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Abstract
Growth differentiation factor 15 (GDF15), a member of the transforming growth factor-beta superfamily, is expressed in 
several human organs. In particular, it is highly expressed in the placenta, prostate, and liver. The expression of GDF15 
increases under cellular stress and pathological conditions. Although numerous transcription factors directly up-regulate the 
expression of GDF15, the receptors and downstream mediators of GDF15 signal transduction in most tissues have not yet 
been determined. Glial cell-derived neurotrophic factor family receptor α-like protein was recently identified as a specific 
receptor that plays a mediating role in anorexia. However, the specific receptors of GDF15 in other tissues and organs remain 
unclear. As a marker of cell stress, GDF15 appears to exert different effects under different pathological conditions. Cell 
senescence may be an important pathogenetic process and could be used to assess the progression of various lung diseases, 
including COVID-19. As a key member of the senescence-associated secretory phenotype protein repertoire, GDF15 seems 
to be associated with mitochondrial dysfunction, although the specific molecular mechanism linking GDF15 expression 
with ageing remains to be elucidated. Here, we focus on research progress linking GDF15 expression with the pathogenesis 
of various chronic lung diseases, including neonatal bronchopulmonary dysplasia, idiopathic pulmonary fibrosis, chronic 
obstructive pulmonary disease, and pulmonary hypertension, suggesting that GDF15 may be a key biomarker for diagnosis 
and prognosis. Thus, in this review, we aimed to provide new insights into the molecular biological mechanism and emerging 
clinical data associated with GDF15 in lung-related diseases, while highlighting promising research and clinical prospects.
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Introduction

Growth differentiation factor 15 (GDF15), initially termed 
macrophage inhibitory factor-1 in 1997, is a stress response 
cytokine that belongs to the transforming growth factor 
(TGF)-β superfamily. It is also known as non-steroidal anti-
inflammatory drug induced gene (NAG-1), placenta trans-
forming growth factor-β, prostate-derived factor, and pla-
cental bone morphogenetic protein [1–3]. GDF15 serves as 
a general biomarker for several diseases, with its serum level 
being used to predict all-cause mortality in conditions such 
as heart failure and cancer. GDF15 has also been reported 
to be a senescence-associated secretory phenotype (SASP) 

protein, indicating a role as an autonomic regulator of cel-
lular senescence.

Chronic lung diseases, including bronchopulmonary 
dysplasia, idiopathic lung fibrosis, chronic obstructive 
pulmonary disease, and pulmonary hypertension, may be 
associated with an accelerated ageing of the lungs. Mount-
ing evidence suggests that GDF15, senescence, and the 
pathogenesis of chronic lung diseases may be interlinked. 
Herein, we summarise the status of current research on the 
role and underlying mechanism(s) of GDF15 in chronic lung 
diseases.

Synthesis, secretion, and distribution of GDF15

Human GDF15, comprising 2 exons and 1 intron, is situ-
ated on chromosome 19p13.1–13.2 and comprises a total 
sequence length of 2746 base pairs [4, 5], as shown in 
Fig. 1. The GDF15 protein is approximately 35 kDa in 
size and includes a cysteine knot in the C-terminal domain 
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formed by eight intrachain disulphide bonds, which is the 
hallmark of the TGF-β superfamily. However, mature 
GDF15 is distinguished by a unique disulphide bonding 
configuration in its cysteine knot core [6] and is thus con-
sidered as a divergent member of the TGF-β superfamily. 
Human GDF15 pre-pro-protein contains 308 amino acid 
residues [7], comprising a 29-amino acid signal peptide, 
a 167-amino acid pro-peptide at the N-terminus, and a 
112-amino acid mature region at the C-terminus [8]. The 
GDF15 precursor protein undergoes disulphide‐linked 
dimerisation through a cysteine residue and is then cleaved 
at the RXXR cleavage site by proprotein convertase sub-
tilisin/kexins and matrix metalloproteinases in the Golgi 
apparatus [7, 9].

