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Abstract

Background: Studies have shown that low haemoglobin and anaemia are associated with poor cognition, and
anaemia is known to be associated with Alzheimer’s disease (AD), but the mechanism of this risk is unknown. Here, we
first seek to confirm the association between cognition and anaemia and secondly, in order to further understand the
mechanism of this association, to estimate the direction of causation using Mendelian randomisation.

Methods: Two independent cohorts were used in this analysis: AddNeuroMed, a longitudinal study of 738 subjects
including AD and age-matched controls with blood cell measures, cognitive assessments and gene expression data
from blood; and UK Biobank, a study of 502,649 healthy participants, aged 40–69 years with cognitive test measures
and blood cell indices at baseline. General linear models were calculated using cognitive function as the outcome with
correction for age, sex and education. In UK Biobank, SNPs with known blood cell measure associations were analysed
with Mendelian randomisation to estimate direction of causality. In AddNeuroMed, gene expression data was used in
pathway enrichment analysis to identify associations reflecting biological function.

Results: Both sample sets evidence a reproducible association between cognitive performance and mean corpuscular
haemoglobin (MCH), a measure of average mass of haemoglobin per red blood cell. Furthermore, in the AddNeuroMed
cohort, where longitudinal samples were available, we showed a greater decline in red blood cell indices for AD patients
when compared to controls (p values between 0.05 and 10−6). In the UK Biobank cohort, we found lower haemoglobin in
participants with reduced cognitive function. There was a significant association for MCH and red blood cell distribution
width (RDW, a measure of cell volume variability) compared to four cognitive function tests including reaction time and
reasoning (p < 0.0001). Using Mendelian randomisation, we then showed a significant effect of MCH on the verbal–
numeric and numeric traits, implying that anaemia has causative effect on cognitive performance.

Conclusions: Lower haemoglobin levels in blood are associated to poor cognitive function and AD. We have used UK
Biobank SNP data to determine the relationship between cognitive testing and haemoglobin measures and suggest that
haemoglobin level and therefore anaemia does have a primary causal impact on cognitive performance.
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Background
Dementia, a syndrome increasingly common in our age-
ing societies, is widely recognised as one of the world’s
largest unmet medical needs. Significant progress has
been made in identifying the determinative genes of fa-
milial diseases that cause dementia, such as early-onset
Alzheimer’s disease (AD) or fronto-temporal dementia
[1, 2]. For the commonest form of dementia, late-onset
AD, genome-wide association studies have identified
genes that alter the risk of suffering from the condition
[3]. The identification of these genetic factors has driven
much of our understanding with respect to the mecha-
nisms of neurodegenerative disease. However, although
modifiable environmental factors have also been identi-
fied (reviewed in [4]), the role of environmental influ-
ences such as cardiovascular risk, depression and social
isolation in the disease process is less certain. Most sig-
nificantly, factors associated with diseases, such as de-
pression and social isolation, could plausibly be
consequences, or even prodromal symptoms [5], rather
than causes of dementia. It has been suggested that meta-
bolic dysfunction plays a mechanistic role in disease [6]
and could be a consequence of the genetically driven
molecular pathological process rather than its cause [7,
8]. Clearly, this makes a difference when considering po-
tential interventions to identify or prevent AD.
Another potentially modifiable risk factor for poor

cognition in late life is anaemia. Systematic reviews sug-
gest that anaemia is a risk factor for both dementia and
for cognitive impairment [9, 10]. In addition to these,
Faux et al. [11] found lower haemoglobin and differences
in blood measures for mean cell haemoglobin, packed
cell volume and higher erythrocyte sedimentation rates
in people with AD, while Ferrer et al. [12] found that
levels of neuronal haemoglobin are reduced in AD. In
the Rush Memory and Aging Project, both high and low
levels of haemoglobin were associated with AD and fas-
ter cognitive decline [13]. In participants at post-mortem
analyses, lower haemoglobin levels were associated with
macroscopic infarcts but not other pathologies of neuro-
degeneration [14]. Although it is reasonably clear that
there is a relationship between indices of red blood cell
phenotypes and cognition, the directionality and there-
fore causality of the observation is unknown, just as it is
for other environmental factors.
Determining whether potentially modifiable factors as-

sociated with dementia are drivers of disease process
and hence targets for therapy is of critical importance. A
powerful approach to determining such causality is the
use of Mendelian randomisation (MR). One of the limi-
tations of MR, however, is the availability of genetic loci
strongly associating with the phenotype under consider-
ation. Here, we have utilised growing understanding of
the genetic determinants of red blood cell characteristics

to explore the role of haemoglobin and anaemia as a
causal factor of cognitive phenotypes, including dementia,
while integrating this growing understanding with modern
MR methods able to combine multiple genetic loci.
We use a range of analyses to draw inferences about

the relationship of red blood cell indices, and therefore
anaemia, to both cognitive function and AD. Using both
UK Biobank and AddNeuroMed data, we confirm the
relationship between AD and anaemia. Then, MR
methods suggest that altered red blood cell indices are
causally associated with reduced cognitive function and
finally, we provide transcriptomic evidence for molecular
pathways that might underpin this mechanism.

