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In the last years, natural killer (NK) cell-based immunotherapy has emerged as a

promising therapeutic approach for solid tumors and hematological malignancies.

NK cells are innate lymphocytes with an array of functional competences, including

anti-cancer, anti-viral, and anti-graft-vs.-host disease potential. The intriguing idea of

harnessing such potent innate immune system effectors for cancer treatment led to

the development of clinical trials based on the adoptive therapy of NK cells or on

the use of monoclonal antibodies targeting the main NK cell immune checkpoints.

Indeed, checkpoint immunotherapy that targets inhibitory receptors of T cells, reversing

their functional blocking, marked a breakthrough in anticancer therapy, opening new

approaches for cancer immunotherapy and resulted in extensive research on immune

checkpoints. However, the clinical efficacy of T cell-based immunotherapy presents a

series of limitations, including the inability of T cells to recognize and kill HLA-Ineg tumor

cells. For these reasons, new strategies for cancer immunotherapy are now focusing on

NK cells. Blockade with NK cell checkpoint inhibitors that reverse their functional block

may overcome the limitations of T cell-based immunotherapy, mainly against HLA-Ineg

tumor targets. Here, we discuss recent anti-tumor approaches based on mAb-mediated

blocking of immune checkpoints (either restricted to NK cells or shared with T cells), used

either as a single agent or in combination with other compounds, that have demonstrated

promising clinical responses in both solid tumors and hematological malignancies.

Keywords: NK cells, NK cell receptors, immune checkpoint blockade, immunotherapy, solid tumors, hematological

malignancies, adoptive NK cell therapy

NK CELL: AN “EFFICIENT” TOOL FOR IMMUNOTHERAPY

Immunotherapy is an innovative approach for the treatment of cancer and is based on the idea
of harnessing the immune system to target tumors. Recently, immunotherapy, and in particular
immune checkpoint (IC) blockade therapy, has represented a significant step forward for cancer
treatment (1–5). Two inhibitory ICs, CTLA-4 (6) and PD-1 (7), received great attention, since
the inhibition of CTLA-4 or PD-1 signaling significantly improved the survival of patients with
metastatic solid cancers. Given the clinical efficacy of PD-1 and/or CTLA-4 blockade in patients
with untreatable solid and hematological cancers (1–5, 8), much attention has been given to IC
receptors and their cognate ligands.
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Currently, one of the major challenges in immune-oncology is
the understanding of the mechanisms of IC inhibitor resistance
(indeed, only a fraction of patients respond to immunotherapy),
to increase the proportion of patients benefitting from such
treatment, and to control treatment toxicity.

A critical point is that the clinical effect of the PD-
1/PD-Ls blockade has been conventionally attributed to the
restoration of cytotoxic lymphocyte activity. However, a partial
or complete loss of HLA-I expression is one of the most
frequent mechanisms of tumor escape from T-cell control in
different human tumor types (9). In this scenario, the role
of the “innate counterpart” of cytotoxic T cells, the natural
killer (NK) cells, which show the ability to recognize and
kill tumor cells regardless of HLA-I expression, appears to be
crucial (10–12).

NK cells were first identified in the mid-1970s as a unique
lymphocyte subset able to detect and rapidly kill abnormal
cells without prior sensitization or recognition of specific tumor
antigens, thus preventing the development of many cancers
(13, 14). In the late 1980s, the observation that NK cells could
kill a lymphoma cell line that had lost MHC class I surface
molecules, while the original MHC class I+ cells were resistant
to lysis, led to the formulation of the “missing self-hypothesis”
that stated that NK cells are able to sense the absence of “self ”
MHC class-I molecules on target cells (15, 16). In the 1990s,
this hypothesis was confirmed by the discovery of inhibitory
(17, 18) and activating NK receptors (19). In humans, the
main inhibitory receptors are represented by the inhibitory
killer Ig-like receptors (KIRs), recognizing allotypic determinants
shared by groups of HLA class-I alleles (20, 21) and by the
CD94/NKG2A heterodimer (22), specific for the non-classical
HLA-E molecule.