In healthy individuals, GDF15 is expressed most abun-
dantly in the placenta, followed by the prostate, kidney, 
colon, liver, and lung; it may also be expressed in the brain, 
heart, pancreas, gastrointestinal tract, and bone marrow at 
lower levels. In physiological states, GDF15 is only weakly 
expressed with a median circulatory level of 762  ng/L 
(interquartile range, 600–959) in healthy elderly individu-
als (median age of 65 years) [10]. However, GDF15 is highly 
expressed in the serum of pregnant women, with its con-
centration gradually increasing during pregnancy. GDF15 
in the placenta and amniotic fluid may promote placental 
formation and help maintain pregnancy through its immu-
nosuppressive effect [11]. The expression of GDF15 in other 
tissues may also increase under certain pathological states 
such as inflammation [12], tumorigenesis [7], oxidative 

Fig. 1   Human GDF15 includes 
2 exons and 1 intron. Inactive 
human GDF15 pre-pro-protein 
in the cytoplasm is dimerised 
by a specific disulphide bond, 
cleaved at the RXXR cleavage 
site in the Golgi apparatus, and 
secreted as mature GDF15. 
PCSK: Proprotein convertase 
subtilisin/kexin; MMP: Matrix 
metalloproteinase

Fig. 2   Overview of regulation of GDF15 expression. PPAR-γ: Per-
oxisome proliferator-activated receptor γ; NSAID: Non-steroidal 
anti-inflammatory drugs; P53: Tumour protein 53; Sp1: Specificity 
protein 1; COUP-TF1: COUP transcription factor 1; ATF: Activat-
ing transcription factor; CHOP: C/EBP homologous protein; NF-κB: 
Nuclear factor-κB; UPRmt: Mitochondrial unfolded protein response; 
ER: Endoplasmic reticulum
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stress [13], ischaemia, anoxia, and hypoxia [14], as well as 
during ageing [15].

Expression and regulation of GDF15

GDF15 expression is up-regulated by various transcrip-
tion factors, as shown in Fig. 2. The region upstream of 
the GDF15 promoter consists of several basic transcrip-
tion factor-binding sites, including specificity protein 1, 
early growth response protein 1 (Egr-1), p53, and COUP 
transcription factor 1 [4]. In the promoter of GDF15, Egr-1 
and specificity protein 1 bind to the same DNA sequence 
[16]. Known stress signals, such as amino acid depriva-
tion, hypoxia, mitochondrial dysfunction, and endoplasmic 
reticulum stress, play a role in activating transcription fac-
tor 4 (ATF4) to form a heterodimer with C/EBP homolo-
gous protein (CHOP) via the phosphorylation of elF2α, 
resulting in the regulation of GDF15 transcription [17]. 
However, hypoxia- and anoxia-induced GDF15 expression 
during tumour growth depends on the level of promoter 
histone methylation rather than p53/hypoxia-inducible fac-
tor 1 (HIF-1) expression [15, 18]. Hypoxic exposure may 
drive the transcription of GDF15 by activated pancreatic 
endoplasmic reticulum kinase–eukaryotic initiation factor 2 
alpha signalling pathway; this triggers the up-regulation of 
CHOP, which binds to the GDF15 promotor directly [14]. 
Furthermore, the level of GDF15 has been shown to increase 
following treatment with non-steroidal anti-inflammatory 
drugs; hence, GDF15 has also been referred to as NAG-1, 
which is induced by Egr-1 and ATF-3 rather than cyclooxy-
genase/p53 [19–21]. In addition, peroxisome proliferator-
activated receptor γ ligands act as positive regulators of 
GDF15 via interactions with Egr-1 and ATF-3/4 [22–24]. 
In cardiovascular diseases, GDF15 expression is stimulated 
by C-reactive protein through the p53 pathway in endothelial 
cells [25]. In addition, nuclear factor (NF)-κB can directly 
regulate GDF15 to evade macrophage surveillance during 
the early stages of tumour development [26].

However, the specific receptors and downstream media-
tors of the GDF15 signalling pathway in various tissues 
have not been identified to date. As a member of the TGF-β 
superfamily, GDF15 was initially considered to interact 
with a highly conserved receptor superfamily comprising 
type I and type II receptors. For example, GDF15 exerts 
its effects on food consumption and energy metabolism by 
interacting with the receptor TGF-β receptor II in the hypo-
thalamus [27]. However, it has been demonstrated that glial 
cell-derived neurotrophic factor family receptor α-like pro-
tein (GFRAL), which is expressed only in the brain stem, 
is the only known orphan receptor that shows a high degree 
of affinity to GDF15 [6, 28–30]. As a transmembrane cell 
surface protein, GFRAL must interact with its RET recep-
tor on the cell surface to initiate GDF15-specific signal 

transduction [6, 31]. The complex formed by the binding 
of GDF15 to GFRAL induces autophosphorylation of the 
intracellular domain of RET and activates signalling path-
ways, such as ERK1/2, Akt, FOS, and PLC-γ [32], while not 
affecting the Smad pathway [4]. GDF15 has been proposed 
to contribute to anorexia, cachexia, and body weight control 
via its interactions with these receptors. Moreover, Suriben 
et al. [33] recently demonstrated that suppression of GFRAL 
signalling with the therapeutic antagonistic monoclonal 
antibody 3P10 may reverse GDF15-induced excessive lipid 
oxidation and prevent cancer-related cachexia. This sug-
gested that GDF15 may elicit lipolysis via the peripheral 
sympathetic axis, leading to reduced adipose, body, and tis-
sue weights as well as muscle function [33].