Methods
Clinical measures and blood indices
UK Biobank
The UK Biobank study is comprised of 502,649 healthy
participants, aged 40–69 years with comprehensive
phenotypic measures including cognitive testing and
blood cell indices (Additional file 1: Table S1), with mea-
sures described in detail online [15]. Briefly, blood cell
indices were calculated for participants using a haemo-
tology analyser which generated complete count data,
including red blood cell count (RBC) and haemoglobin
concentration (HGB). Other parameters were calculated
from these same measures, e.g. mean corpuscular
haemoglobin (MCH). All indices used in this analysis
were taken from the recruitment/baseline visit. Anaemia
classification was based on NICE guidelines, specifically
males with HGB below 13 g/100 mL and women with
HGB below 12 g/100 mL.
Results from tests conducted at baseline were used to

measure cognitive function. Full assessment methods are
described by Lyall et al. [16] but a brief description of
cognitive function test and value treatment follows:

Verbal–numeric reasoning (fluid intelligence) 13
logic-based questions asked within a 2 minute time limit.
Total number of correct responses was used for analysis
(UKB Field Identifier (FID) 20016).

Numeric memory Participants were asked to remember
a two-digit number after a brief pause. The number of
digits was then increased and longest number of digits
recalled was used for analysis (FID: 4282).

Reaction time Time taken for participants to match
two identical symbols and press button. Mean reaction
time (ms) of eight trials was used for analysis after log
transformation (FID: 20023).

Visual memory Pair matching test based on memory of
card location. Number of pairs mismatched for the six
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pair test was used for analysis after log transformation
(FID: 399).

Prospective memory An instruction was given at the be-
ginning of the assessment, which the participant needs to
remember in order to select the correct shape at the end
of the interview. A binary success or fail measure of the
first attempt was used for further analysis (FID: 20018).

AddNeuroMed
AddNeuroMed was a multi-national longitudinal study
of AD in Europe described elsewhere [17, 18]. It
included both AD and age-matched control subjects
with blood cell measures, neuropsychological assess-
ments and gene expression data [19]. NINCDS-ADRDA
criteria and Diagnostic and Statistical Manual of Mental
Disorders (DSM-IV) were used to classify AD patients.
Blood cell count measurements were generated at King’s
College Hospital according to clinical standards for 285
of these subjects. For a subset of samples (n = 71), all
these variables were available for two or more visits.
Blood measure rate of change was calculated as the
slope of a linear model using individual age at visit
(years) with blood measure as the dependent variable.
Namely, blood measure = β0 + β1 age + ε (where β1 is the
slope used, β0 intercept and ε noise).

Statistical analysis
UK Biobank
To test for associations between each cognitive function
test and blood measure, we used a general linear model
(GLM) per blood measure in which participants were fil-
tered by age (> 60 years) to give a better comparison to
AD patients. Cognitive function test was used as the
outcome variable, and blood measure as the main expos-
ure in each case. All p values were adjusted for multiple
testing using Benjamini and Hochberg correction. A rep-
resentative residual value for blood count was generated
based on a linear model using device and acquisition
route as covariants (FID: 30000-30284). This allowed
correction for effects of blood collection method without
impacting the cognitive function model. Demographic
variables were also added as further covariates to correct
for age, education, sex (FID: 31) and assessment centre
(FID: 54) as described by Nevado–Holgado et al. [20].
Education level impacts on multiple outcome measures
[21, 22], here, we included education within our model
to adjust for socio-economic factors represented by
schooling in different areas. However, we accept that
education and cognition are correlated as people with
stronger cognitive ability tend to stay in education
longer and we have included education as a covariate
assuming that as a generic adjustment of residual
confounders, it will lead to conservative estimate of

cognitive function. The same approach was used to test
for the association between AD status and blood traits,
with a GLM per blood measure including the same co-
variates as before. However, the population consisted of
all participants older than 60 with a diagnosis of AD,
plus a control participant (i.e. without AD) per case
matched by age and gender. A representative residual
value for blood count was generated based on a linear
model using device and acquisition route as covariants
(FID: 30000-30284). This allowed correction for effects
of blood collection method without impacting the cogni-
tive function model.