Inhibitory KIRs are type I molecules with two (KIR2D) or
three (KIR3D) highly polymorphic extracellular Ig-like domains
followed by long (L) cytoplasmic tails harboring two ITIMs,
able to transduce an inhibitory signal through the recruitment
of tyrosine phosphatases. The four main inhibitory KIRs are
specific for epitopes shared by distinct groups of HLA class I
allotypes. In particular, KIR2DL1 recognizes HLA-C2 epitope,
while KIR2DL2/L3 recognizes HLA-C1 epitope. KIR3DL1 is
specific for HLA-B or HLA-A molecules sharing the Bw4 public
epitope (Bw4I80 or Bw4T80), and KIR3DL2 binds HLA-A∗03
and -A∗11 allotypes (18, 21).

The activating NK cell receptors include a series of non-
HLA-specific receptors and co-receptors able to induce NK cell
triggering by directly interacting with ligands overexpressed
or expressed de novo on tumor-transformed or virus-infected
cells (23–25).

These findings indicate that autologous cells are not killed
by NK cells thanks to an appropriate expression of all self-HLA
alleles, while a wide spectrum of tumor types can be killed due to
the loss of HLA molecules and to the expression/overexpression
of ligands for NK cell activating receptors (Figure 1). During
NK cell differentiation, CD94/NKG2A is the first HLA-I-
specific receptor expressed by appearing on the most immature
CD56bright NK cell subset. After several maturation steps,
CD56bright cells become CD56dim, lose NKG2A, and acquire
KIR receptors (26–28). The most mature NK cells are KIR+

and NKG2A– and express the marker of terminal differentiation
CD57 (29).

Under normal conditions, the HLA-I-specific inhibitory
receptors recognize autologous cells and prevent auto-reactive
responses. However, under pathological conditions, these
receptors function as ICs, by blocking the cytotoxic activity of NK
cells against those tumors that maintain the expression of HLA-I
molecules (11, 30).

In order to restore NK cell activity against HLA-I+ tumor
cells, novel immunotherapies have been developed, based on
the use of therapeutic monoclonal antibodies anti-pan-KIR2D
(lirilumab) (https://www.innate-pharma.com/en/pipeline/
lirilumab-first-class-anti-kir-mab-licensed-bristol-myers-
squibb) and anti-NKG2A (monalizumab) (https://www.innate-
pharma.com/en/pipeline/monalizumab-anti-nkg2a-mab-
partnered-astrazeneca) mimicking “missing-self ” response by
disrupting the interaction between these ICs and their ligands.
Therefore, NK cells can efficiently kill tumor cells that have lost
HLA-I expression, thus becoming resistant to T lymphocytes, but
also HLA-I+ cancers when blockers of ICs are used (Figure 1).
These agents are currently used in phase I/II clinical trials on
a range of hematologic and solid tumors as monotherapy or
in combination with other agents, including other forms of IC
blockade (31–37).

Notably, NK cells may also express non-HLA class I-specific
inhibitory receptors such as PD-1 (38). This receptor was
originally discovered on T cells and was found to exert a sharp
inhibitory effect on their anti-tumor activity. In healthy donors,
PD-1 is expressed on a subset of fully mature (KIR+NKG2A–
CD57+) NK cells from HCMV+ individuals (38). Higher
proportions of PD-1+ NK cells can be detected in patients
affected by different types of tumors (36, 38, 39).

The finding that NK cells from cancer patients express PD-
1 IC coupled with the observation that the use of anti-PD-1
or anti-PD-L1 monoclonal antibodies improve the anti-tumor
activity of NK cells (36, 38, 39) (Figure 1) is clinically relevant
for patients with tumors displaying a T-cell-resistant (HLA class
Ineg) phenotype.

Recent data strongly suggest a possible role for NK cells
in immunotherapeutic strategies targeting the PD-1/PD-L1 axis
particularly against HLA-I-deficient tumor cells (40, 41).

