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Viruses are an underrepresented taxa in the study and identification of microbiome constituents;
however, they play an essential role in health, microbiome regulation, and transfer of genetic material.
Only a few thousand viruses have been isolated, sequenced, and assigned a taxonomy, which limits
the ability to identify and quantify viruses in the microbiome. Additionally, the vast diversity of viruses
represents a challenge for classification, not only in constructing a viral taxonomy, but also in identifying
similarities between a virus’ genotype and its phenotype. However, the diversity of viral sequences can be
leveraged to classify their sequences in metagenomic and metatranscriptomic samples, even if they do
not have a taxonomy. To identify and quantify viruses in transcriptomic and genomic samples, we devel-
oped a dynamic programming algorithm for creating a classification tree out of 715,672 metagenome
viruses. To create the classification tree, we clustered proportional similarity scores generated from
the k-mer profiles of each of the metagenome viruses to create a database of metagenomic viruses.
The resulting Kraken2 database of the metagenomic viruses can be found here: https://www.osti.gov/
biblio/1615774 and is compatible with Kraken2. We then integrated the viral classification database with
databases created with genomes from NCBI for use with ParaKraken (a parallelized version of Kraken pro-
vided in Supplemental Zip 1), a metagenomic/transcriptomic classifier. To illustrate the breadth of our
utility for classifying metagenome viruses, we analyzed data from a plant metagenome study identifying
genotypic and compartment specific differences between two Populus genotypes in three different com-
partments. We also identified a significant increase in abundance of eight viral sequences in post mortem
brains in a human metatranscriptome study comparing Autism Spectrum Disorder patients and controls.
We also show the potential accuracy for classifying viruses by utilizing both the JGI and NCBI viral data-
bases to identify the uniqueness of viral sequences. Finally, we validate the accuracy of viral classification
with NCBI databases containing viruses with taxonomy to identify pathogenic viruses in known
COVID-19 and cassava brown streak virus infection samples. Our method represents the compulsory first
step in better understanding the role of viruses in the microbiome by allowing for a more complete iden-
tification of sequences without taxonomy. Better classification of viruses will improve identifying
associations between viruses and their hosts as well as viruses and other microbiome members.
Despite the lack of taxonomy, this database of metagenomic viruses can be used with any tool that
utilizes a taxonomy, such as Kraken, for accurate classification of viruses.
� 2021 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

The number of phages on Earth is estimated to be as high as
4.80 � 1031 [1], implying the total number of viruses that might
exist is much greater. Viruses play an essential role in the
regulation of the microbiome [2]. Additionally, viruses are also
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omnipresent within the humanmicrobiome, even in the absence of
disease [3,4]. The roles that viruses play, independent of disease,
are also not well understood, making identification and classifica-
tion of viruses necessary for better understanding interactions
between host, virus, and microbiome. Despite the large number
of viruses and their importance in the microbiome, only a small
proportion have been sequenced or characterized. Metagenomics
and metatranscriptomics in general have led to the discovery of
more viruses than isolation and sequencing has previously
allowed; however, knowledge of their taxonomy is limited, making
accurate identification in -omic samples challenging. While
updates have been made to classify viruses by the International
Committee on Taxonomy of Viruses (ICTV) [5], only 5560 viral spe-
cies have been assigned a taxonomy as of 2019. In contrast, the
Joint Genome Institute’s (JGI) Integrated Microbial Genomes &
Microbiomes (IMG) [6] reports over 8000 viral isolates and
IMG/VR [7] lists >715,000 metagenomic viruses, the majority of
which are devoid of taxonomic classification because they are sam-
pled from a mixture of organisms and have not been isolated.
Metagenomic viruses often lack phenotypic characteristics as well
as host information, which creates challenges for understanding
their basic biology [8] and requires different methodologies for
classification [9].

Additionally, methods that rely on sequence homology or
NCBI/RefSeq databases for classification do not work where there
is either no taxonomy or no homology to anything with a taxon-
omy, such as the majority of metagenomic viruses. For example,
ViromeScan [10] relies on known taxonomy from NCBI to identify
viruses from RefSeq in metagenomic samples. Tools such as vCon-
TACT [11], Low et al [12], and Metavir [13] require homology to
known viruses to assign taxonomy. As far as we are aware, there
are no known methods or databases for classifying metagenomic
viruses without taxonomy or homology to a virus with taxonomy
in RNASeq or DNASeq samples. Despite taxonomic and biological
hurdles, identifying viruses in meta-omic experiments allows for
novel insights into host-virus interactions, in addition to other
interactions throughout the microbiome and phytobiome.