AddNeuroMed
To test for differences in the case and control sample
sets, different statistical tests were applied depending on
the number of available samples. An unpaired t test was
used to assess for significant differences between the
mean rates of change, while Kolmogorov–Smirnov test
was used to discern a difference between the distribu-
tions of rates of change. p values were adjusted for false
discovery rate in both instances. These simpler methods
were required to capture differences in the case of a
small sample set while, where sample size was large
enough (for MMSE-tested patients), a GLM was applied
instead with corrections for sex and age.

Mendelian randomisation
The main genetic data analysis was based on the first
released data batch of 152,736 participants from UK
Biobank. Samples were filtered by ethnicity (FID: 22006,
only keeping those with white genetic background);
genetic sex (FID: 22001, removing those where stated
gender did not match with real X–Y chromosome);
related participants (FID: 22012, removing one from
each common pair) and experimental checks (FID:
22050 and 22010) to leave 116,478 samples. A secondary
replication analysis was performed on the interim set of
genetic data (UK Biobank Release 2) which contained
335,423 participants. The dataset was processed follow-
ing the method outlined by Bycroft et al. [23].
The SNPs for MR were selected based on two GWAS

studies of blood traits with secondary validations as a fil-
ter [24, 25]. The SNP list was then filtered using the
PhenomeScanner [26] tool to remove all SNPs with a
known AD relationship, including SNPs located in the
APOE/TOMM40 locus, to reduce the potential of
pleiotropy errors. Remaining SNPs, with an info score > 0.9,
were extracted from the imputed dataset. Subsets of SNPs
specific to the blood measure were prepared to allow test-
ing of instrument choice for pleiotropy. As blood measures
are derived from common values, we selected three inde-
pendent traits to study based on their association with the
outcome variables: MCH; red blood cell distribution width

Winchester et al. Genome Medicine  (2018) 10:51 Page 3 of 12



(RDW) and reticylocyte count (RET). Association analysis
was performed in SNPtest [27] for imputed data.
One-sample MR was implemented using the “Mendelian

Randomisation” package from R [28] which incorporates
three methods with different assumptions. The median
weighted method or two-stage least squares estimation uses
a median of the individual causal estimate per SNP, which is
calculated from the ratio estimates of outcome’s regression
coefficient divided by exposure [29]. The inverse-variance
weighted (IVW) method uses the same ratio estimates but
incorporates inverse-variance weights into the final sum-
mary estimate [30]. The Egger method is sensitive to SNP
pleiotropy and allows the estimation of underlying bias by
allowing a non-zero estimate for the intercept of the calcu-
lated ratio of beta values [31]. Comparing estimates from all
of the methods shows the robustness of the overall analysis.
Two-sample MR was performed with the “MRBase” R pack-
age [32] using the same instrument set.

Gene expression analysis and pathway enrichment
RNA was extracted from blood samples and assayed on
Illumina Human HT-12 Expression Beadchips, full de-
tails are described by Lunnon et al. [19]. While a subset
of these samples was used for this analysis based on data
completion, the full raw dataset is available as GEO
DataSets with accession numbers GSE63060 and
GSE63061. Two approaches were used for array expres-
sion analysis, LIMMA models were used for fold change
calculations and the SAMr correlation method was used
to generate permutated statistics for the patient based
approach. Finally, the Kolmogorov–Smirnov test was
used to evaluate KEGG pathways for significant enrich-
ment. This pathway approach is described by Nevado–
Holgado et al. [33] which, similar to GSEA, takes signifi-
cance values from each individual gene and compares
the overall distribution of expression rather than a sim-
ple binomial approach.

Results
Haemoglobin content has a significant association with
cognitive function tests
Using the UK Biobank dataset, five cognitive function
tests were compared to the complete blood cell indices set
(Table 1). There was a significant association for red blood
cell distribution width (RDW) and mean corpuscular
haemoglobin (MCH) with outcomes on four cognitive
tests including reaction time and verbal–numeric reason-
ing (Fig. 1a). Although reaction time was associated with
white cell count and neutrophil number, associations with
red cell indices were considerably more extensive.
Performance on the reasoning test was positively cor-

related with red blood cell haemoglobin (Fig. 1b).
Haemoglobin concentration (HGB), MCH and mean
corpuscular haemoglobin concentration (MCHC) were

higher in participants with higher reasoning scores
(beta = 0.04, 0.04, 0.05 and p value = 2.26 × 10−7,
1.92 × 10−28, 7.33 × 10−12 respectively). The same cor-
relation trend is seen in the numeric and prospective
memory tests. Reaction time was inversely associated
with HGB, MCH and MCHC measures (beta = − 0.009,
− 0.003, − 0.002 and p value = 6.67 × 10−46, 7.94 × 10−8,
8.45 × 10−8 respectively); reflecting the same direction
of change as with other cognition measures as in-
creased reaction time is reflective of relatively worse
cognition. We found that RDW was inversely corre-
lated with four tests of cognitive function (beta between
− 0.053 and − 0.008, p value from 1.71 × 10−14 to 0.003).
Interestingly, the reticulocyte (RET) measures, although

