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Abstract: Two new diamond-like (DL) chalcogenides, Li2MgGeSe4 and Li2MgSnSe4, have been
successfully synthesized using a conventional high-temperature solid-state method. The two com-
pounds crystallize in the non-centrosymmetric space group Pmn21 with a = 8.402 (14) Å, b = 7.181
(12) Å, c = 6.728 (11) Å, Z = 2 for Li2MgSnSe4, and a = 8.2961 (7) Å, b = 7.0069 (5) Å, c = 6.6116
(6) Å, Z = 2 for Li2MgGeSe4. The calculated results show that the second harmonic generation
(SHG) coefficients of Li2MgSnSe4 (d33 = 12.19 pm/v) and Li2MgGeSe4 (d33 = −14.77 pm/v), mainly
deriving from the [MSe4] (M = Ge, Sn) tetrahedral units, are close to the one in the benchmark
AgGaS2 (d14 = 13.7 pm/V). The calculated band gaps for Li2MgSnSe4 and Li2MgGeSe4 are 2.42 and
2.44 eV, respectively. Moreover, the two compounds are the first series of alkali and alkaline-earth
metal DL compounds in the I2-II-IV-VI4 family, enriching the structural diversity of DL compounds.

Keywords: diamond-like structure; chalcogenides; infrared nonlinear optical materials; second
harmonic generation

1. Introduction

The exploration of advanced functional materials, as well as the development of
structural chemistry, depends on the fabrication of new compounds with a special crystal
structure, which contains distinctive physical and chemical behaviors [1–12]. A diamond-
like (DL) structure compound, exhibiting abundant chemical diversities and adjustable
optical properties, has been proven as a valid structural framework for the design and
fabrication of new infrared (IR) optical materials, especially for the mid- or far-IR nonlinear
optical (NLO) materials. Over the past few decades, a large number of non-centrosymmetric
DL chalcogenide compounds, such as Li4HgGe2S7 [13] and Li4MgGe2S7 [14] in the I4-II-
IV2-VI7 family, and Li2CdGeS4 [15], Li2CdGeSe4 [16], Li2ZnGeSe4 [17] and Cu2ZnSnS4 [18]
in the I2-II-IV-VI4 family, with outstanding optical properties, have been developed using
an atomic substitution or co-substitution strategy.

In a DL compound, the cation is coordinated with four anions, and follows the
Pauling’s electrostatic valency rule [19–23]. Hence, the optical properties including band
gap and SHG response in the DL chalcogenide compounds could be effectively regulated
by organizing proper tetrahedral units in the structure. On the basis of the statistical
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analyses, the DL chalcogenide compounds mainly consisted of univalent metal tetrahedral
units, such as alkali metal tetrahedral LiQ4 (Q = S, Se) and/or IB group metal tetrahedral
MIQ4 (MI = Cu, Ag; Q = S, Se), with IIB (Zn, Cd and Hg), IIIA (B, Al, Ga and In), IVA (Si,
Ge and Sn) and VA (P and As) group element tetrahedral units [24–27]. Most recently, Pan
and Li et al. [14] demonstrated that the alkaline-earth metal AQ4 (A = Be, Mg; Q = S, Se)
tetrahedral units, which without d-d and f -f electronic transitions, can be used to regulate
the optical properties of DL chalcogenide compounds. By introducing alkaline-earth
metal tetrahedral unit MgS4 into the I4-II-IV2-Q7 system, the first alkali and alkaline-
earth metal DL sulfide Li4MgGe2S7 with excellent IR NLO optical performances was
discovered. However, owing to the experimental challenges to obtain the four-coordinated
alkaline-earth metal AQ4 tetrahedral units in a crystal structure, the number of reported
alkaline-earth metal containing DL compounds is very limited, and the exploration of new
IR NLO materials, especially with excellent optical properties in alkali and alkaline-earth
metal DL chalcogenide compounds, is just in the initial stage.