JGI’s effort to assemble metagenomic viruses [14] has led to an
unprecedented number of viral sequences that can be utilized to
classify the microbial dark matter that can make up the bulk of
metagenomic and metatranscriptomic samples. To the best of
our knowledge, our k-mer based approach is the only extant
method able to classify and quantify viruses at the scale provided
by IMG-VR. One of the major challenges of classifying viruses,
especially in the absence of phenotypic information, is their diver-
sity [8] and the poor relationship between sequence and evolution
[15]. While the inclusion of highly divergent sequences increases
the difficulty of creating a detailed, fine-scale viral taxonomy, the
presence of unique sequences can aid in the classification of
viruses in -omic samples, i.e. we know they are likely different at
the species level or greater. Methods such as natural vector repre-
sentation [16,17], pairwise sequence comparisons [18], and pair-
wise evolutionary distances [19] have been developed to better
identify phylogenetic similarity among viruses, but k-mer-based
methods can provide the speed and scale that is necessary for
highly efficient and accurate classification of millions to billions
of sequencing reads against databases of taxonomic sequences
[20]. Additionally, these k-mer based methods can be extended
to sequences without taxonomy, allowing for both a greater fide-
lity in classifying reads and a greater understanding of the types
of organisms that may be present in the microbiome.

In this paper, we create a methodology for generating a
classification tree of 715,672 viruses from IMG to VR [7] for use
in identifying viral sequences in metagenomic and metatranscrip-
tomic studies (Fig. 1). Given the infeasibility of comparing all
viruses to each other, we first subset the viruses to identify which
5912
pairs have k-mer overlaps for calculating similarity scores. Subset-
ting resulted in the reduction of the comparison space by 99.98%,
allowing for quantitative proportional similarity coefficients [21]
to be calculated for each virus pair with a non-zero similarity.
The algorithm Hip-MCL [22], was then used to cluster similar
viruses for use in generating a hierarchical tree based on multiple
inflation values (Supplemental File 1). The classification tree was
integrated with NCBI’s taxonomy, allowing for taxonomic
classification of reads from metagenomic and metatranscriptomic
samples. Finally, the pseudo-taxonomy was used to create a
Kraken [20] database of all the metagenomic viruses (available
here: https://www.osti.gov/biblio/1615774) for use in Kraken2.
We utilized ParaKraken [23] to illustrate the broad use of our viral
classification method to expand more traditional metagenomic
analysis to include a greater diversity of viruses than can be pro-
vided by NCBI alone.

To do this, we applied the same metagenomic classification
methodology, including our Kraken databases, to a plant dataset
containing rhizosphere, endosphere, and soil samples of two differ-
ent Populus genotypes and a dataset of post mortem brain samples
from individuals with Autism Spectrum Disorder (ASD) and con-
trols [24]. Both plant and human samples were chosen to show
that the methodology presented here is agnostic to the host and
microbiome, with higher fidelity in the viriome. Additionally, both
of these hosts have well studied microbiomes in relation to bacte-
ria and are often lacking for organisms such as viruses. Further-
more, viruses both influence and are influenced by the health of
these host organisms, making both ideal for exploration of viruses
within the microbiome. For example, we specifically chose ASD
brain tissue samples because prior literature has shown an associ-
ation between ASD and viruses in brain tissues. A study found an
increased number of polyomaviruses in brain tissue of individuals
with ASD [35], and the number of viruses within an individual has
been shown to be correlated with decreased neuropsychological
development [36], supporting the idea that there is an association
between ASD and the viruses present in brain tissue. We also uti-
lize NCBI’s viral sequences as a positive control to estimate the
uniqueness of viral sequences in individual isolates and to identify
known viruses under infection conditions, such as COVID-19 infec-
tion in a bronchoalveolar lavage fluid (BALF) sample [25] and cas-
sava brown streak virus in a cassava sample [26].
2. Materials and methods

2.1. Virus and taxonomy downloads

Metagenomic viruses were downloaded from JGI-IMG/VR [7]
(N = 715,672 in January 2018). NCBI [27] whole genome sequences
containing 116 k (�67 k unique species/strains) eukaryotes,
prokaryotes, archaea, and viruses were downloaded in November
2017. The resulting classification tree from the metagenome
viruses was then integrated with NCBI’s taxonomy, which can be
used with Kraken [20], ParaKraken [23] (Supplemental Zip 1), or
any other classification method that utilizes NCBI’s taxonomic tree.
2.2. Calculating similarity