highly variable, show the largest significant beta scores
(beta between − 1.34 and − 1.310 with p values from 0.025
to 9.4 × 10−5). As these sets of measures are used clinically
to diagnose iron-deficient anaemia, we estimated the pro-
portion of participants with anaemia according to NICE
guidelines and repeated the analysis. Participants with an-
aemia, so defined, had a significant reduction in perform-
ance on cognitive tests for three measures (prospective,
numeric and reasoning) and increased reaction time score
(p < 0.0005, Additional file 2: Figure S1).

Mean corpuscular haemoglobin and red blood cell
distribution width have a causative relationship with
verbal–numeric reasoning
Using UK Biobank to estimate a direction of effect, we
applied a single-sample MR model where the cognitive
test was the outcome variable, the blood measure the
mediating exposure variable, and SNPs known to be re-
lated to the blood measure were used as instruments
(Fig. 2a). In all cases, we used three alternative MR
methods to discount the possibility of pleiotropy among
SNPs (Table 2) as well as plots to assess SNP beta scores
(Fig. 2c–e). This approach identified a significant effect
on the numeric and reasoning traits from the MCH
measure (Fig. 2b). The effect between MCH and reason-
ing traits was replicated in an analysis using in the in-
terim release of the full UK Biobank genetic data where
we were able to reproduce the same direction of effect
(Additional file 1: Table S2). In addition, two-sample MR
was used to analyse the association in an alternative
sample set (Additional file 2: Figure S2). The UK
Biobank cognitive reasoning was used as the outcome,
and MCH beta scores from the MRBase library were
introduced as the new exposure to duplicate the sig-
nificant results shown in our main one-sample results
(p values < 0.05 for all three MR methods).
RDW also showed significant effects in several of the

MR tests for the reasoning and numeric traits (Table 2).
Beta scores were negative suggesting an inverse rela-
tionship whereby RDW decreases as the cognition
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improves (Fig. 2e). Given the relationship between
haemoglobin measures and cognitive tests, red blood
cell indices were selected based on GLM results
(Table 1), and their unique derivation source, to fit
independent testing assumptions. MCH and RDW
were the best candidates based on results from
analyses with cognitive tests and imply that both
haemoglobin levels and red blood cells themselves
have a potentially causative effect on cognition
(Table 2). RET was included as it is an independent
measure with strong beta scores but was not signifi-
cant (Additional file 1: Table S3).

Changes in red blood indices are also associated with
Alzheimer’s disease
UK Biobank participants gave consent for linkage to
medical records and using Hospital Episodes Statistics
data a subset of participants with a recorded clinical
diagnosis of AD or other dementia was identified using
ICD10 codes. This subset was then age and gender
matched to a control group (n = 1170). Using this
sub-cohort anaemia was found to be significantly increased
in people with AD (beta = 0.26, p value = 2.3 × 10−6)
and the RBC and HGB indices were all decreased in
the AD participant set (beta = − 0.66 and − 0.18

Table 1 Associations between blood traits and cognitive function tests as revealed by linear modelling