NK cells also express additional constitutive or inducible
IC shared with T cells, recognizing additional ligands other
than HLA class I molecules. These include CTLA-4, T
cell immunoglobulin- and mucin-domain-containing molecule
3 (TIM-3), lymphocyte activation gene 3 (LAG-3), T cell
immunoreceptor with Ig and immunoreceptor tyrosine-based
inhibition motif domains (TIGIT), and CD96 (12, 42–44).

Here, we review recent developments to improve NK
cell responses against solid and hematological tumors mainly
focusing on NK cell ICs.

NK CELL-BASED THERAPY IN SOLID
TUMORS

Although the ability of NK cells to destroy solid tumors
has been questioned, their capacity to prevent metastatic
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FIGURE 1 | Mechanisms of NK cell-mediated killing. In physiological

conditions, NK cell activity is tightly regulated by a complex interplay between

inhibitory and activating receptors that prevents killing of normal autologous

cells expressing an appropriate level of all self-HLA alleles and low/negative

levels of ligands for non-HLA-specific activating receptors (aNKR) (A).

Downregulation of HLA-I molecules on neoplastic or infected cells induces

NK-mediated killing by a “missing-self” recognition mechanism. NK cell

activating receptors are co-responsible in inducing NK cell triggering by

interacting with ligands (aNKR-ligands) overexpressed or expressed de novo

on tumor-transformed or virus-infected cells (B). Allogeneic (alloreactive) donor

NK cells are able to kill neoplastic cells of the recipient expressing non-self

allotypic determinants on HLA-I molecules (“KIR/KIR-ligand mismatch”) and to

control infections with a limited risk of toxicity (e.g., GvHD and HvG) (C). The

use of inhibitors of classical NK cell immune checkpoints (i.e., KIR and

NKG2A) (D) or immune checkpoints shared with T cells (e.g., PD-1) (E) or,

finally, a combination of these approaches represents new promising

strategies in NK cell-based immunotherapy.

dissemination by killing circulating cancer cells is well-known.
However, tumor cells frequently develop strategies to evade NK
cell immunosurveillance including changes at the tumor cell
level (e.g., abnormal expression of ligands for activating and
inhibitory receptors) and changes in tumor microenvironment
(e.g., immunosuppressive cytokines), resulting in tumor escape
and cancer progression (12, 45–48). Exact mechanisms and
manipulation strategies to durably and reproducibly enhance
NK cell function in vivo are not known. However, the use of
IC blockade, including lirilumab and monalizumab, to create
a condition of “missing-self ” recognition (consequent to the
antibody-mediated disruption of pan-KIR2D or NKG2A/HLA-
I interactions) may represent a promising novel therapeutic
approach to cure tumor patients (49).

HLA-E is one of the emerging suppressive ligands in human

tumors, and its expression negatively correlates with the overall

survival (OS) of cancer patients (48). NKG2A is expressed on
NK cells but also on T cells infiltrating different types of solid
tumors (36, 50, 51). These findings suggested that NKG2A/HLA-
E interaction could suppress the cytotoxic lymphocyte functions
directly in the tumor microenvironment.

The IgG4 anti-NKG2A antibody monalizumab is currently in

clinical development for the treatment of various solid tumors,

either as single-agent or in combination with other compounds.

In the initial clinical experiences, single-agent intravenous
monalizumab was administered to patients affected by advanced
gynecologic malignancies (including ovarian, endometrial, and
cervical carcinomas), divided into a dose-ranging cohort and
an expansion cohort, for a total of 58 patients. The drug was
generally well-tolerated but achieved only short-term disease
stabilization as best response (NCT02459301) (37).

In another phase II study, monalizumab was administered

in combination with the anti-epithelial growth factor receptor

(EGFR) antibody cetuximab in patients affected by squamous
cell carcinoma of the head and neck (SCCHN) (NCT02643550).

Cetuximab represents an established therapeutic approach to
SCCHN acting through induction of antibody-dependent cell
cytotoxicity through CD16 (FcγRIII) receptor expressed on NK
cells (52). The rationale of this combination lies on the evidence
that SCCHN tumors were strongly positive for HLA-E and were
infiltrated with CD8+ T and NK cells, suggesting a potential
sensitivity to NKG2A inhibitors. The regimen was well tolerated,
being characterized mostly by grade 1–2 adverse events, and the
interim analysis reported an overall response rate (ORR) of 31%
and a disease stabilization rate of 54%. Although preliminary,
these data appear encouraging (37).