K-mers of size 31, using a sliding window of size one, were uti-
lized to generate the classification tree as it allows for direct incor-
poration with our NCBI databases in Kraken or ParaKraken;
however, the methodology presented here is agnostic to the k-
mer size. Due to the inability to both store and quickly access all
unique k-mers for all viruses (the number of unique k-mers was
greater than the number of keys available in a hashtable), the
viruses were first broken into 20 subsets. Each subset was
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Fig. 1. Creation and use of a viral classification tree. To first identify which of the 715,672 metagenome viruses have non-zero similarity scores with other viruses, we subset
the viruses to identify k-mer overlaps. We identified �43 million pairs with nonzero similarity scores, a reduction in the number of calculations by 99.98%. Clusters of viruses
were then created by running HipMCL on quantitative proportional similarity coefficients with the following inflation values: 1.4, 2.0, 3.0, 4.0, and 6.0. MCLCM was used to
analyze the inflation clusters to generate a hierarchy, and then neighbor joining was performed on clusters with >3 members. The metagenome virus tree was then integrated
with NCBI’s taxonomy for use in classifying metatranscriptomic and metagenomic samples. We analyzed Populus and ASD data sets with ParaKraken using the NCBI whole
genomes and JGI metagenome viruses databases, allowing us to classify taxa and identify differential abundance across conditions. The network shows differential abundance
of viruses (violet-red) within the Populus genotypes (green – hybrid, orange – P. deltoides). Virus abundances across genotypes were similar in the soil (lightest) and the
rhizosphere (middle) compartments, but the endosphere (darkest) was dissimilar to the other compartments. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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compared to all other subsets, resulting in 71,566 viruses in each
comparison set. First, all k-mers were generated for all viruses in
each subset pair, with only the unique k-mers stored in a hashmap,
along with any/all associated viruses containing that k-mer. Two k-
mers were treated as the same if there was an exact match for the
31-mer, utilizing both the forward and reverse complement for the
determination of an exact match.

The forward and the reverse complement of each sequence was
used because viral genomes can be a mixture of DNA/RNA and
single/double-stranded viruses, the strandedness of some viruses
are different at different life cycle stages, and some viruses have
a genome that is partially single and partially double stranded.
While the metagenomic viruses are composed of DNA viruses,
the methodology was developed to be agnostic to the type of virus.
K-mers with ambiguous bases were not stored. K-mers with more
than one virus associated with the sequence are indicative of over-
lap between two or more viruses. Viruses with at least one overlap-
ping k-mer with another virus were stored in pairs to calculate
similarity scores. Any virus pair without any k-mer overlaps were
assigned a similarity score of zero. The initial subset decreased the
number of similarity scores to be calculated from �256 billion to
only �43 million (a decrease of over 99.98%), making the compu-
tation more feasible. The decrease was achieved due to the sparsity
of virus pairs that had any overlapping k-mers, resulting in the
majority of virus pairs having a similarity score of zero.

Quantitative proportional similarity coefficients were calcu-
lated between the sets of k-mers for each virus pair with overlap-
ping k-mers. Due to memory limitations of 500G per node and
speed limitations of calculating all similarities in a linear fashion,
the �43 million overlapping virus pairs were broken into 400 sub-
sets. K-mer profiles from each virus in each subset were generated
beforehand to eliminate the need for regenerating profiles with
every comparison (as a given virus can appear in multiple subsets).
However, to decrease the memory overhead (at the cost of a longer
run), the k-mer profiles can be generated for each virus and for
each comparison. Each of the subsets was then run on the Summit
supercomputer in parallel. K-mer overlap was calculated as before
with a k-mer and its reverse complement being treated as the
same k-mer. The result is a matrix of quantitative proportional
similarity coefficients for all virus pairs.
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2.3. Virus classification tree

Groups of similar viruses were identified by running HipMCL
[22], a parallel Markov clustering algorithm, on the triples of virus
k-mer similarity scores. Inflation values of 1.4, 2.0, 3.0, 4.0, and 6.0
were utilized to identify a range of cluster sizes. The resulting clus-
ters were integrated into a hierarchy by MCLCM [28]. Clusters of
more than three viruses (excluding the 32,084 viruses that had
no similarity to any other virus) were reclustered using neighbor
joining to increase granularity, resulting in a hierarchy of viruses
consisting of 22 levels (one of the cluster trees shown in Supple-
mental Fig. 1). Pseudo-taxonomic IDs were then assigned to each
level and virus in order to integrate with NCBI’s taxonomy in order
to create Kraken databases from the metagenomic viruses. The
Kraken2 database of the JGI metagenome viruses can be found
here: https://www.osti.gov/biblio/1615774 [29].

2.4. Autism and Populus datasets

Bulk RNA-Seq from 22 ASD and 19 control post mortem brain
samples were obtained from Velmeshev et al [24]. FASTQ files were
trimmed using Atropos [30] and mapped to the GRCh38 human
reference genome using STAR [31]. P. deltoides and P. deltoides � P.
trichocarpra endosphere, rhizosphere, and soil samples (five sam-
ples of each compartment and genotype combination; one P. del-
toides endosphere was removed for quality reasons) were
obtained from JGI (https://gold.jgi.doe.gov/biosamples?Study.
GOLD+Study+ID=Gs0103573). Endosphere samples underwent dif-
ferential centrifugation to decrease the concentration of plant host
material [32] followed by paired-end sequencing. Reads were
trimmed using skewer [33] and filtered against P. deltoides and P.
trichocarpa reference genomes (�0.2% of reads aligned to the host).
Unmapped reads from both the Populus and ASD datasets were run
through ParaKraken [23]. A median normalization was applied,
taxa with <75% coverage across samples were removed, taxa mak-
ing up <0.01% of the reads at a species level in the ASD data and
0.001% of the reads at a species level in the Populus data were also
removed. Differential abundance was then assessed using fcros
[34] with p-value <0.05 and f-value >0.9, and networks were visu-
alized using Cytoscape [35].
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2.5. Cassava, coronavirus and updated viral genomes datasets