Numeric
beta

Numeric p Reaction
beta

Reaction p Prospective
beta

Prospective p Reasoning
beta

Reasoning p Visual
beta

Visual p

Red

RBC − 0.085 0.019 − 0.012 8.86 × 10−14 0.011 0.642 − 0.089 2.39 × 10−5 − 0.013 0.063

HGB 0.026 0.056 − 0.009 6.67 × 10−46 0.076 1.44 × 10−18 0.040 2.26 × 10−7 0.0004 0.884

HCT 0.002 0.701 − 0.002 8.78 × 10−31 0.020 6.97 × 10−12 0.005 0.045 0.0001 0.884

MCV 0.015 7.12 × 10−7 − 0.001 4.08 × 10−4 0.017 2.29 × 10−17 0.017 1.64 × 10−22 0.002 3.15 × 10−4

MCH 0.036 1.53 × 10−7 − 0.002 8.45 × 10−8 0.042 1.44 × 10−18 0.044 1.92 × 10−28 0.004 0.001

MCHC 0.033 0.004 − 0.003 7.94 × 10−8 0.041 1.15 × 10−5 0.048 7.33 × 10−12 0.001 0.787

RDW − 0.055 1.27 × 10−4 0.009 1.23 × 10−38 − 0.070 1.71 × 10−14 − 0.053 3.06 × 10− 10 − 0.008 0.003

Immature red

RET% − 0.016 0.442 0.001 0.227 − 0.021 0.100 − 0.018 0.104 − 0.001 0.812

RET − 1.346 0.025 − 0.001 0.984 − 1.341 0.001 − 1.301 9.40 × 10−5 − 0.067 0.375

MRV − 0.002 0.432 0.001 6.34 × 10−21 − 0.003 0.009 − 0.005 7.18 × 10−6 0.001 0.022

MSCV 0.002 0.512 0.001 2.58 × 10−7 0.001 0.642 − 0.001 0.413 0.002 4.24 × 10−4

IRF − 0.857 1.41 × 10−4 0.066 3.70 × 10−10 − 0.784 4.05 × 10−7 − 0.544 5.97 × 10−5 − 0.077 0.083

NRBC − 0.186 0.799 0.072 2.67 × 10−4 − 0.404 0.227 − 0.385 0.241 0.026 0.879

NRBC% − 0.003 0.945 0.005 0.004 − 0.021 0.326 − 0.020 0.352 − 0.001 0.884

White

WBC − 0.032 4.47 × 10−7 0.003 2.16 × 10−24 − 0.010 0.020 − 0.020 2.06 × 10−8 − 0.003 0.013

PLT − 0.0004 0.071 0.00004 1.53 × 10−4 0.000 0.020 0.000 0.825 0.000 0.273

PCT − 0.802 0.008 0.053 6.28 × 10−5 − 0.668 0.001 − 0.187 0.344 − 0.142 0.010

MPV − 0.016 0.214 − 0.00001 0.984 − 0.012 0.163 − 0.015 0.045 − 0.004 0.083

PDW 0.007 0.862 − 0.002 0.054 0.035 0.054 0.056 0.000 − 0.011 0.022

LYMPH − 0.001 0.945 0.002 8.65 × 10−5 − 0.011 0.109 − 0.018 0.002 − 0.003 0.155

MONO − 0.087 0.118 0.013 5.28 × 10−6 − 0.041 0.241 0.027 0.420 − 0.011 0.390

NEUT − 0.061 3.15 × 10−11 0.005 1.77 × 10−26 − 0.009 0.155 − 0.031 1.90 × 10−8 − 0.004 0.036

EO − 0.318 0.001 0.021 3.18 × 10−6 − 0.175 0.010 − 0.005 0.927 − 0.024 0.233

BASO − 0.010 0.973 0.046 3.61 × 10−4 − 0.498 0.014 − 0.025 0.910 − 0.007 0.884

LYMPH% 0.005 0.009 − 0.0002 0.004246 − 0.004 0.002 − 0.003 0.003 − 0.0004 0.232

MONO% 0.012 0.011 − 0.001 0.012 0.003 0.326 0.013 1.44 × 10−7 0.0001 0.884

NEUT% − 0.005 0.003 0.0002 0.003 0.003 0.005 0.0002 0.910 0.0003 0.294

EO% − 0.005 0.593 0.0003 0.316 − 0.009 0.085 0.011 0.013 − 0.0004 0.884

BASO% 0.037 0.186 0.002 0.126 − 0.030 0.056 0.022 0.140 0.002 0.787

Highly significant results are marked with italic fonts (p < 10−5). See Abbreviations section for acronyms
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respectively, adjusted p values < 0.05; Additional file 1:
Table S4).

Replication of the red blood cell association in an
independent cohort
We then turned to the AddNeuroMed cohort to repli-
cate these findings using complementary analyses. We
determined rate of change measures per participant to
incorporate multiple visit data when the participant
made at least three visits between age of patient at visit
(years) and each cell count measure (Additional file 2:
Figure S3). These rate of change values were not corre-
lated to the mean statistic (rho = − 0.031, Fig. 3a)
suggesting that they provide additional information over
and above the mean. We found a significant difference be-
tween AD case and normal cognition control subjects in
five red blood cell rate of change measures (p value < 0.05,
Table 3). A decline in rate of change was shown in the AD
cases compared to control patients, with Fig. 3b, c
showing the difference in distributions between RBC
(p value = 2.21 × 10− 4) and mean corpuscular volume
(MCV, p value = 1.95 × 10−3). The test was repeated
using the MMSE scores per patient as an assessment of
cognition. Using the highest and lowest scores (± 20%)
and despite the low sample numbers (n = 53) and

therefore lack of power, a significant difference remained
(adjusted p value < 0.005) in three red blood cell rate of
change measures between low and high MMSE (Fig. 3d).
Finally, using MMSE as a continuous measure in a linear
model, significant association was shown between MMSE
score and four red blood cell measures including MCH
(Table 3).