With regard to the combination of anti-NKG2A with PD-

1/PD-L1 disrupting agents, a combination of monalizumab

and durvalumab has been evaluated in a first-in-human

dose-escalation/dose-expansion phase I trial in patients with

metastatic microsatellite-stable colorectal cancer (MSS-CRC).

The rationale of this study was supported by preclinical

models (https://www.innate-pharma.com/sites/default/files/
180205asco_15poster_09.pdf) and was based on the hypothesis

that the inhibition of NKG2A might improve the efficacy of an
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anti-PD-L1 antibody in a patient population characterized by
poor response to PD-1/PD-L1 antibodies. The study included 40
patients in the MSS-CRC expansion cohort. The treatment was
well-tolerated; in the expansion cohort, three responses and 11
disease stabilizations were observed, with a disease control rate
of 24% at 16 weeks (https://ascopubs.org/doi/abs/10.1200/JCO.
2018.36.15_suppl.3540). Currently, other clinical trials involving
the combination of monalizumab with durvalumab in different
solid tumors are ongoing (NCT03794544; NCT02671435).

The efficacy and safety of the first-in-class anti-pan-KIR2D
agent lirilumab was explored in several clinical trials. In a
first-in-human phase I trial, escalating doses of lirilumab were
administered to patients with solid tumors (breast, kidney, or
ovarian carcinoma) or hematologic malignancies. No dose-
limiting toxicities were reported and maximum tolerated dose
was not reached for doses up to 10 mg/kg (53). With regard to
combinations including lirilumab, a phase I/II trial explored
the safety of increasing doses of lirilumab in combination
with the anti-PD-1 antibody nivolumab or with the anti-
CTLA-4 antibody ipilimumab in a population of patients
with solid tumors (136 with nivolumab; 22 with ipilimumab).
Both combinations were well-tolerated, encouraging further
developments. Although definitive efficacy results are not
available yet, data from 29 patients with SCCHN in the
lirilumab-nivolumab cohort showed an ORR equal to 24%,
with durable responses. Notably, increased PD-L1 expression
was strongly associated with improved probability of objective
response (https://news.bms.com/press-release/bristolmyers/
interim-phase-12-data-show-encouraging-clinical-benefit-
lirilumab-combina). Currently, other trials designed to explore
the potential role of lirilumab plus nivolumab are being
conducted in populations of patients with SCCHN and invasive
bladder cancer in the neoadjuvant setting (NCT03532451
and NCT03341936).

Interestingly, in those tumors resistant to anti-PD-1 immune-
therapies, an up-regulation of alternative immune checkpoints,
including TIM-3, has been observed. In this context, therapeutic
approaches combining the administration of anti-TIM-3 and
anti-PD-1 antibodies showed that the adaptive resistance to PD-1
blockade can be overcome (54).

TIM-3 is a checkpoint receptor that binds several ligands
including galectin-9 (Gal-9) (55), phosphatidylserine on
apoptotic cells (56), high mobility group box 1 (56), and
CEA-related cell adhesion molecule-1 (57). High frequencies
of circulating and/or tumor infiltrating TIM-3+ NK cells have
been found in different types of malignant tumors (58–60).
The increased surface levels of TIM-3 on NK cells in cancers
induce NK cell impairments (61), while TIM-3 blockade results
in increased NK cell cytotoxicity both in vitro and ex vivo
(59, 62, 63).

TIM-3 functions as a potential prognostic marker in several
tumor types, such as lung adenocarcinoma, gastric cancer,
bladder cancer, and esophageal cancer (58, 59, 62, 63).

On the other hand, contradictorily, studies have also reported
stimulatory functions of TIM-3 (64). These divergent functions
are likely associated with the existence of multiple and different
TIM-3 ligands.