The receptors for GDF15 in other tissues and organs 
remain unidentified. Although TGF-β receptors I and II 
are reportedly expressed in the lungs, it is unclear whether 
GDF15 interacts with them the same way as that observed in 
dendritic cells [34, 35]. GDF15 may be involved in promot-
ing the senescence of respiratory epithelial cells induced by 
cigarette smoke exposure through the ALK1/Smad1 pathway 
[36]. GDF15 shows an anti-cardiac hypertrophy effect via 
the Smad2/3 pathway [37], whereas in cardiomyocytes cul-
tured with GDF15, it exerted a pro-hypertrophic effect via 
the Smad1 pathway [38]. In cervical cancer, GDF15 binds to 
the ErbB2 receptor and promotes the proliferation of tumour 
cells by up-regulating cyclin D1 and cyclin E1 expression 
and down-regulating p21 expression through the PI3K/Akt 
and MAPK/ERK signalling pathways [39]. Therefore, future 
exploration and elucidation of receptor and signalling path-
ways in tissues other than the brain tissues, under different 
pathological conditions, might be important.

GDF15 and stress response

GDF15 acts as a stress-induced cytokine during tissue 
injury, hypoxia, and stimulation by pro-inflammatory 
cytokines as well as other stimuli or stressors to maintain 
cellular and tissue homeostasis. The most well-characterised 
stimuli include oxidised low-density lipoprotein, growth fac-
tors, interleukin (IL)-1β, tumour necrosis factor (TNF)-α, 
angiotensin II, macrophage colony-stimulating factor, and 
TGF-β [4, 40]. Hsiao et al. [41] reported that the expres-
sion of GDF15 in the liver apparently and swiftly increased 
in an animal model of partial hepatectomy and carbon tet-
rachloride-induced liver injury. Zimmers et al. [42] found 
up-regulated GDF15 expression in mouse models of kidney 
and pulmonary injury, suggesting that GDF15 induction is a 
broad cell injury response. GDF15 expression also increases 
rapidly with cardiovascular injuries, such as myocardial 
ischaemia/reperfusion [43], dilated cardiomyopathy [37], 
and heart failure. Xu et al. [44] reported that GDF15, as 
a newly identified sympathetic regulator, protects against 
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myocardial hypertrophy by inhibiting norepinephrine-
induced epidermal growth factor receptor transactivation.

Therefore, GDF15 appears to exert different effects under 
different conditions. For example, GDF15 exerts anti-inflam-
matory effects by evading macrophage activation and NF-κB 
activity, although the mechanism is still not fully understood 
[45]. Transgenic mice overexpressing GDF15, which were 
injected with a lipopolysaccharide (LPS), showed lower 
mortality than wild-type mice, whereas Gdf15-knockout 
mice presented a higher mortality than wild-type mice [46]. 
Furthermore, GDF15 treatment reduced the mortality rate 
in the model of inflammation induced by LPS, poly(I:C), 
or D-galactosamine [12, 47]. Moreover, several lines of 
evidence suggest that GDF15 may play a protective role 
under septic conditions. Luan et al. [12] found that GDF15 
induced by acute inflammatory injury drives the metabo-
lism of hepatic triglycerides by directing sympathetic out-
flow to the liver, which was presumed to be mediated by 
GFRAL-expressing neurons. Conversely, the knockout of 
Gdf15 protected mice from caecal ligation and puncture-
induced abdominal sepsis [48]. GDF15 also blocks various 
cytokines, including interferon-γ, IL-6, monocyte chemoat-
tractant protein-1, and TNF-α [4, 43]. In human nasal epi-
thelial cells, GDF15 is regulated by ATF-4 and inhibits the 
LPS-induced secretion of inflammatory cytokines and mucin 
5AC through the PI3K/Akt pathway [24].

GDF15 and ageing

Senescence is a cellular stress response to molecular dam-
age, characterised by irreversible cell cycle prolongation. 
Senescent cell arrest results in the formation of a complex 
secretome, known as the senescence-associated secretory 
phenotype (SASP). In recent years, a link between GDF15 
and senescence has become more evident. A Swedish 
cohort study, involving a group of 876 male patients aged 
35–80 years and a group of 324 twins aged 63–93 years, 
found that the serum GDF15 level may serve as an inde-
pendent indicator of all-cause mortality [49]. The authors 
of that study showed that the serum GDF15 level, similar to 
telomere length, could predict lifespan independent of the 
genetic background of an individual. Pence et al. conducted 
a study which investigated the relationship between circulat-
ing GDF15 levels in older adults and indices of age-related 
monocyte dysfunction, suggesting a potential causal link 
between GDF15 and age-related decline in immune func-
tion [50].