Pathway enrichment analysis indicates changes in MCH
may have an impact on haematological gene expression
As the AddNeuroMed cohort also contained whole
blood whole genome transcript data, we were able to use
this dataset to explore, using several approaches, the
gene expression patterns and hence KEGG pathways,
linked to both blood traits and to AD. Initially, we used
all subjects with both expression and rate of change in
MCH data in a fold change analysis to look for signifi-
cantly associated genes (37 patients), finding an enrich-
ment for the glycosylphosphatidylinositol (GPI) anchor
biosynthesis pathway (p value = 0.0107) in those with
greatest rate of change in MCH. Defects in this pathway
cause paroxysmal nocturnal haemoglobinuria, a genetic
disorder whereby the immune system destroys red blood
cells. We then focussed in on the AD group with
complete data as above (n = 22) to look for correlation

Fig. 1 Cognitive tests have a significant effect on red blood cell measures. a There is a significant association between red blood cell measures
and the reaction time, reasoning, numeric and prospective cognitive function tests. b Increased MCH and related indices have a positive effect
on verbal–numeric reasoning, prospective and numeric memory (red squares). Reaction time is increased as haemoglobin decreases due to
inverse nature of the reaction time test (blue squares). See Abbreviations for blood indices’ acronyms

Winchester et al. Genome Medicine  (2018) 10:51 Page 6 of 12



between rate of decline in blood indices and gene ex-
pression. Using this filtered approach, we detected an
enrichment for haematopoietic cell linage pathway cor-
relating with MCH rate of decline (p value = 0.0088,
Additional file 1: Table S5). In both cases, we found
weaker p values at the initial analysis stage, which is to
be expected given the sample size.

Discussion
Recently, increasing attention is being paid, with consid-
erable justification, to environmental factors that might
influence the development of dementia. As pharmaco-
logical strategies for prevention have not yet yielded suc-
cess and as the number of people with dementia
continues to rise then modifying environmental factors

Table 2 Associations from MCH and RDW to cognitive tests as revealed by MR

Median weighted beta [CI] Median weighted p IVW beta [CI] IVW p Egger beta [CI] Egger p

MCH trait

Reaction 0.0199 [− 0.0005, 0.0404] 0.0562 0.0091 [− 0.0057, 0.0238] 0.2320 0.0363 [0.01, 0.0627] 0.0069

Reasoning 0.0568 [0.0195, 0.0941] 0.0028 0.0458 [0.0194, 0.0722] 0.0012 0.0871 [0.0392, 0.1351] 0.0004

Numeric 0.0977 [0.0364, 0.159] 0.0018 0.0443 [0.0021, 0.0864] 0.0392 0.1327 [0.0544, 0.2111] 0.0009

Visual − 0.0015 [− 0.0217, 0.0188] 0.8855 − 0.0097 [− 0.0235, 0.0041] 0.1521 − 0.0182 [− 0.0439, 0.0074] 0.1640

Prospective 0.0706 [− 0.0149, 0.1562] 0.1055 0.0311 [− 0.0289, 0.0912] 0.3075 0.0506 [− 0.0612, 0.1623] 0.3752

RDW trait

Reaction − 0.0245 [− 0.0788, 0.0298] 0.3758 − 0.0135 [− 0.0541, 0.0271] 0.4528 − 0.0294 [− 0.1284, 0.0696] 0.5601

Reasoning − 0.1036 [− 0.2041, − 0.0031] 0.0432 − 0.1191 [− 0.1907, − 0.0474] 0.0025 − 0.0602 [− 0.235, 0.1146] 0.4996

Numeric − 0.2121 [− 0.3769, − 0.0472] 0.0117 − 0.111 [− 0.2345, 0.0124] 0.0714 − 0.3243 [− 0.6247, − 0.0238] 0.0344

Visual 0.0086 [− 0.0501, 0.0673] 0.7739 0.0428 [− 0.0092, 0.0947] 0.1307 0.0708 [− 0.0598, 0.2015] 0.2880

Prospective − 0.1024 [− 0.3368, 0.132] 0.3917 − 0.1108 [− 0.287, 0.0654] 0.1858 0.0278 [− 0.4019, 0.4575] 0.8992

Significant results are marked with italic fonts (p < 0.05). Higher and lower confidence intervals for beta scores given in square brackets [CI]

a b

c d e

Fig. 2 MCH has a significant effect on the reasoning cognition in multiple MR analysis approaches. a Mendelian randomisation model used for
analysis. b p values are significant (> 0.005) in multiple MR methods for the MCH measure (exposure) in the reasoning and numeric traits.
Significance in more than one test method is important to rule out pleiotropy among instruments. c MCH instrument (SNP) causal estimates for
the reasoning (outcome) show symmetry about 0 indicating a robust analysis (without pleiotropy). d MCH instrument causal estimates for the
numeric trait. e Instrument causal estimates for the reasoning trait compared to RDW
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Fig. 3 Rate of change in red blood cells emphasises differences in AD case–control samples. a Rate of change per patient is not correlated with
mean per patient. b The distribution of RBC is significantly decreased in AD compared to controls. c The distribution of MCV, a haemoglobin
measure, is significantly decreased in AD patients. d RBC rate of change is significantly different for high and low MMSE scores