Considering the above discussions, the alkali metal tetrahedral LiS4 and alkaline-earth
metal tetrahedral MgSe4 units were successfully introduced into the classical I2-II-IV-VI4
family in this work. Two new alkali and alkaline-earth metal DL selenides Li2MgMSe4
(M = Ge, Sn) were synthesized by conventional high temperature solid state reactions in
sealed quartz tubes. Li2MgMSe4 (M = Ge, Sn) are isostructural compounds, crystallizing in
the orthorhombic Pmn21 space group. The compounds exhibit a three dimensional channel
structure, which is built by [LiSe4], [(Li/Mg)Se4] and [MSe4] (M = Ge, Sn) tetrahedral units.
The theoretical investigations show that the calculated band gap for the two compounds is
2.44 eV for Li2MgGeSe4, and 2.42 eV for Li2MgSnSe4 (matched with the experimental value
of 2.62 eV). The calculated SHG coefficients of the title compounds are d33 = 12.19 pm/V
for Li2MgSnSe4 and d33 = −14.77 pm/V for Li2MgGeSe4, which are close to the one in
AgGaS2 (d14 = 13.7 pm/V) [28]. The SHG coefficients are mainly contributed by the MSe4
(M = Ge, Sn) tetrahedral units. Meanwhile, the calculated birefringences are 0.011 for
Li2MgSnSe4 and 0.012 for Li2MgGeSe4.

2. Experimental Sections
2.1. Chemical Syntheses

High purity (99.99%) raw materials (Li, Mg, Sn, Ge and Se) were obtained from
Aladdin Industrial Corporation (Fengxian District, Shanghai, China) and utilized without
extra purification.

Li2MgMSe4 (M = Ge, Sn) single crystals for structural determination were prepared us-
ing a melting method in sealed quartz tubes. The starting mixture samples (Li:Mg:Ge:Se = 2:1:1:4;
Li:Mg:Sn:Se = 2:1:1:4) were packaged in graphite crucibles in a glove box. After that the
graphite crucibles were moved into quartz tubes, and the quartz tubes were sealed by flame
under a vacuum atmosphere (about 10−3 Pa). Then, the samples were heated to 880 ◦C
in 46 h, and kept at 880 ◦C for 50 h, then cooled to room temperature in 48 h. Breaking
the tubes, the yellow Li2MgGeSe4 and Li2MgSnSe4 single crystals were harvested in the
graphite crucibles. It is worth mentioning that the two crystals show strong moisture
absorptions in air.

The syntheses of Li2MgMSe4 (M = Ge, Sn) powder samples for performance character-
ization were tried at a higher temperature. The mixtures of Li, Mg, Ge/Sn and Se elements
with an atomic stoichiometric ratio were first weighed, ground and sealed in quartz tubes.
The sealed samples were slowly heated to 900 ◦C (in 60 h) in a muffle furnace, and kept at
this temperature for 100 h, then cooled to room temperature in 100 h.

2.2. Single-Crystal X-ray Diffractions

Li2MgMSe4 (M = Ge, Sn) single crystals were manually picked out and utilized for
structural determinations. The X-ray diffraction data of Li2MgMSe4 (M = Ge, Sn) single
crystals were collected in a Bruker D8 Venture diffractometer that was equipped with
monochromatic Mo-Kα radiation (λ = 0.71073 Å) operating at 50 kV and 40 mA. The
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structure refinements of the two compounds were carried out in the SHELX-97 crystal-
lography software package. The XPREP program was used for the absorption correction
(multiscan), the structures of Li2MgMSe4 (M = Sn, Ge) were checked by PLATON in case
of additional symmetry elements [29–31]. The detailed processes can be found in previous
works [9,14,32,33]. It is worth noting that the initial Li/Mg occupation from refinement was
0.53715:0.462850 for Li2MgSnSe4, and 0.48933:0.51067 for Li2MgGeSe4, which is close to 1:1.
To maintain the charge balance in the whole structures, the atomic ratio of Li/Mg in both
title compounds was set to 1:1. The crystal data and structural refinements of Li2MgMSe4
(M = Ge, Sn) are listed in Table 1. Meanwhile, the corresponding atomic coordinates,
bond distances and angles, isotropic displacement parameters and atomic parameters are
shown in Tables S1–S7. Since Li2MgGeSe4 deliquesces quickly in air, the data collection for
Li2MgGeSe4 was repeated several times using different single crystals. However, the data
integrity of Li2MgGeSe4 is still lower than Li2MgSnSe4.