A cassava root RNA-Seq sample with a confirmed brown streak
virus was obtained from Amisse et al. [26] and analyzed using
ParaKraken [23] to classify taxa. A BALF sample with a confirmed
COVID-19 infection was obtained from Wu et al. [25]. Reads were
trimmed using Atropos [30] and then run through ParaKraken for
taxa classification. We then downloaded the latest RefSeq viral
genomes from NCBI in Feb 2020 [27], as the updated version con-
tained the virus responsible for COVID-19. We then reran ParaKra-
ken on the BALF sample to compare the read counts for coronavirus
pre- and post-COVID-19 genome inclusion. To assess the unique-
ness of viruses in the Feb 2020 version of RefSeq, we created reads
from all 67,519 RefSeq viruses using a read length of 200 and a
sliding window of one nucleotide. The resulting 1.06 billion reads
were then analyzed with ParaKraken. The taxonomic assignment
was then compared to the taxonomy of the viruses in which the
reads originated.
2.6. JGI virus accuracy assessment

Reads from the JGI viruses included in the database were simu-
lated by selecting 100 reads of 200 nucleotides in length at random
for each viral sequence. Any read that started in the same position
as another read in the same virus was excluded and another ran-
dom read was selected. Any reads with ambiguous base pairs were
excluded. Viruses in which 100 reads of 200 bp in length could not
be created were also excluded (resulting in a removal of two
viruses due to high numbers of ambiguous reads). Reads were then
mutated at 5, 10, and 25 randomly selected nucleotides. Mutations
were conserved for a given read such that reads with 25 mutations
included all of the mutations generated in the 10 mutation read,
and the 10 mutation read contained all of the mutations generated
in the 5 mutation read. Once all reads were generated, they were
analyzed with ParaKraken using both the NCBI and JGI databases
to assess accuracy. A read was determined to be accurately classi-
fied if it matched the exact virus of interest or a parent of that virus
(equivalent to other methods that assess accuracy based upon
NCBI taxonomy). A read was determined to be inaccurately classi-
fied in JGI if it matched another JGI virus or a node that was not a
parent to the virus used to generate the read. Any read that was
unclassified, classified as an NCBI taxon, or classified as ambiguous
(represented by the NCBI root) was classified as ‘‘other”.
3. Results

The virus classification tree can be integrated into the NCBI tax-
onomy for classifying viral sequences from metagenomic and
metatranscriptomic samples. To illustrate the power of having a
classification tree of 715,652 viruses, we applied ParaKraken [23]
to data produced from two distinct studies. The first study is a
Populus metagenome sampled from three different compartments
(endosphere, rhizosphere, and soil) in two different genotypes
(P. deltoides and P. deltoides � P. trichocarpa). Each genotype-
compartment pair had five replicates (with one P. deltoides
endosphere sample removed for quality control reasons). Without
the viral databases, the resulting metagenomic classification was
unable to identify taxa for 50% of the reads. The high amount of
unknown microbial dark matter allows for a low-end estimation
to be made of how many viral sequences may exist in microbiome
samples. The second study is an ASD study comparing post mortem
brain biopsies between ASD patients and controls. While the vast
majority of reads in the ASD study are human, we captured a por-
tion of the brain microbiome, including the viriome.
5914
3.1. Populus metagenome

To identify differences in the phytobiome between compart-
ments and genotypes, we applied ParaKraken to reads produced
from endosphere, rhizosphere, and soil samples from P. deltoides
and P. deltoides � P. trichocarpa (a hybrid). To mirror commonly
used mapping methods in recent publications aimed at character-
izing plant viriomes [36,37], the samples were initially analyzed
using only the NCBI databases of all publicly available genomes
from prokaryotes, archaeas, eukaryotes and 8000 viral taxa. The
NCBI databases resulted in 50% of the 4.8 billion reads being
assigned to taxa, with the rest representing unknown microbial
dark matter (Fig. 2A). To illustrate the increased mapping ability
of the k-mer based viral databases, we then analyzed the samples
using our k-mer based viral databases in combination with the
NCBI databases. The inclusion of the 715,672 JGI metagenome
viruses resulted in an increase in mapping by 347 million reads.
Metagenome viruses make up between 6% and 20% (mean 15%)
of the total mapped reads for a given sample, greatly increasing
the coverage of the viriome (Supplemental Tables 1 and 2). In addi-
tion to the increased read coverage, viral sequences also differ
between compartments and genotypes leading to potential associ-
ations between viruses, the host, and other community members.

