to
p416GalL (CEN URA3). KB2139 contains the HGC1 open reading frame cloned at XbaI-EcoRI under the
control of the GAL1 promoter of plasmid p416-GalI (64).

(ii) Strains. The C. albicans strains are listed in Table 1. C. albicans deletion of CaUME6 was achieved
by sequential deletion of both alleles using plasmids KB2022 and KB2023 to generate KC445. CaCDC4
was deleted in KC445 using plasmid KB1344 (34) to generate KC449. To generate KC462, CaUME6 was
deleted in KC446 (ura- derivative of KC196 obtained by 5-fluoroorotic acid [5-FOA] selection). KC533 is
a CaUME6 reintegrant strain obtained by transformation of KC464 (the ura3- derivative of KC462 obtained
by 5-FOA selection) using plasmid KB2073 digested with SmaI. SmaI targets the plasmid to the promoter
region of the deleted CaUME6 allele and reconstitutes the full gene. We found that targeting the KB2073
plasmid to the ADE2 locus instead does not complement CaUME6, suggesting that the sequences
extending 1,500 nucleotides (nt) upstream of the translation start site are not sufficient to support full
expression. This is consistent with analyses indicating that CaUME6 possesses exceptionally long 5= UTR
and promoter sequences (54, 68). KC651 contains the MAL2 promoter of plasmid pFA-URA3-MAL2p (69)
integrated upstream of the CaUME6 open reading frame by PCR-targeted recombination. KC965 was
constructed by transforming KC2 with the nourseothricin-resistant (Natr) CRISPR-associated gene 9
(CAS9) pV1025 plasmid (47) followed by removal of the Natr marker as described in reference 47. To
generate KC1014, HGC1 was mutated by CRISPR (47) using a guide RNA corresponding to positions 125
to 144 on the antisense strand and a mutagenic oligonucleotide introducing an XhoI site and a frameshift
at position 124. The S. cerevisiae strains (Table 2) were all in the W303 background. KY879 was generated

TABLE 1 List of C. albicans strains

Name Genotype Reference or source

KC2 	 CAI4 ura3�::imm434/ura3�::imm434 73
KC138 ura3�/ura3� cdc4�::hisG-URA3-hisG/cdc4�::hisG 34
KC196 ura3�/ura3� sol1�/sol1� cdc4�::hisG-URA3-hisG/cdc4�::hisG 34
KC200 ura3�/ura3� ENO1/eno1::ENO1-tetR-ScHAP4AD-3*HA-ADE2 cdc4�::hisG/Tr-CDC4-SAT1 34
KC271 	 SN78 ura3�/ura3� leu2�/leu2� 74
KC274 	 SN148 ura3�/ura3� his1�/his1� leu2�/leu2� arg4�/arg4� 74
KC363 KC271 cdc53�::LEU2/cdc53-1 40
KC445 ura3�/ura3� ume6�::hisG/ume6�::hisG This work
KC449 KC445 cdc4�::hisG-URA3-hisG/cdc4�::hisG This work
KC462 ura3�/ura3� sol1�/sol1� cdc4�/cdc4� ume6�::hisG-URA3-hisG/ume6�::hisG This work
KC532 ura3�/ura3� his1�/his1� leu2�/leu2� arg4�/arg4� hgc1�::HIS1/hgc1�::LEU2 Yue Wang
KC533 ura3�/ura3� sol1�/sol1� cdc4�/cdc4� ume6Δ/ume6Δ ADE2/ade2::�URA3 UME6� This work
KC651 KC271 URA3 MAL2p::UME6/UME6 This work
KC965 KC2 ENO1/eno1::CaCAS9 This work
KC1014 KC965 hgc1�/� This work
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by shuffling the CaCDC4 gene on plasmid KB1261 (34) into MTY1260 (W303 ura3-1 his3-11 15 trp1-1cdc4::
HIS3 �CEN URA3 CDC4�; M. Tyers).

mRNA analysis. For RNA analysis by Northern blotting, a 10-ml volume of yeast culture was collected
for each sample, harvested, and frozen in liquid nitrogen. The RNA was extracted according to the “hot
phenol” method (70). A total of 3 �g of RNA was loaded in each lane. Radioactive DNA probes were
synthesized using a NEBlot kit (New England Biolabs). The radioactive signals were quantitated with a
phosphorimager. All specific gene signals were normalized to the 18S rRNA signal of the same gel lane.

Protein analysis. Protein levels were assayed by Western blotting using monoclonal antibody 9E10
to detect the Myc epitope. Proteins were extracted by the quantitative NaOH/2-mercaptoethanol
method, as described previously (71). To compare steady-state protein levels, equal protein amounts
were loaded; to monitor protein disappearance after promoter shutoff, equal culture volume equivalents
were loaded. Loading and transfer were monitored by Ponceau staining of the membrane and by actin
quantitation using an anti-�-actin antibody (AB8224; Abcam, Inc.). Quantitation was achieved either
using horseradish peroxidase (HRP)-conjugated secondary antibodies, followed by detection of en-
hanced chemiluminescence (ECL) signals with a Bio-Rad Chemidoc apparatus, or using Li-COR infrared
fluorescence IRDye secondary antibodies, followed by detection performed with an Odyssey imaging
system. Pulse-chase analysis was performed essentially as described previously (72), except maltose was
used for CaUme6-6xMyc induction.

Microscopy. Cells were fixed in 70% ethanol and visualized with a Zeiss AxioImager M1 microscope
equipped with differential inference contrast (DIC) optics, using a 40� or 100� objective. Colonies were
visualized with a Zeiss Stemi 2000C binocular microscope.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/
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FIG S1, JPG file, 1.9 MB.
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