Table 1. Crystal data and structural refinements of Li2MgSnSe4 and Li2MgGeSe4.

Empirical Formula Li2MgSnSe4 Li2MgGeSe4

Formula weight 472.72 g/mol 426.62 g/mol
Temperature 296.15 K 153 (2) K

Crystal system Orthorhombic Orthorhombic
Space group Pmn21 (No. 31) Pmn21 (No. 31)

Unit cell dimensions
a = 8.402 (14) Å
b = 7.181 (12) Å
c = 6.728 (11) Å

a = 8.2961 (7) Å
b = 7.0069 (5) Å
c = 6.6116 (6) Å

Volume 405.9 (12) Å3 384.33 (5) Å3

Z 2 2
Calculated density 3.867 g/cm3 3.686 g/cm3

Absorption coefficient 21.047 mm−1 22.891 mm−1

Goodness-of-fit on F2 0.993 1.110
Final R indices [Fo

2 > 2σ(Fo
2)] [a] R1 = 0.0349; wR2 = 0.0750 R1 = 0.0350; wR2 = 0.0783

R indices R1 = 0.0401; wR2 = 0.0784 R1 = 0.0413; wR2 = 0.0831
Largest diff. peak and hole 2.08 e·A−3 and −0.93 e·A−3 1.55 e·A−3 and −2.46 e·A−3

[a] R1 = Σ‖Fo| − |Fc‖/Σ|Fo| and wR2 = [Σw(Fo
2 − Fc

2)2/ΣwFo
4]1/2 for Fo

2 > 2σ(Fo
2).

2.3. Powder X-ray Diffraction (PXRD)

The Powder X-ray diffraction (PXRD) pattern of Li2MgSnSe4 was characterized using
a Bruker D2 Phaser diffractometer (Bruker Corporation, Karlsruhe, Germany) under Cu-
Kα radiation (λ = 1.5418 Å) with a metal holder. Meanwhile, the experimental XRD
pattern of Li2MgSnSe4 (Figure S1) was recorded from 10 to 70◦ (2θ) with a scan step width
of 0.02◦. The experimental and calculated PXRD patterns of Li2MgSnSe4 are shown in
Figure S1. Owing to the experimental challenge in synthesizing and characterizing the
moisture-sensitive compounds, impurities such as SnSe2 and SnSe were observed in the
synthesized Li2MgSnSe4 powder samples. However, based on the XRD patterns, the main
phase can be determined to be Li2MgSnSe4. Meanwhile, compared with Li2MgSnSe4,
Li2MgGeSe4 powder samples exhibit more serious moisture absorption. It was deliquesced
too fast in air (the samples were deliquesced in 1 min at room temperature) to finish
the PXRD measurement. GSAS was used to fit and refine the powder diffraction data
of Li2MgSnSe4. The main phase Li2MgSnSe4 and impurity phases SnSe and SnSe2 were
refined. A certain peak function was fitted with experimental intensity data, and the values
of peaks and structural parameters (including background function, lattice parameters,
peak parameters, atomic position, preference orientation, etc.) were constantly adjusted
during the fitting process until the difference between calculated intensity and experimental
intensity stabilized [34]. The multi-phase Rietveld refinement yielded tiny impurities
contents such as SnSe2 and SnSe (total 9.7%) remaining from the staring materials, and a
weight fraction of 90.3% of target Li2MgSnSe4 (Figure S2). The refined structural parameters
are provided in Table S8. The large difference in the refinement can be attributed to the



Materials 2021, 14, 6166 4 of 9

experimental challenge to obtain long time and high quality PXRD data for the moisture-
sensitive Li2MgSnSe4. However, the refined results are helpful in judging the purity of the
product.