To better explore the differences between compartments and
genotypes, we ran differential abundance analyses comparing both
within and between genotypes, focusing on viruses. For the within-
genotype comparison, we compared endosphere vs. rhizosphere,
rhizosphere vs. soil, and soil vs. endosphere for each genotype
(Fig. 3A). There were 65 viral sequences that were significantly dif-
ferentially abundant across the comparisons (p-value <0.05 and f-
value >0.9). Rhizosphere (48 and 37 sequences) and soil (36 and
39 sequences) had much higher amounts of differentially abundant
viral sequences compared to the endosphere (four and six
sequences), likely due to the lower amounts of detected viral reads
in the endosphere. Rhizosphere and soil profiles are similar to each
other, with only 10 significant sequences unique to one compart-
ment and genotype. Additionally, rhizosphere and soil samples
within a genotype are more similar than rhizosphere and soil
across genotypes. The two endosphere samples shared three out
of the six unique significant endosphere viral sequences.

In addition to the within genotype comparisons, a within
compartment comparison was performed as well comparing:
P. deltoides soil to hybrid soil, P. deltoides rhizosphere to hybrid
rhizosphere, and P. deltoides endosphere to hybrid endosphere
(Fig. 3B). There were 48 significantly differential viral sequences
across the comparisons. Similar to the within genotype compar-
ison, the rhizosphere (28 and 15 sequences) and soil (27 and 16
sequences) had more significant viruses compared to the
endosphere (three and two sequences). Additionally, the soil and
rhizosphere samples for a given genotype have nearly identical sig-
nificant viral sequences with one virus unique to the P. deltoides
rhizosphere, three unique to the hybrid rhizosphere, and four
unique to the hybrid soil. There were no significant viruses shared
across genotypes for the rhizosphere and soil. There were no
unique viruses associated only with the endosphere, and each
endosphere sample shared at least one significant virus with the
hybrid rhizosphere/soil and P. deltoides rhizosphere/soil.

3.2. Autism spectrum disorder metatranscriptome

To better understand the association between viral sequences
and human health, we analyzed post mortem brain tissue meta-
transcriptomic samples [24] from ASD individuals and controls
(Fig. 2B). We first aligned reads to the GRCh38 human reference
genome, resulting in 67.5% of reads (2.99 of the total 4.43 billion
reads) mapping to the reference. The unmapped reads were then



Fig. 2. Classification of viruses in metagenomic and metatranscriptomic samples. A) Effect of the virus databases on the number of reads mapped in the Populus deltoides (D)
and hybrid (H) data. The first bar in each group represents ParaKraken results before the viral databases were included and the second bar represents classification after the
inclusion of the viral databases. Metagenome viruses averaged 15% of the mapped reads with a higher percent mapping in the rhizosphere (Rhizo) and soil (Soil) relative to
the endosphere (Endo), suggesting that viruses make up a substantial portion of the microbiome. B) Differences in viruses between ASD brains and control brains.
Unsurprisingly, eukaryotes make up the vast majority of reads in human samples. However, we were able to identify sequences associated with viruses, eight of which were
significantly higher in ASD versus controls (p-value <0.05 and f-value >0.9, >2 fold change). The graph shows all significant differential abundance viruses (irrespective of fold
change), with size of the viruses representing fold change (smallest – 1.00 FC, largest 2.62 FC). While there were five viruses with p-value <0.05 and f-value >0.9 in controls,
average fold change was 1.09 compared to 2.23 for the nine viruses higher in ASD, suggesting ASD brains may have higher viral counts. Other – NCBI viruses, viroids,
ambiguous sequences. FC – fold change.

Fig. 3. Differential abundance of viral sequences in Populus genotypes and compartments. In the A) within genotype comparison, the rhizosphere and soil samples had similar
significant (p-value <0.05 and f-value >0.9) viral sequences across genotypes; however, the significant soil and rhizosphere viral sequences are more similar within genotypes
than across genotypes. The two endosphere samples have few significant viral sequences, and they have more in common with each other than other compartments. In the B)
between genotype comparison, the soil and rhizosphere samples for a given genotype have similar significant differentially abundant viruses. Additionally, the endosphere
samples have many fewer significant differential sequences compared to the rhizosphere and soil, likely due to the overall lower abundance of viral sequences. Both graphs
suggest there is a host or microbiome mediated selection of viral sequences that has some genotype and compartment specificity. D – P. deltoides, H – hybrid, Endo –
endosphere, Rhizo – rhizosphere.
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processed with our ParaKraken pipeline. Unsurprisingly, 95% of
the unmapped reads were assigned to eukaryotes, most likely
due to ambiguous mappings and differences between the patient
and the human reference genome (Supplemental Table 3). Despite
the high percentage of human sequences in the unmapped reads,
metagenomic viral reads were readily identified in all samples,
ranging from 5 k to 125 k reads (avg 0.06% of reads; whereas,
bacteria make up 0.57% of reads). To assess the uniqueness of
the JGI viruses, we quantified the percent of reads that mapped
at the metagenome virus level. Only 8.9% of reads mapped at a
higher taxonomic level than the individual virus, suggesting that
the JGI viruses are highly unique and unambiguous in the sample
set.