An anti-TIM-3 (Sym023) antibody has been developed and is
currently being tested in phase I clinical trials in patients with
advanced, unresectable, and metastatic solid tumor malignancies
or lymphomas that are refractory to currently available therapies,
in monotherapy or in combination with anti-PD-1 or anti-LAG-
3 antibodies (NCT03489343 and NCT03311412). Additional
phase I studies of anti-TIM-3 antibodies have been activated
in patients with advanced solid tumors, as a monotherapy or
in combination with an anti-PD-1 antibody (NCT02817633,
NCT03680508, NCT04139902, and NCT03744468).

LAG-3 is a negative co-inhibitory receptor expressed on T
cells and NK cells that binds MHC class II (MHC-II) molecules,
the C-type lectin receptor LSECtin, and a fibrinogen-like protein
1 (FGL1) on target cells (65–68). LAG-3 has been shown
to suppress immune responses in several tumors, including
Hodgkin’s lymphoma, gastric cancer, breast cancer, and other
solid tumors (69). Thus, the use of anti-LAG-3 antibodies in
combination with anti-PD-1 immunotherapy has been proposed
to restore T cell function (70). Although the specific role of
LAG-3 on NK cells remains to be fully clarified, this inhibitory
immune checkpoint is currently considered a good target for
immunotherapy because of its potential to activate both T and
NK cells. In this context, different anti-LAG-3 antibodies are
currently being used in phase I and phase II clinical trials as
single drugs in metastatic cancer, solid tumor, and lymphoma
(NCT03489369 and NCT03250832) or in association with
other immune checkpoints inhibitors, including anti-TIM-3
antibody, in multiple myeloma patients (NCT04150965), with
anti-PD-1 antibodies in treating patients with glioblastoma
(NCT02658981), solid tumors (NCT01968109), advanced
malignancies including lymphoma (NCT03005782), and
SCCHN (NCT04080804) or other anti-PD-1 agents in solid
tumor patients (NCT02676869). A number of additional LAG-3
antibodies are currently in preclinical development.

TIGIT and CD96 are co-inhibitory receptors expressed on
both T and NK cells and compete with the activating NK cell
receptor DNAM-1 for binding to PVR (CD155) and Nectin-
2 (CD112) (71). These receptors participate in a balanced
system to control NK cell effector functions. Indeed, following
interaction with their ligands, TIGIT inhibits NK cell cytotoxicity
directly through its ITIM domain, whereas CD96 hampers NK
cell IFN-γ production (72), thus counterbalancing DNAM-1-
mediated activation. The expression of TIGIT is highly variable
among different cancer types. It has been recently demonstrated
that TIGIT is highly expressed on tumor-infiltrating NK cells
and associated with NK cell exhaustion in different tumor
models and patients with colon cancer (73). Notably, the
therapeutic effects of anti-TIGIT, anti-PD-L1, or anti-TIGIT
antibodies combined with anti-PD-L1 antibodies depended on
the presence of NK cells (73), indicating the importance of
NK cells in checkpoint-targeted immunotherapy. Currently,
several ongoing clinical trials (phase I and phase II) focus
on testing the feasibility of targeting TIGIT pathway and
improving therapeutic effects through combination with existing
immunotherapies, including anti-PD-1 agents (NCT04150965,
NCT03119428, NCT04047862, and NCT03563716), mainly in
solid tumor patients.
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Recently, results from clinical studies have demonstrated the
safety of the infusion of allogeneic NK cells for immunotherapy
of both hematological malignancies and solid tumors (74) despite
the microenvironment rich of NK-inhibiting factors and the
limited ability of infiltration of immune cells. While generally
safe, allogenic NK cell infusions generally showed poor anti-
tumor activity.

Therefore, strategies designed to improve the efficacy of
adoptive transfer of NK cells are currently being explored
and include associations with IC inhibitors or chemotherapy,
induction of chemokine expression that can improve NK cell
migration and trafficking into tumors, as well as concurrent
administration of cytokines with activating effect on NK cells.
However, while some of such approaches achieved encouraging
results, none of these has evolved into an established protocol;
hence, additional efforts in this setting are warranted (75–79).
Relevant trials are reported in Table 1.