2.4. UV–Vis–NIR Diffuse Reflectance Spectroscopy

The diffuse reflectance spectrum of the synthesized Li2MgSnSe4 powder samples
was characterized using a DUV spectrophotometer (Shimadzu SolidSpec-3700, Shimadzu
Corporation, Shanghai, China) at room temperature in air. Based on the reflection spec-
trum, the corresponding absorption spectrum was obtained using the Kubelka–Munk
formula [35,36]. The process was completed in 5–10 min.

2.5. Raman Spectroscopy

The Raman spectrum of Li2MgSnSe4 was characterized on a single crystal in a
LABRAM HR Evolution spectrometer.

The Li2MgSnSe4 single crystal was firstly placed onto a transparent glass slide. Then,
a suitable objective lens was used to select the measured area on the crystal. The maximum
power of the used laser beam was about 60 mW with a spot size of ~35 µm.

2.6. Theoretical Calculations

Based on the density functional theory (DFT) and CASTEP program, the plane wave
pseudopotential was applied to calculate the electronic structures of Li2MgMSe4 (M = Ge,
Sn) [37]. Meanwhile, the exchange-correlation effects of the compounds were analyzed by
using the generalized gradient approximation (GGA) with the Perdew–Burke–Ernzerhof
(PBE) function [38,39]. Under the norm conserving pseudopotentials for wave function
expansion, the kinetic energy cutoff of the models was set to 450 eV. Moreover, the Brillouin
zone [40] contained 2 × 2 × 2 Monkhorst-pack k-point sampling [41]. The virtual unit cells
were used to process the occupancy [42,43].

3. Results and Discussion
3.1. Crystal Structure

As shown in Figure 1a,f, the two compounds are isomorphic structures. Herein,
Li2MgSnSe4 is taken as an example of the structure description. Li2MgSnSe4 crystallizes in
the noncentrosymmetric space group Pmn21 with a = 8.402 (14) Å, b = 7.181 (12) Å, c = 6.728
(11) Å and Z = 2. In the asymmetric unit of Li2MgSnSe4, there are two Li, one Mg, one
Sn and three Se atoms that are crystallographically independent. In Li2MgSnSe4, the Li2
and Sn1 atoms are bonded to four Se atoms to build up the [LiSe4] and [SnSe4] tetrahedra
with Li-Se bond lengths ranging from 2.50 Å–2.65 Å and Sn-Se bond lengths ranging from
2.505 Å–2.528 Å, respectively. The Li1 and Mg1 atoms are set to share the same sites with
the atomic ratio of 1:1 in the initial refinements with the identical anisotropic displacement
parameters, which can help to obtain better R values and reasonable temperature factors,
similar to the situation of Cu/Mg atomic co-occupation in Cu2MgSiS4 [44], Cu2MgGeS4 [44]
and Cu2MgSiSe4 [44]. Furthermore, Li/Mg atomic co-occupation is very common, which
can be found in the LiMg(IO3)3 [45] and Li0.8Mg2.1B2O5F [46]. Similar to the Li2 and Sn1
atoms, the co-occupied Li1 and Mg1 atoms are bonded to four Se atoms to construct the
[(Li/Mg)Se4] tetrahedra units at the Wyckoff position 4b (Table S7). Furthermore, the
formed tetrahedra groups are connected with each other by sharing Se atoms to constitute
the final DL structure. For both compounds, there is a similar channel-like structure with
a channel diameter of about 6 Ångstrom on the ab plane, as shown in Figure 1e,j. On the
basis of the detailed investigations in the Inorganic Crystal Structure Database (ICSD), the
two compounds should be the first series of alkali and alkaline earth metal DL compounds
in the I2-II-IV-VI4 family.
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3.2. Optical Properties

Based on the UV–Vis–NIR diffuse-reflectance spectrum, the experimental band gap
of Li2MgSnSe4 was determined to be 2.62 eV (Figure 2a). To confirm chemical bonding,
the Raman spectrum of Li2MgSnSe4 was characterized on a single crystal. As shown
in Figure 2b, the peaks below 193 cm−1 are related to the vibrations of Li-Se and Mg-
Se bonding, matched with the previous results [47–49]. The peak at 193 cm−1 and the
overlapping peaks around 235 cm−1 could be assigned to the asymmetric and symmetric
stretching vibrations of Sn-Se bonding in SnSe4 tetrahedral groups [49,50].
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single crystal.