Table 3 Significant Differences for red blood cell measures in an independent sample set

AD case–control AD case–control MMSE

T test KS test T test KS test Beta p value

Red

Red blood cell count (RBC) 2.65 × 10−03 2.21 × 10−04 4.06 × 10−04 5.63 × 10−04 0.02 7.04 × 10−03

Haemoglobin (HGB) 0.036 1.92 × 10−03 4.06 × 10−04 2.25 × 10−04 0.04 0.036

Packed cell volume (PCV) 9.42 × 10−04 1.61 × 10−06 4.06 × 10−04 2.25 × 10−04 0.002 0.026

Mean corpuscular volume (MCV) 0.033 1.95 × 10−03 0.483 0.092 0.01 0.929

Mean corpuscular haemoglobin (MCH) 0.036 1.92 × 10−03 0.244 0.054 − 0.05 0.027

Red cell distribution width (RDW) 0.103 0.142 0.609 0.606 0.01 0.868

White

Platelet (PLT) 0.036 1.55 × 10−03 0.244 0.092 − 1.18 0.369

Platelet distribution width (PDW) 0.036 0.142 0.244 0.606 − 0.36 0.369

White blood cell (WBC) 0.382 0.345 0.944 0.609 0.05 0.929

Neutrophils 0.729 0.105 0.992 0.487 − 0.02 0.914

Lymphocytes 0.867 0.379 0.944 0.154 0.00 0.929

Monocytes 0.867 0.379 0.944 0.606 0.00 0.914

Eosinophils 0.867 0.030 0.944 0.361 0.00 0.369

Basophils 0.382 0.105 0.449 0.065 0.00 0.127

The AddNeuroMed dataset was divided by two variables for testing. Cases and control groups were compared by t test and Kolmogorov–Smirnov (KS) tests.
MMSE was used to split samples into two groups for t and Kolmogorov–Smirnov (KS) tests. Results using MMSE from all samples using a linear model are also
shown (beta estimate and p value given). Significant results are marked with italic fonts (p < 0.05)
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to reduce incidence of dementia is an increasingly
attractive prospect. Supportive evidence for such an
approach has come from multiple lines of evidence that
despite increasing prevalence, the incidence of dementia
might be falling; an observation that might be due to
improved modification of cardiovascular risk factors.
However, other non-genetic risk factors derived from
observational study cannot be assumed to be causative
and because of this, modification may not prove to be
successful in reducing further the incidence of dementia.
It becomes therefore, of paramount importance to deter-
mine causality, including through the use of MR tech-
niques. However, previously, this approach has offered
relatively little support to the hypothesis that modifica-
tion of environmental risk factors such as LDL choles-
terol, glycemic traits, diabetes, body mass index or
education would reduce incidence of dementia [34]. In
fact, counter intuitively, Ostergaard et al. [35] find higher
systolic blood pressure to be associated with decreased
risk of dementia, suggesting either that blood pressure
has opposite effects on risk of dementia and of cardio-
vascular disease or that another factor associated with
hypertension, most obviously anti-hypertensive medica-
tion, has a protective effect. There is therefore an evi-
dence gap at present between observational studies
proposing risk factors for modification and robust proof
of concept for such modification including causality.
Without this evidence, the only approach is to perform
an interventional study of environmental modification, a
challenge given the difficulties and costs of such public
health measures. Evidence from approaches such as MR
for causality would add considerably to the justification
for such interventional studies.
We present evidence here for a primary causative

association between indices indicative of relatively poor
red cell function and cognitive function and, using MR
with genetic loci previously found to have robust rela-
tionship with red cell phenotypes, findings that strongly
suggest that lower haemoglobin has a causal impact on
cognitive performance. Moreover, secondary analyses are
in line with previous findings showing an association be-
tween anaemia and meeting operationalised criteria is a
risk factor for dementia as well as lower cognition. Specif-
ically, in UK Biobank data, we find lower MCH and RDW
to be associated with relatively lower verbal–numeric rea-
soning and numeric memory and that measures indicative
of anaemia, or a clinical diagnosis of anaemia, are associ-
ated with decreased cognitive function. This result repli-
cates findings in a larger healthy population (n > 37,000)
compared to previous studies [11, 14]. In complementary
analyses in AddNeuroMed, a cohort study of dementia,
we similarly find that red blood cell indices including red
cell count, PCV and HGB are associated with AD and
with decline in cognitive function measures. Using genetic