GDF15, the core SASP protein known in humans, is one 
of the most highly secreted proteins by fibroblasts or epithe-
lial cells among secretory SASPs [51]; however, the specific 
molecular mechanism underlying its involvement in ageing 
remains unclear. By activating the ALK1/Smad1 pathway, 
GDF15 promotes cellular senescence induced by radiation 

via the reactive oxygen species-mediated p16 pathway in 
human endothelial cells [52] and facilitates the senescence 
of airway epithelial cells as induced by cigarette smoke 
exposure [36]. Another study showed that female transgenic 
mice overexpressing GDF15 lived longer than wild-type 
mice [53].

Furthermore, GDF15 is associated with mitochondrial 
dysfunction [54, 55]. The mitochondria play a key role in 
the process of ageing, and mitochondrial dysfunction is one 
of the distinguishing features of senescence. Unfolded or 
misfolded proteins may accumulate in mitochondrial com-
partments under cellular stress, resulting in the up-regulation 
of mitochondrial chaperone protein expression as encoded 
by nuclear genes. The mitochondrial unfolded protein 
response (UPRmt) is a retrograde transcriptional response 
that helps misfolded proteins return to normal conforma-
tion and ensures that newly synthesized proteins fold cor-
rectly. Therefore, the UPRmt is a compensatory mechanism 
that helps identify, combat, and recover from mitochon-
drial dysfunction, and it maintains mitochondrial homeo-
stasis together with other mitochondrial stress response 
pathways, such as mitophagy or mitochondrial dynam-
ics [56, 57]. During mitochondrial stress, UPRmt not only 
regulates the transcription of mitochondrial genes, such as 
ATF4, ATF5, and CHOP [56, 58–60], but also influences 
the production of stress-responsive molecules known as 
mitokines, which include GDF15, fibroblast growth factor 
21 (FGF21), and mitochondrial-derived peptides [61]. In 
a Crif1(mitoribosomes)-knockout mouse model, aberrant 
mitochondrial oxidative phosphorylation induces the CHOP-
dependent transcription of Gdf15 after UPRmt activation [62, 
63]. However, recent studies have also demonstrated that 
activation of 5´AMP-activated protein kinase, a key protein 
for regulating mitochondrial function, can lead to an increase 
in circulating and hepatic GDF15 levels, independently of 
CHOP [64]. It has also been suggested that GDF15 may play 
a protective role by restoring metabolic homeostasis [65, 
66]. GDF15 alleviates steatosis of hepatocytes by inhibiting 
mitochondrial damage and reducing the release of dsDNA 
from mitochondria to cytosol [67]. In SH-SY5Y cells 
exposed to rotenone, up-regulated GDF15 affects PGC1α 
by regulating p53 and then reduce mitochondrial damage 
and apoptosis, and this process depends on the phospho-
rylation of Akt/mTOR [68]. GDF15 may also protect mito-
chondrial function by regulating mitochondrial membrane 
potential and oxygen consumption of immortalized mouse 
hippocampal neuronal cells through the PI3K-Akt signal 
pathway [66]. In addition, the level of GDF15 decreased in 
the subcutaneous adipose tissue and in vitro-differentiated 
adipocytes of elderly women, which was negatively corre-
lated with the mRNA expression level of lipogenic genes 
and was related to mitochondrial dysfunction [68]. There-
fore, it can be inferred that GDF15 may be an indicator of 



457Molecular and Cellular Biochemistry (2024) 479:453–466	

1 3

mitochondrial dysfunction associated with senescence and 
age-related diseases.

Role of GDF15 in chronic lung diseases

Bronchopulmonary dysplasia

Bronchopulmonary dysplasia (BPD) is the most common 
form of chronic lung disease (CLD) in premature infants of 
gestational age < 28 weeks or birth weight < 1200 g, espe-
cially those who require oxygen inhalation or mechanical 
ventilation during treatment. Since BPD was first described 
in 1967, advances in integrated management techniques for 
this condition have effectively improved the survival rate of 
premature infants. However, its incidence has not declined, 
and BPD survivors are at risk of a variety of chronic seque-
lae, including persistent respiratory symptoms, pulmonary 
function injury, neurodevelopmental disorders, pulmonary 
hypertension, and post-neonatal death [69].