3.3. Theoretical Calculations

To study the linear and nonlinear optical properties of Li2MgMSe4 (M = Ge, Sn),
DFT calculations were implemented. Considering the Li/Mg atomic co-occupation at the
Wyckoff position 4b in the structures, the virtual unit cells were built for the calculations,
as shown in Table S9 and Figure S3. The calculated theoretical band gaps, SHG coefficients
and birefringences of the two compounds are shown in Table 2; the calculated band gap for
the two compounds is 2.44 eV for Li2MgGeSe4, and 2.42 eV for Li2MgSnSe4 (matched with
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the experimental value of 2.62 eV). The SHG coefficients of Li2MgSnSe4 in d33 = 12.19 pm/v
and Li2MgGeSe4 in d33 = −14.77 pm/v are close to the one of AgGaS2 in d14 = 13.7 pm/v.
The calculated birefringences for the two compounds are 0.011 (Li2MgSnSe4) and 0.012
(Li2MgGeSe4), respectively.

Table 2. Calculated band gaps, SHG coefficients and birefringence of Li2MgSnSe4 and Li2MgGeSe4.

Compound Eg (cal./eV) d15 (pm/v) d24 (pm/v) d33 (pm/v) ∆n@1064 nm

Li2MgSnSe4 2.42 −4.68 −5.81 12.19 0.011
Li2MgGeSe4 2.4 5.53 7.14 −14.77 0.012

To detect the origin of the optical properties, the electronic structures, SHG densities
and band-resolved NLO susceptibilities of Li2MgMSe4 (M = Ge, Sn) were further inves-
tigated. Figure 3 shows the calculated band structures, total and partial density of states
and the band-resolved NLO susceptibility χ(2) of the two compounds. The band structures
(Figure 3a,b) indicate that Li2MgGeSe4 is an indirect band gap compound with a band gap
of 2.44 eV, while Li2MgSnSe4 is a direct band gap compound with a band gap of 2.42 eV
(matched with the experimental value of 2.62 eV). Furthermore, as shown from the total and
partial density of states (PDOS) curves (Figure 3c,d), the valence bands maximum (VBM),
which, around the Fermi level, is mainly occupied by Se-4p (83%) orbitals with the minor
contribution of Sn-5p (8%), Li/Mg-2p (5%) and Li-2s (4%) orbitals for Li2MgSnSe4 and
Se-4p (83%) orbitals with the minor contribution of Ge-4p (8%), Li/Mg-2p (5%) and Li-2s
(4%) orbitals for Li2MgGeSe4, respectively (the range from -4.0 to 0 eV). The conduction
bands minimum (CBM) originates from Se-4p (10%), Sn-5p (9%), Li-2s (19%) and Li/Mg-2p
(21%) orbitals for Li2MgSnSe4, Se-4p (11%), Ge-4p (8%), Li-2s (17%) and Li/Mg-2p (21%)
orbitals for Li2MgGeSe4, respectively (the range from 2.4 to 12 eV). The results indicate
that the optical band gaps of Li2MgMSe4 (M = Ge, Sn) are mainly determined by the Se-4p,
Li/Mg-2p and Li-2s orbitals.

Materials 2021, 14, x 7 of 10 
 

 

 
Figure 3. Calculated band structures of (a) Li2MgSnSe4 and (b) Li2MgGeSe4; total and partial density of states and the 
band-resolved NLO susceptibility χ(2) of (c) Li2MgSnSe4 and (d) Li2MgGeSe4. 

 
Figure 4. SHG densities of (a) Li2MgSnSe4 and (b) Li2MgGeSe4. 