loci strongly associated with these blood traits, we find as-
sociations with poorer cognitive function strongly suggest-
ing a causative relationship with cognitive performance
and by implication with dementia. Finally, pathway ana-
lysis of gene expression in blood in the AddNeuroMed co-
hort finds genes known to be linked with anaemia and the
pathway of haematopoietic cell linage to be associated
with changes in red cell indices adding further to the
weight of evidence suggesting that these observations are
indicative of true biological association.
The RBC indices we observe to be most strongly asso-

ciated with cognitive outcomes are MCH and RDW,
measures commonly associated with iron deficiency an-
aemia [36] indicating a possible deficit in haem synthesis
or iron metabolism as an underlying trait. A possible
relationship between neurodegeneration and iron has
been investigated in other MR studies. Pichler et al. [37]
used MR with three SNP instruments to find that in-
creased iron reduces the risk of Parkinson’s disease and
implying that there may well be a causal association in
other similar diseases. However, Lupton et al. [38] used
genetic determinants of the serum iron measures trans-
ferrin and ferritin in a reanalysis of large-scale GWAS
data but found no association with AD. One possible
explanation for this apparent discrepancy is the use of
MCH in the present study, reportedly a more reliable
measure of haemoglobin not influenced by sample
storage conditions or cell counter methods [36]. Another
potential explanation is the difference in instrument
choice available from comprehensive GWAS studies of
the blood indices [39]. By approaching the problem from
the opposite direction using known genetic blood traits,
we were able to detect a significant link not seen using
AD genetics. The complexities of relationship between
iron and AD have been shown using other experimental
methods. For example, iron metabolism is disrupted in
cortical neurons and the beta-amyloid protein precursor
has ferroxidase activity in mouse models [40]. Telling et
al. [41] have described a correlation between iron bio-
chemistry and amyloid beta. These results show the rela-
tionship at the molecular level and may indicate a
potential mechanism for iron within AD. The relevance
of blood indices to the iron deposition has been shown
in other UK Biobank based studies. Miller et al. [42]
showed a correlation between the blood indices and T2*
image derived phenotypes from the brain scans (which
reflects iron deposition). In addition, a recent GWAS
study showed significant associations between the T2*
subcortical regions and genes related to iron transport
such as TF, HFE and SLC25A37 [43].
We recognise that there are limitations to this study.

The five cognitive tests were generally in agreement;
however, there was some discrepancy in the visual mem-
ory task. The task itself involved matching of pairs and
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although the mismatched score was used to improve re-
liability of the testing measure there are still weaknesses
in this data set. Other studies have shown the measure
has a low reliability score of 0.15 [16] and potential
weaknesses of test method may be impacting on our
own analysis results. The main inference for the MR
analysis is use of cognitive performance as a proxy rep-
resentative for AD. An alternative would have been to
use the AD phenotype as the mediating exposure, but
the low number of AD patients recorded in UK Biobank
seriously limits the statistical sensitivity of this approach.
Additionally, this only had borderline significance in
other studies [44].
Pleiotropy of instruments is a common limitation of

MR approaches. We used a number of tests to check for
pleiotropy effects on the results including Egger
methods and confirmational plots.
Using the rate of change statistic from the blood mea-

sures, we were able to determine a difference between
AD patients and controls. This is not a standard ap-
proach, possibly due to limited data available for mul-
tiple visits; however, it was very informative. We found
differences that were reproduced in a larger set that
were not detected otherwise. Using the same dataset but
taking a mean statistic per patient, rather than time
decline, we detected a difference in white blood cell
measure for basophils [45]. Given the known effects of
AD on blood measures, it seems likely that both blood
types are affected. Nonetheless, both methods warrant
replication in a larger, independent dataset. We have also
presented some interesting pathway enrichment results
yielding pathways which warrant replication in an
independent sample set with the goal of identifying
related genes.

Conclusions
We have presented here further evidence for the associ-
ation between red blood cell measures normally indica-
tive of anaemia and measures of both poor cognitive
performance and of dementia. Using a robust MR
approach, we are able to determine that this relationship
is one of causality and not consequence suggesting that
reversing these changes might slow or prevent the onset
of dementia. These findings require replication in other
datasets but already derive from one very large and one
very detailed cohort study. If they are replicated then the
implications are considerable. As our findings apply to
people with decreased cognitive function within the nor-
mal range as well as to people with established dementia
then the implication is that the causal relationship
between decreased red cell function and anaemia are an
early, preclinical influence on disease that continues
through to the dementia syndrome. It follows that
measures to reduce or reverse poor red cell function

might be both preventative and therapeutic at least in
part. If this was proven in interventional studies then
such screening measures, already in widespread use in
the population, might be used to identify people for
these and indeed for other secondary prevention inter-
ventions as they become available.
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