The primary pathological features of BPD are a reduction 
in alveolar number, increase in alveolar volume, simplifica-
tion and irregularity of the alveolar structure, narrowing of 
the alveolar septum, and abnormal morphology of the pul-
monary micro-vessels, which may in turn lead to an abnor-
mal alveolar structure. It is speculated that these changes 
may be due to arrested development of lung tissue during the 
vesicular to alveolar phase, thus highlighting the characteris-
tics of a new type of BPD, namely pulmonary stagnation and 
pulmonary microvascular dysplasia [70]. Current research 
on the pathogenesis of BPD mainly focuses on the damage 
and abnormal repair of the pulmonary epithelial barrier fol-
lowing lung injury, DNA damage, and the role of epigenetics 
in the pathogenesis of BPD, mainly involving mechanisms 
such as apoptosis and autophagy.

Early damage to the neonatal lung, such as that caused 
by BPD, can affect different ageing pathways, such as 
DNA damage, telomere attrition, epigenetic altera-
tions, proteostatic imbalance, mitochondrial dysfunction, 

cellular senescence, and altered intercellular communica-
tion, thereby resulting in premature lung ageing in adults and 
the early onset of chronic lung disease later in life [71]. Vari-
ous ageing-related molecular pathways are also associated 
with neonatal BPD, including TGF-β1-induced connective 
tissue growth factor expression, the ataxia telangiectasia‐
mutated/p53‐dependent pathway, the insulin-like growth 
factor 1/Akt/mTOR signalling axis, and hyperoxia-induced 
DNA methylation and histone acetylation changes [71–77]. 
Hyperoxia can induce the senescence of lung cells, including 
lung epithelial cells [75, 78], smooth muscle cells of the air-
ways [79, 80], and fibroblasts [81]. As previously described, 
GDF15 participates in the cellular stress response pathway, 
which can be induced by hyperoxia exposure, whereas age-
ing is a protective response to stress, leaving cells in a non-
proliferative state that triggers the development of a harmful 
pro-inflammatory SASP [71]. Hyperoxia has been shown 
to considerably induce GDF15 expression in the lung [82], 
especially in epithelial and endothelial cells [83] (Table 1). 
In addition, the increase in GDF15 expression under hyper-
oxic conditions may be a response to oxidative stress, and 
GDF15 knockout could also decrease cell survival and 
increase reactive oxygen species production [83, 84]. The 
level of GDF15 in the umbilical cord blood of full-term 
neonates (3095 ± 191 pg/mL) accounts for 25% of mater-
nal blood levels in the third trimester of pregnancy; how-
ever, it is several times higher than that in adults [85], and 
it is now evident that neonatal GDF15 is derived from the 
new-born rather than the placenta [85, 86]. Almudares et al. 
showed that the level of GDF15 negatively correlated with 
gestational age (i.e., decreased with age) and that the level 
of GDF15 is directly or indirectly associated with adverse 
respiratory outcomes in premature infants [87]. Therefore, 
exploring the role of GDF15 in the pathogenesis of the alve-
olarisation and lung development dysfunction in BPD has 
high research value.

Table 1   Functional role of GDF15 in response to diverse lung diseases

Disease Cell type Functional role References

Bronchopulmonary dysplasia Epithelial and endothelial cells Responds to oxidative stress [82–84]
Idiopathic lung fibrosis Epithelial cells Exerts protective effect in lung fibroblasts/pro-

motes epithelial cell ageing/telomere dysfunc-
tion/promote ferroptosis

[35, 87, 95]

Chronic obstructive pulmonary disease Epithelial cells Induces cellular senescence/promotes lung 
inflammation after cigarette smoke exposure/
activates EMT after cigarette smoke exposure

[36, 110, 111]

Pulmonary hypertension Vascular endothelial cells Induces angiogenesis/prevents endothelial cell 
apoptosis/causes muscle atrophy

[112,  114, 115, 116]

COVID-19 Endothelial cells Causes iron metabolism disorder/endothelial 
inflammation

[127, 129, 133]
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Idiopathic lung fibrosis