4. Conclusions 
In summary, the first series of DL selenides in the I2-II-IV-VI4 family, Li2MgGeSe4 

and Li2MgSnSe4, have been rationally designed and synthesized. Their crystal structures 
were determined using single crystal X-ray diffractions, and the optical properties were 
studied using experimental spectra and DFT calculations. Li2MgMSe4 (M = Ge, Sn) crys-
tallize in the non-centrosymmetric space group Pmn21 and show channel structures built 
by [LiSe4], [(Li/Mg)Se4] and [MSe4] (M = Ge, Sn) tetrahedra units. The two compounds 
exhibit large theoretical SHG coefficients in d33 (12.19 pm/v for Li2MgSnSe4, and −14.77 
pm/v for Li2MgGeSe4), moderate band gaps (2.42 for Li2MgSnSe4, and 2.44 for 
Li2MgGeSe4) in selenides. The results demonstrated that introducing alkali metal and 
alkaline earth metal tetrahedral units into the I2-II-IV-VI4 family is a feasible way for the 
development of diamond-like IR nonlinear optical materials with good properties. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Table S1: 
Atomic coordinates and equivalent isotropic displacement parameters of Li2MgSnSe4, Table S2: 
Anisotropic displacement parameters (Å2 × 103) of Li2MgSnSe4, Table S3: Symmetry, selected bond 
lengths and angles of crystal data and structural refinements of Li2MgSnSe4,Table S4: Atomic co-
ordinates and equivalent isotropic displacement parameters of Li2MgGeSe4, Table S5: Anisotropic 

Figure 3. Calculated band structures of (a) Li2MgSnSe4 and (b) Li2MgGeSe4; total and partial density of states and the
band-resolved NLO susceptibility χ(2) of (c) Li2MgSnSe4 and (d) Li2MgGeSe4.

Figure 4 shows the calculated SHG densities for the two compounds. Combined with
the band-resolved NLO susceptibility χ(2) in Figure 3c–d, the SHG responses of Li2MgMSe4
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(M = Ge, Sn) can be mainly derived from the [MSe4] (M = Ge, Sn) tetrahedra units and with
minor contributions from [LiSe4] and [(Li/Mg)Se4] groups.
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4. Conclusions

In summary, the first series of DL selenides in the I2-II-IV-VI4 family, Li2MgGeSe4 and
Li2MgSnSe4, have been rationally designed and synthesized. Their crystal structures were
determined using single crystal X-ray diffractions, and the optical properties were studied
using experimental spectra and DFT calculations. Li2MgMSe4 (M = Ge, Sn) crystallize in
the non-centrosymmetric space group Pmn21 and show channel structures built by [LiSe4],
[(Li/Mg)Se4] and [MSe4] (M = Ge, Sn) tetrahedra units. The two compounds exhibit
large theoretical SHG coefficients in d33 (12.19 pm/v for Li2MgSnSe4, and −14.77 pm/v
for Li2MgGeSe4), moderate band gaps (2.42 for Li2MgSnSe4, and 2.44 for Li2MgGeSe4)
in selenides. The results demonstrated that introducing alkali metal and alkaline earth
metal tetrahedral units into the I2-II-IV-VI4 family is a feasible way for the development of
diamond-like IR nonlinear optical materials with good properties.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ma14206166/s1, Table S1: Atomic coordinates and equivalent isotropic displacement pa-
rameters of Li2MgSnSe4, Table S2: Anisotropic displacement parameters (Å2 × 103) of Li2MgSnSe4,
Table S3: Symmetry, selected bond lengths and angles of crystal data and structural refinements
of Li2MgSnSe4, Table S4: Atomic coordinates and equivalent isotropic displacement parameters of
Li2MgGeSe4, Table S5: Anisotropic displacement parameters (Å2 × 103) of Li2MgGeSe4, Table S6:
Symmetry, selected bond lengths and angles of crystal data and structural refinements of Li2MgGeSe4,
Table S7: Atomic parameters of Li2MgSnSe4 and Li2MgGeSe4, Table S8: The refined structural pa-
rameters of Li2MgSnSe4, Table S9: The crystallographic data of Li2MgMSe4 (M = Sn, Ge), Figure S1:
Experimental and calculated PXRD patterns of Li2MgSnSe4, Figure S2: The PXRD Rietveld refine-
ment of the obtained Li2MgSnSe4 samples, Figure S3: The atomic models of (a) Li2MgSnSe4 and
(b) Li2MgGeSe4.
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