To further understand if there is an association between ASD and
viral sequences in the brain biopsies, differential abundance was per-
formed comparing ASD to controls. Eight metagenome viral
sequences were significantly more abundant in ASD cases relative
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to controls at a >2� fold change, compared to zero significantly more
abundant in the controls at that fold change. When comparing all of
the significant viruses (p-value <0.05 and f-value >0.9; irrespective of
fold change), the average fold change of the nine viruses that were
significantly higher in ASD was 2.23 (1.99–2.62) compared to 1.09
(1.00–1.16) for the five viruses significantly higher in controls
(Fig. 2B), suggesting that brain tissue from those with ASD may have
relatively higher abundances of viral sequences (at least for the
viruses contained in our databases). The JGI IDs for the nine viruses
higher in ASD are: Ga0114997_10000721, Ga0099847_1000845,
Ga0180434_10000080, Ga0181583_10003850, C687J26657_
10000305, Ga0080013_1000178, Ga0114957_1000600, Ga0007
809_10000384, Ga0181563_10001177, and the five higher in con-
trols: Ga0075122_10000531, DelMOWin2010_c10003738, Ga0075
125_10000004, Ga0121002_100132, Ga0160422_10001594. These
metagenomic viruses represent the closest known organisms by
sequence homology for reads within the brain tissue samples.



Table 1
Accuracy of the JGI Databases. To determine the accuracy of the JGI databases, 100
reads of 200 nucleotides in length were randomly selected from each virus
(generating 71.6 million reads). Reads were then mutated to include 5, 10, and 25
mutations. Reads were then analyzed using ParaKraken on the Kraken2 JGI and NCBI
Databases. A read was determined to be correctly classified if the read matched the
exact virus or a parent of that virus. A read was determined to be incorrectly classified
in JGI if it mapped to another JGI virus or a node that was not a parent of the virus in
which the read was generated. If a read was unmapped, ambiguous, or mapped to an
NCBI read it was classified as ‘‘other”. Mutations of 5–10 per read had minimal impact
on accuracy.

Sample Type Correct JGI Hit Incorrect JGI Hit Other

JGI Virus Reads 82.05% 9.45% 8.50%
1.25% Mutation Rate 81.65% 9.26% 9.09%
2.5% Mutation Rate 80.96% 8.60% 10.44%
12.5% Mutation Rate 26.1% 3.12% 70.78%
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3.3. Assessment of virus uniqueness and abundance

To assess the uniqueness of viral sequences, we downloaded an
updated version of NCBI’s viral taxonomy in Feb. 2020 [27]. We
first computationally generated reads from all of NCBI’s viral
sequences with a length of 200 bp and a sliding window of one,
resulting in 1.06 billion reads. We then analyzed these reads with
ParaKraken using both the NCBI and JGI databases. A slight major-
ity of the reads (53.4%) mapped only to the individual viral isolate
in which the read was generated. A small percentage of the reads
(8.3%) mapped to the NCBI taxonomy root, which means that the
viral reads either had homology to another superkingdom or to
the metagenomic viruses. The uniqueness of the reads within the
NCBI’s database suggests that much of the viral diversity is undis-
covered, there are few viruses in which there are multiple similar
isolates sequenced, and there are few overlaps between NCBI’s
viruses and the viruses from JGI. The JGI viruses in the Autism
metagenome had much lower than expected ambiguity based on
NCBI’s results. The ratio of reads that mapped to the individual iso-
late compared to non-NCBI root viral reads was 1.4 (53.4/38.3) for
the viruses in NCBI compared to the 10.2 (91.1/8.9) for the JGI
metagenome virus in the Autism dataset.

To further understand the uniqueness of NCBI’s viruses, we
used two different databases to classify viruses in a COVID-19 BALF
sample [25] (Supplemental Table 4). The first database consists of
the original NCBI and JGI parakraken databases, while the second
database includes the Feb. 2020 version of NCBI’s viruses (which
includes the SARS-CoV-2 genome that causes COVID-19). Without
the isolate of interest, 26,878 reads (0.2% of the total reads)
mapped to different Coronavirinae, with the top hit of 22,238 being
SARS coronavirus (the previous coronavirus taxonomy). With the
addition of the SARS-CoV-2 isolate, 62,480 reads (0.5% of total
reads) mapped to Coronavirinae with the majority 62,461 mapping
to the specific virus taxa of interest: severe acute respiratory
syndrome coronavirus 2. SARS-CoV-2 has an 89.1% sequence
homology with another SARS-like coronavirus [25], which is partly
why we were able to identify coronavirus reads without the exact
isolate of interest. However, despite having highly closely related
viruses already sequenced, the inclusion of the exact isolate of
interest increased the mapping by 2.3� (reaffirming the prior
results that the majority of viral sequences are unique given the
sparsity of the number of viruses that have been sequenced).