Idiopathic pulmonary fibrosis (IPF) remains an irrevers-
ible and progressive fatal disease. It is characterised by the 
accumulation of extracellular matrix proteins and fibroblast 
proliferation, leading to chronic pulmonary remodelling and 
respiratory failure [88]. Studies have revealed that IPF is an 
ageing-related disease in which the senescence of lung cells 
plays a major role in the pathogenesis, and the senescence of 
alveolar epithelial cells promotes fibrosis by generating an 
SASP [89]. The expression of GDF15 in the human IPF lung 
is increased, along with increased levels in the bronchoal-
veolar lavage fluid and plasma, with pulmonary epithelial 
cells proven to be the main source of GDF15 in this condi-
tion [35, 88]. A study involving 108 patients with IPF and 
31 healthy controls in China [90] found that the serum level 
of GDF15 in patients with acute exacerbation of IPF was 
elevated and that the protein and mRNA levels of GDF15 in 
IPF lung tissues were significantly increased. Additionally, 
immunohistochemical staining showed that GDF15 expres-
sion in the cytoplasm of type II alveolar epithelial cells was 
moderately positive. Radwanska et al. co-stained GDF15 
with AT II cells marker ProSurfactant protein C (PSPC) in 
human IPF and healthy lungs [91], and their results also con-
firmed that GDF15 is expressed in alveolar epithelial type II 
(ATII) cells. In addition to being involved in promoting epi-
thelial cell ageing, GDF15 exerts a protective effect on lung 
fibroblasts. Zhang et al. [35] found a connection between 
up-regulated GDF15 expression in alveolar epithelial type 
2 cells and telomere dysfunction in IPF. Thus, GDF15 may 
play different roles in different lung cell types.

Lambrecht et al. [92] reported that GDF15 can also serve 
as a marker for the degree of lung damage in systemic scle-
rosis and that it is associated with the occurrence of fibro-
sis via the activation of fibroblasts and M2 macrophages. 
Moreover, the level of GDF15 in vivo is associated with the 
number of diseased organs in addition to the lung and is thus 
linked to the severity of the disease. GDF15 participates in 
immune recruitment in the lungs, activates fibroblasts, and 
ultimately leads to fibrosis via its direct involvement in the 
expression of pro-inflammatory cytokines and chemokines 
(such as IL-6 and CCL2). Additionally, low expression of 
caveolin-1 in the IPF lung weakens the inhibitory effect of 
the TGF-β receptor, thereby activating the TGF-β signalling 
pathway, leading to the excessive production of extracellular 
matrix and eventually the occurrence of pulmonary fibrosis 
[93–95]. GDF15 may aggravate the inflammatory response 
of the lung tissue and accelerate the process of pulmonary 
fibrosis by promoting ferroptosis, which may be related to 
the ability of members of the TGF-β superfamily to promote 
ferroptosis in tumour cells [96]. However, GDF15 has also 
been proposed as a potential therapeutic agent for IPF, as it 
could ameliorate pulmonary fibrosis by inhibiting the TGF-β 

signalling pathway [97]. Therefore, although the mechanism 
of GDF15 in pulmonary fibrosis is not yet clear, current evi-
dence and technology enable its application as a biomarker 
for the diagnosis and prognosis of IPF and show its potential 
as a therapeutic target for IPF.

Chronic obstructive pulmonary disease

Chronic obstructive pulmonary disease (COPD) accounts for 
more than 3 million reported deaths globally each year, and 
the associated morbidity and mortality are expected to rise in 
the future. Persistent respiratory symptoms and progressive 
airflow obstruction are the hallmarks of COPD [98]. As a 
sensitive marker of cardiopulmonary stress, GDF15 has no 
known specific diagnostic function in different diseases such 
as heart failure, pneumonia, COPD, nephropathy, and septi-
caemia [99], although its expression is markedly increased 
in patients with acute exacerbations of COPD [100, 101]. 
Compared with healthy subjects and patients with asthma, 
patients with COPD show a high GDF15 level in the serum, 
which is negatively correlated with exercise levels [102]. In 
a 9-year study of 413 patients with COPD, a high level of 
plasma GDF15 was independently associated with higher 
exacerbation rates, higher mortality, and a more significant 
decrease in the forced expiratory volume in 1 s and forced 
vital capacities [103]. Therefore, the GDF15 level may be 
correlated with the severity, deterioration, and prognosis of 
COPD. In a cohort study of 694 smokers without clinical 
cardiovascular disease, the level of GDF15 in the plasma 
independently contributed to the risk of subclinical coronary 
atherosclerosis [104].