NK CELLS TO TREAT HEMATOLOGICAL
MALIGNANCIES

Current approaches of NK cell immunotherapy for
hematological malignancies involve methods for in vivo
potentiation of NK cell proliferation and activity; adoptive
transfer of NK cells from autologous and allogeneic sources, and
NK cell lines; genetic modification of NK cells; and, similar to
solid tumor, the use of IC blockade (12, 83).

Following the introduction of haploidentical hematopoietic
stem cell transplantation (haplo-HSCT), the potential anti-
leukemic activity of donor-derived alloreactive NK cells has
been observed (84–87). After engraftment, NK cells are the first
lymphocyte subset that appears in peripheral blood, suggesting
their role as graft-vs.-leukemia effector cells, in the absence of
GvHD (84, 88–90). The generation of alloreactive NK cells (i.e.,
NK cells expressing inhibitory KIRs that are not engaged by any
of the HLA-I alleles present on allogeneic target cells) results in
improved clinical outcome in haplo-HSCT thanks to their ability
to kill not only leukemic blasts (GvL) but also patient dendritic
cells (DCs) (91) and T cells, thus preventing GvHD and HvG
reaction, respectively (92–95).

Given the crucial role of alloreactive NK cells in mediating
safe and durable anti-tumor immunity in patients receiving
KIR/HLA-C-mismatched transplantation, different strategies,
including miRNA targeting the expression of HLA-C-specific
KIRs (i.e., KIR2DL1, KIR2DL2/L3) (96) or therapeutic
antibody blocking these inhibitory KIRs (lirilumab) for
HLA-C, were generated to simulate the mechanism of “missing
self ” condition.

The IgG4 antibody lirilumab prevents inhibitory signals from
pan-KIR2D, increasing NK cell-mediated tumor killing of AML
in vitro and in vivo (31). This anti-pan-KIR2D antibody had
acceptable safety without significant toxicity or autoimmunity in
AML and multiple myeloma (MM) patients (33, 97). Although
lirilumab failed to show significant efficacy as a monotherapy in
MM, dual immune therapy with lenalidomide showed a good
response on relapsed/refractory (R/R) MM in clinical trials (81,

97). Lirilumab is currently being widely tested in combination
with other therapeutics, including rituximab (an anti-CD20
antibody), and other forms of IC blockade, such as nivolumab in
R/R non-Hodgkin’s lymphoma, Hodgkin’s lymphoma (HL), and
MM patients (NCT01592370) (34, 97).

In R/R HL patients (98–102), IC inhibitors have shown
good activity; indeed, nivolumab is currently approved for
this indication by the Food and Drug Administration and the
European Medicines Agency (103). Interestingly, the Hodgkin
neoplastic cells (Reed Sternberg cells) hyper-express PD-L1
but have low/negative expression of HLA-I molecules. This
means that NK cells that exert their killing activity mainly
against HLA-Ineg targets, but not cytotoxic T CD8+ cells,
may be the primary effectors in the immune response induced
by nivolumab in HL patients. In this view, an increase in
cytotoxic NK cell population during IC blockade treatment
in HL patients has been recently observed (104). In order to
better elucidate the exact mechanism of action of nivolumab
in HL and to improve the efficacy in terms of complete
response (CR) in R/R HL, an innovative clinical protocol based
on the combined application of high-dose chemotherapy
with autologous stem cell transplant (ASCT) and early
post-transplant administration of nivolumab, supported by
autologous lymphocytes re-infusions (ALI), has been recently
proposed (https://doi.org/10.1182/blood-2018-99-118901).
Preliminary observations support the hypothesis that NK cells
play a primary role in response to nivolumab in HL patients
(82, 104). Furthermore, from a clinical point of view, preliminary
data are encouraging, as all six R/R patients treated so far
achieved CR (82).