In addition to the COVID-19 sample, we also analyzed a cassava
sample fromMozambique that was confirmed to be infected with a
cassava brown streak virus [26] (Supplemental Table 5). We
applied ParaKraken to the original NCBI database and the JGI data-
bases on the sample and confirmed the presence of the virus of
interest. ParaKraken identified 1942 reads (0.1% of total reads)
associated with the cassava brown streak virus. As expected, nei-
ther the coronavirus nor the brown streak virus was identified by
ParaKraken in the Autism brain samples or the plant metagenome
samples. Both the SARS-CoV-2 and cassava brown streak viruses
demonstrate that ParaKraken can identify viruses of interest dur-
ing an active infection, and that viruses contain highly unique
sequences, partially due to the lack of viruses sequenced and
viruses with taxonomy.

3.4. Accuracy of the JGI viral databases

To assess the accuracy of the JGI viral genomes we randomly
simulated 100 reads from each genome, resulting in 71.6 million
reads. We also simulated mutations at a rate of 2.5%, 5%, and
12.5% to determine how minor changes in the nucleic acid
sequence influence accuracy (Table 1). ParaKraken with the Krak-
en2 JGI metagenomic and NCBI databases were able to identify
the correct virus (including its parent in the classification tree)
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82% of the time. Additionally, 9.5% of reads mapped to other JGI
viruses, with 8.5% of reads mapping to simply ‘‘other” (other
includes NCBI taxa, unmapped reads, and ambiguous reads). Muta-
tions of 2.5% and 5% had minimal influence on accuracy, but when
we introduced a mutation rate of 12.5%, there was a decrease in
accuracy of 56%. Although the accuracy is 10–15% lower than that
produced by Kraken2 (the underlying classifier for ParaKraken)
using NCBI databases with prokaryote genera and viruses with a
genus classification [40], much of the decrease in accuracy is likely
due to the larger numbers of genomes used in our assessment and
the much higher diversity of both the viruses and viral sequences
in the JGI databases compared to the subset of data that Kraken2
used for their accuracy assessment. As such, any reduction in the
kmer/lmer space and subsampling used in creating a more com-
pact database from Kraken2 will have a greater impact on organ-
isms with high sequence diversity, such as the JGI viruses used in
this study. However, despite the slight decrease in accuracy, we
are still able to identify metagenomic viruses with high accuracy,
which leads to improved identification of associations between
viruses and the host and viruses and other members of the
microbiome.
4. Discussion

Identifying constituents that comprise the microbiome and
their relationship to the host is crucial to understanding human
health, plant health, and how microorganisms impact phenotypes
of other organisms in general. Current methodologies for micro-
biome analyses are largely focused on bacteria using 16S rRNA
sequencing, fungi with ITS sequencing, and other organisms using
taxonomy assessment through metagenomic sequencing; how-
ever, very little work has been done to quantify and understand
viral reads in metagenome and metatranscriptome samples out-
side of what can be achieved with the few viruses that have been
isolated and assigned to a taxonomy. Additionally, viruses have
high sequence diversity, with the vast majority of viruses having
no close relative in NCBI as illustrated by the unique metagenomic
viruses identified by IMG/VR.

Addressing current limitations in virus identification is critical
because viruses play an important but understudied role in many
biological systems. For example, bacteriophages can modulate
the metabolome of gut microbiomes in mice, including influencing
the bacteria that the phage does not directly impact [2]. Addition-
ally, end-stage viral infection in chimpanzees can cause a destabi-
lization of the bacteria in the gut microbiome, likely through
alteration of the host immune system [41]. The microbiome can
also play a protective role, helping to decrease the risk of viral
infections [42]. Much of a virus’ role in microbiome samples is
unknown due to the lack of methodology for their detection and
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the fact that the majority of information gleaned from microbiome
samples is from bacteria.