Smoking and occupational exposure to smoke are the 
leading causes of COPD [98]. Cigarette smoke exposure 
increases GDF15 expression in airway epithelial cells and 
induces cellular senescence by activating the ALK1/Smad1 
pathway, with significant increases in early senescence 
marker p21, late senescence marker p16, and HMGB1 lev-
els [36]. This is consistent with the observation of increased 
cellular senescence in Clara cells, alveolar type II cells, 
endothelial cells, and leukocytes from smokers or cigarette 
smoke-exposed mice [72, 105–108], suggesting that the 
accumulation of senescent cells in the lungs may play a key 
role in the pathogenesis of COPD. GDF15 was found to 
regulate MUC5AC expression in respiratory epithelial cells 
exposed to cigarette smoke by activating the PI3K/Akt sig-
nalling pathway [109]. Another study using a mouse model 
of cigarette smoke exposure showed that the knockout of 
Gdf15 could reduce pulmonary inflammation, and that an 
increase in T and B lymphocytes in the airway and lung tis-
sue was considerably attenuated after 4 weeks of cigarette 
smoke exposure [110]. The human rhinovirus (HRV) is the 
most common virus causing acute exacerbations of COPD. 
HRV-induced lung inflammation in mice can be increased by 
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the overexpression of human GDF15 protein, which results 
in heightened viral replication and release in airway epithe-
lial cells [111]. Collectively, these results demonstrate that 
GDF15 promotes lung inflammation after cigarette smoke 
exposure. In addition, persistent active epithelial–mesen-
chymal transition (EMT) has been observed in the airway 
epithelial cells of patients with COPD; specifically, IL-17A 
markedly up-regulated the expression of GDF15 in cigarette 
smoke-treated HSAEpiC cells in a dose-and time-dependent 
manner, and IL-17A combined with GDF15 activated EMT 
in HSAEpiC cells after cigarette smoke exposure [112].

Pulmonary hypertension

In animal models of hypoxia, GDF15 overexpression in 
pulmonary vascular endothelial cells in pulmonary arterial 
hypertension (PAH) is accompanied by an elevated circu-
lating GDF15 level, reflecting the process of pulmonary 
vascular remodelling [113, 114]. GDF15 promotes HIF-1α 
activation through p53 degradation, followed by the induc-
tion of angiogenesis in hypoxia-induced human umbilical 
vein endothelial cells (HUVECs) [115]. GDF15 could also 
prevent high glucose-induced endothelial cell apoptosis in 
HUVECs by inhibiting the phosphorylation of the PI3K/Akt/
eNOS pathway and attenuating the activation of the NF-κB/
JNK pathway [116]. An elevated systemic GDF15 level is 
associated with the risk, progression, and severity of pul-
monary hypertension by increasing atrial and pulmonary 
capillary wedge pressure, which are caused by hypoxia and 
laminar shear stress in pulmonary vascular endothelial cells 
[114, 117]. GDF15 is also associated with left ventricular 
dysfunction as induced by pulmonary hypertension, espe-
cially in the case of persistent heart disease. As left heart 
disease leads to an increase in cell death and remodelling 
at the myocardial level, elevated GDF15 level can be used 
as a marker for the evaluation of post-capillary pulmonary 
hypertension [117]. In a study of children with congenital 
heart disease complicated by pulmonary hypertension, the 
GDF15 serum level was found to be considerably increased, 
which was positively associated with the level of N-terminal 
pro-brain natriuretic peptide (NT-proBNP). Furthermore, the 
addition of GDF15 to NT-proBNP as a diagnostic marker 
showed slightly higher specificity and positive predictive 
value than the use of NT-proBNP alone when diagnos-
ing PAH [118]. In 2019, Larissi et al. [119] reported that 
patients with sickle cell disease had a high level of serum 
GDF15, with clinical manifestations of vascular occlusion, 
chronic haemolytic anaemia, and frequent infection, and 
the GDF15 level in the serum positively correlated with the 
mean pulmonary artery pressure. Tantawy et al. confirmed 
through echocardiography that young patients with thalas-
semia intermedia may have endothelial dysfunction present 
before the appearance of obvious clinical cardiovascular 

abnormalities, and this was accompanied by an increase in 
circulating GDF15 levels. They suggested using 1500 pg/mL 
GDF15 as a baseline to assess the presence of cardiovascular 
disease [120]. As a severe complication of systemic sclero-
sis, PAH is characterized by a high incidence and mortality 
rate, and GDF15 is significantly elevated in the remodelled 
pulmonary arteries and serum of systemic sclerosis-PAH 
patients [114].

In recent years, PAH has been increasingly regarded as 
a systemic disease. GDF15 has been linked to muscle atro-
phy in malignancy and anorexia nervosa. GDF15 inhibits 
appetite through its central receptor GFRAL, resulting in 
weight and muscle mass loss, and accelerates muscle pro-
tein degradation by up-regulating the expression of ubiquitin 
ligase atrogin-1, TAK1-NF-κB, and MuRF1 [113, 121]. The 
main muscle-related complications in PAH are declines in 
muscle strength, endurance, contractility, and capillary den-
sity along with the impaired oxygenation of microcirculation 
and a transition to type 2 muscle fibres [122]. GDF15 has 
been shown to contribute to muscle atrophy by increasing 
the phosphorylation of TAK1 and its target protein, NF-κB, 
and this process could be antagonised by treatment with 
TAK1 inhibitors [113]. This finding not only indicates that 
GDF15 is implicated in the pathogenesis of PAH vascular 
lesions but also shows that the pulmonary circulation affects 
the muscle mass of patients with PAH through a GDF15-
mediated endocrine mechanism. In conclusion, GDF15 may 
participate in the pathogenesis of PAH vascular lesions and 
may be a powerful and promising biomarker for disease risk, 
progression, and a poor prognosis.