Leukemic cells have been shown to overexpress HLA-E, a
ligand for NKG2A. This provides the rationale for the use
of monalizumab for the treatment of leukemia. The use of
monalizumab in HSCT has recently also been proposed to induce
NK cell alloreactivity in the first weeks after transplant when
almost all reconstituting NK cells are NKG2Apos, in order
to limit opportunistic infection and leukemia relapse (105).
Moreover, monalizumab is currently under evaluation in several
phase I/II clinical trials in monotherapy (35) or in combination
with other therapeutic antibodies, such as the Bruton’s tyrosine
kinase inhibitor ibrutinib, in patients with R/R or previously
untreated chronic lymphocytic leukemia (NCT02557516).

A phase I clinical trial evaluating the hypomethylating
agent decitabine together with either PDR001 (anti-PD-1
antibody), MBG453 (anti-TIM-3 antibody), or their combination
is currently recruiting patients with R/R AML patients not
eligible for intensive therapy, as well as high-risk myelodysplastic
patients (NCT03066648).

Another anti-TIM-3 antibody (Sym023) is currently being
tested in phase I clinical trials in patients with lymphoma
refractory to currently available therapies, in monotherapy or in
combination with anti-PD-1 (Sym021) or anti-LAG-3 (Sym022)
antibodies (NCT03489343 and NCT03311412).

The anti-LAG-3 antibody BMS-986016 is currently being
used in phase I and phase II clinical trials in combination
with nivolumab in subjects with relapsed or refractory HL,
and relapsed or refractory diffuse large B cell lymphoma
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TABLE 1 | Relevant clinical trials involving immune checkpoint blockade in NK cells.

Trial Targets Setting Agent Phase Pts Results

SOLID TUMORS

Tinker et al. (37) NKG2A Advanced gynecological solid

tumors

Monalizumab I 58 Manageable safety profile;

short term response

NCT02643550 NKG2A; EGFR Advanced squamous cell

carcinoma of the head and neck

Monalizumab plus cetuximab I/II 31 Manageable safety profile;

ORR: 31%; DCR: 54%

Segal et al. (80) NKG2A; PD-L1 Metastatic microsatellite-stable

colorectal cancer

Durvalumab plus monalizumab I 40 Ongoing; preliminary data

show manageable safety

profile and DCR: 24% at 16

weeks

NCT03794544 NKG2A; PD-L1 Resectable non-small cell lung

cancer

Durvalumab plus monalizumab II 160 (estimated) Ongoing

Vey et al. (53) KIR2D Solid and hematologic

malignancies

Lirilumab I 37 No reported dose-limiting

toxicity

NCT03203876 KIR2D; PD-1;

CTLA-4

Solid tumors Lirilumab plus nivolumab with or

without ipilimumab

I/II 21 (estimated) Ongoing

NCT03532451 KIR2D; PD-1 Resectable bladder cancer Nivolumab with or without lirilumab I 43 (estimated) Ongoing

NCT03341936 KIR2D; PD-1 Resectable squamous cell

carcinoma of the head and neck

Nivolumab plus lirilumab II 58 (estimated) Ongoing

NCT03489343 TIM-3 Advanced solid tumors or

lymphomas

Sym023 I 48 (estimated) Ongoing

NCT03311412 TIM-3; LAG-3 Advanced solid tumors or

lymphomas

Sym021 with or without Sym022 or

Sym023

I 102 (estimated) Ongoing

NCT02817633 TIM-3 Advanced solid tumors TSR-022 I 873 (estimated) Ongoing

NCT03680508 TIM-3; PD-1 Liver cancer TSR-022 plus TSR-042 II 42 (estimated) Ongoing

NCT04139902 TIM-3; PD-1 Resectable melanoma TSR-042 with or without TSR-022 II 56 (estimated) Ongoing

NCT03744468 TIM-3; PD-1 Solid tumors BGB-A425 plus tislelizumab I/II 162 (estimated) Ongoing

NCT03489369 LAG-3 Advanced solid tumors or

lymphomas

Sym022 I 30 (estimated) Ongoing

NCT03250832 LAG-3 Advanced solid tumors TSR-033 alone or in combination

with PD-1 blocking agents

I 200 (estimated) Ongoing

NCT04150965 LAG-3; TIGIT Multiple myeloma Elotuzumab I/II 104 (estimated) Ongoing