Additionally, prior to this paper, there had been a lack of
methodology to quantify viral taxa, study host-virus interactions,
or interactions between viruses and other microbiome con-
stituents at large scales (scales orders of magnitudes larger than
can be achieved by viruses with taxonomy). Directly measuring
known viruses, viral antigens, and viral antibodies in human
samples has led to the identification of associations between poly-
omaviruses and ASD [38], other viruses with neurodevelopment in
general [39], different herpes viruses with multiple sclerosis [43]
and peripheral neuropathies [44], HIV and peripheral arterial dis-
ease [45], and hepatitis C and kidney disease [46], etc. Additionally,
autoimmunity, both in the mother and in the child, has been
shown to play an important role in both the development of autism
and in neurodevelopment [47]. Furthermore, multiple viruses have
been associated with congenital autism, such as: rubella [48],
influenza [49,50], cytomegalovirus [51], and polyomavirus [38]. It
is highly likely that there are many human-related and
microbiome-related viruses that have implications for human
health that await discovery, either directly or by interacting with
other taxa in the microbiome. In plants undergoing drought stress,
pathogenic viruses have been shown to have an amplifying effect
with drought, increasing both infection-related stress and
drought-related stress [52]; however, different infectious viruses
have been shown to decrease drought severity by reducing water
loss, ultimately leading to improved tolerance of both infection
and drought [52,53]. Furthermore, the effect of combined viral
stress and abiotic stressors (such as drought, heat, salinity, etc.)
are affected by the overlap in epigenetic responses to individual
stressors, which can produce positive or negative effects depend-
ing on plant-specific responses to each stress [54]. More thorough
knowledge and improved methods for identifying viruses on large
scales is needed to better understand the wide variety of direct and
indirect effects on the host and microbiome caused by viruses.

IMG/VR [7,42] offers a suitable starting point for methodology
development and hypothesis generation in identifying unknown
viruses and their associations by providing the most extensive
known collection of metagenomic viruses. While their work iden-
tifies viral assemblies in a single sample, we have utilized their
large collection of assemblies to quantify viral sequences in diverse
metagenomic and metatranscriptomic samples. To classify viral
sequences, we have developed a dynamic programming algorithm
that allows one to create a classification tree from metagenomic
viruses that can be integrated with NCBI’s taxonomy. While it is
impractical to compare all viruses to each other, the method ini-
tially identifies which viruses have a non-zero similarity score,
reducing the number of similarity calculations by 99.98%. The
reduction makes the calculation of similarities and construction
of the classification tree feasible, providing the first step in identi-
fying viral sequences in metagenomic and metatranscriptomic
samples. For samples that show relationships between a virus
and a phenotype of interest, that virus can be isolated for better
characterization.

The classification tree’s utility is demonstrated through identi-
fication of viral sequences in Populus genotypes and tissue com-
partments and in ASD and control brain biopsies. We found
significant differences in viral sequences associated with the P. del-
toides, the hybrid, and the different compartments suggesting host
factors and differences in microbiome community composition
may select for different viruses. However, whether the lower num-
ber of viruses associated with the endosphere samples relative to
the rhizosphere/soil is due to differential centrifugation, some
host-related factor, or some database bias is unknown. While the
individual virus counts identified in the two datasets are orders
of magnitude lower than cassava brown streak virus and COVID-
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19 infection samples, neither the Populus nor ASD samples pre-
sented with any known virus-induced pathophysiology. However,
the Populus metagenome had a total viral load �15% of reads on
average, which is higher than the 0.3% of reads seen in the cassava
sample with active infection. The higher total viral counts in a non-
infected sample could be explained by the fact soil contains almost
no host, and the samples underwent differential centrifugation to
limit host, allowing more of the microbiome to be represented
by the sequencing, in addition to any potential database biases.
5. Conclusion

Viruses are a vastly understudied component of microbiomes.
The method we present here for creating a classification tree from
metagenomic viruses can be utilized with any taxonomy-based
classification tool to better identify viruses and their impacts in
the microbiome. Although the 715,672 metagenome viruses that
JGI has identified potentially make up only a small fraction of
viruses that exist, it is still much greater than the number of
viruses with taxonomy. As such, methods that require a taxonomy
or homology to viruses with taxonomy will not work until a
method is devised to handle creating taxonomies for viruses at
large scale. Until such a time, we show that it is possible to identify
viral sequences in metagenomic Populus genotype and compart-
ment samples and metatranscriptomic ASD samples without the
need of a taxonomy. More specifically, we identified eight signifi-
cant differential viral sequences that are significantly higher and
with a FC > 2.0 in ASD patients than in controls. We also show that
our method can accurately identify viruses by utilizing NCBI’s viral
genomes to identify known viruses in COVID-19 and cassava
brown streak virus infection samples. Through the use of NCBI’s
viral databases we also show that viral sequences are highly speci-
fic to the individual viral isolate, and that the JGI metagenome
viruses have a higher uniqueness than the NCBI viruses. While
the uniqueness and diversity of the JGI viruses makes them more
difficult to classify in samples with Kraken2, our method is still
82% accurate in identifying the correct JGI viral sequences and over
90% accurate in identifying the sequence as a JGI virus. In addition
to classification and quantification, further downstream analyses
on viral reads, such as assembly, homology, and functional annota-
tion can be performed to predict features of the potential virus or
viral sequence. Ultimately, a better understanding of the effects
that viruses have on both the microbiome and the host will lead
to a better comprehension of human health and plant biology.
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