GDF15 and other lung diseases

GDF15 is also involved in the aetiology of other lung dis-
eases. It has been found to promote and maintain T helper 
cell 2 immunity in the lung. In an asthma model mediated by 
allergens and environmental pollutant particles, NOTCH4 
signalling up-regulated the expression of GDF15 in regula-
tory T cells, which promoted ILC2 expansion and activation 
through the Notch4-Wnt-GDF15 pathway [123] and pro-
vided a new therapeutic prospect for restoring lung immune 
tolerance and homeostasis [124].

In a retrospective cohort study of patients with acute res-
piratory distress syndrome, a higher level of GDF15 was 
strongly associated with a poor prognosis [125]. Herter et al. 
[126] found that GDF15 could protect the lungs of patients 
with acute lung injury by reducing the platelet count and 
suppressing neutrophil extracellular trap formation via the 
activation of αIIBβ3 on platelets. GDF15 also improved 
lung injury by up-regulating SIRT1 in an LPS-induced 
acute lung injury mouse model [127]. In addition, GDF15 
has been found to affect the recruitment of neutrophils in the 
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post-capillary venules of the cremaster muscle in a ventila-
tor-induced lung injury model.

Dynamic changes in the GDF15 level are furthermore 
closely associated with COVID-19 progression, and they 
are used as a useful marker for identifying patients with poor 
respiratory function [128, 129]. Therefore, GDF15 may be 
used as an index to evaluate disease severity in patients with 
COVID-19. The pathogenesis of severe COVID-19 involves 
an overactive immune response, leading to a ‘cytokine 
storm’ characterised by haemophagocytosis and elevated 
serum cytokine levels [130]. Moreover, as SARS-CoV-2 
directly targets endothelial cells, endothelial dysfunction is 
a trait of COVID-19 that is related to oxidative stress [129]. 
Considering its capacity to induce hypoxia and characteristic 
high expression in endothelial cells, GDF15 may also par-
ticipate in COVID-19 endothelial inflammation [114, 129, 
131]. Another possible mechanism underlying the oxidative 
stress and inflammation in COVID-19 involves a disorder 
of iron metabolism [132]. GDF15 has been reported as an 
upstream negative regulator of hepcidin, being associated 
with hepcidin levels and/or regulation of hepcidin expres-
sion. The plasma GDF15 level is higher in thalassemia and 
other diseases with ineffective erythropoiesis [119, 133]. 
The negative correlation between GDF15 and hepcidin 
[134], which may be associated with the Smad signal path-
way, results in iron overload [135]. In addition, inhibition 
of GDF15 can also promote erastin-induced ferroptosis by 
attenuating the expression of SLC7A11. Therefore, GDF15 
may play a key role in regulating ferroptosis and iron metab-
olism [136].

Conclusions

In cells, GDF15 is present in different forms, with mature 
GDF15 being distributed in various human organs. As a 
molecule closely associated with stress and the ageing pro-
cess, GDF15 is linked to the pathogenesis of several lung 
diseases, particularly chronic lung diseases; however, sev-
eral inconsistencies remain with the molecular mechanism 
underlying GDF15 function at the cellular level. Although 
other lung cells may also secrete GDF15 under different dis-
ease or stress conditions, pulmonary epithelial cells, which 
are the most likely source of GDF15 in the lungs, play a role 
in subsequent immune responses, such as oxidative stress 
and inflammation. GDF15 is considered a core SASP protein 
and mitokine that is strongly associated with mitochondrial 
dysfunction. Furthermore, GDF15 has been identified as a 
potential biomarker for assessing the degree of mitochon-
drial dysfunction in ageing and age-related diseases. As a 
secreted protein, GDF15 can be used as not only a predictor 
of all-cause mortality but also a biomarker for the diagno-
sis, progression assessment, and prognosis of various lung 

diseases. Future research may be required on the pathogen-
esis of GDF15 in chronic lung diseases, such as the identifi-
cation of (i) the upstream molecules involved in regulating 
GDF15 expression, (ii) receptors in lung tissues that directly 
bind GDF15, and (iii) mechanisms underlying the associa-
tion between GDF15 and ageing, as well as mitochondrial 
dysfunction in the development of chronic lung diseases.
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