NCT02658981 LAG-3; PD-1 Recurrent glioblastoma BMS-986016 with or without

nivolumab

I 100 (estimated) Ongoing

NCT01968109 LAG-3; PD-1 Advanced solid tumors BMS-986016 with or without

nivolumab

I/II 2,000

(estimated)

Ongoing

NCT03005782 LAG-3; PD-1 Advanced solid tumors REGN3767 with or without

REGN2810

I 589 (estimated) Ongoing

NCT04080804 PD-1; LAG-3;

CTLA4

Advanced head and neck

squamous cell carcinoma

Nivolumab with or without

BMS-986016 or ipilimumab

II 60 (estimated) Ongoing

NCT02676869 LAG-3; PD-1 Advanced melanoma IMP321 plus pembrolizumab I 24 (estimated) Ongoing

NCT03119428 TIGIT; PD-1 Advanced solid tumors OMP-313M32 with or without

nivolumab

I 33 (estimated) Ongoing

NCT04047862 TIGIT; PD-1 Advanced solid tumors BGB-A1217 plus tislelizumab I 39 (estimated) Ongoing

NCT03563716 TIGIT; PD-L1 Advanced non-small cell lung

cancer

MTIG7192A plus atezolizumab II 135 (estimated) Ongoing

HEMATOLOGICAL MALIGNANCIES

Vey et al. (33) KIR2D Acute myeloid leukemia IPH2101 I 23 Manageable safety profile

Korde et al. (81) KIR2D Smoldering multiple myeloma IPH2101 II 9 Failure to meet the primary

endpoint (50% decline in

M-protein)

NCT01592370 KIR2D; PD-1 Multiple myeloma Lirilumab plus nivolumab (among

multiple arms including nivolumab)

I/II 375 (estimated;

multiple arms)

Ongoing

(Continued)
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TABLE 1 | Continued

Trial Targets Setting Agent Phase Pts Results

Guolo et al. (82) PD-1 Relapsed or refractory Hodgkin

lymphoma

Nivolumab supported by the

reinfusion of unselected autologous

lymphocytes

I/II 7 Manageable safety profile;

fast immune recovery

NCT02557516 KIR2D Chronic lymphocytic leukemia Monalizumab plus ibrutinib I/II 22 (estimated) Ongoing

NCT03066648 PD-1; TIM-3 Acute myeloid leukemia; high-risk

myelodysplastic syndrome

PDR001 and/or MBG453 in

combination with Decitabine

I 235 (estimated) Ongoing

References and additional details can be found in the text. For published trials, we included the name of the first author, while for ongoing trials, we included NCT identifier. The trials are

reported in the same order of the main text. Pts, patients.

(DLBCL) (NCT02061761) or as a single drug in lymphoma
(NCT03489369). Relevant trials are reported in Table 1.

CONCLUDING REMARKS

Several molecular mechanisms regulating the anti-tumor activity
of NK cells have been discovered over the last decades. However,
further characterization of the main immunosuppressive
pathways developed by tumor cells to evade NK cell recognition
is still needed. Analysis of NK cells and tumor cells and their
relationship is necessary to define personalized immunotherapy
procedures in cancer patients.

The combined blockade of checkpoint molecules expressed by
T cells and NK cells could trigger antitumor immunity mediated
by innate and adaptive populations, allowing the two approaches
to complement each other. NK cell-targeted immunotherapy
may provide an alternative, or a complementary approach, to
overcome the limitations of T-cell immunotherapy. In addition,
combination with NK cell immunotherapy could increase the
response rate of treatments targeting T cells (Figure 1 and
Table 1).

In conclusion, considering the excellent outcome of some
patients, future efforts should be addressed to identify the best

inhibitory pathways to target for future clinical applications.
Moreover, further studies should aim at improving NK cell-
based immunotherapy by targeting the tumor-induced NK cell
inhibition, thus promoting the maximal anti-tumor effect of
these innate effectors.
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