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Abstract

Background: The discovery of breast cancer subtypes and subsequent development
of treatments aimed at them has allowed for a great reduction in the mortality of
breast cancer. But despite this progress, tumors with similar characteristics that belong
to the same subtype continue to respond differently to the same treatment. Five
subtypes of breast cancer, namely intrinsic subtypes, have been characterized to date
based on their gene expression profiles. Among other characteristics, subtypes vary in
their degree of intra-subtype heterogeneity. It is not clear, however, whether this
heterogeneity is shared across all tumor traits. It is also unclear whether individual traits
can be highly heterogeneous among a majority of homogeneous traits.

Results: We employ network theory to uncover gene modules and accordingly
consider them as tumor traits, which capture shared biological processes among the
subtypes. We then use the β-diversity metric from ecology to quantify the
heterogeneity in these gene modules. In doing so, we show that breast cancer
heterogeneity is contained in gene modules and that this modular heterogeneity
increases monotonically across the subtypes. We identify a core of two modules that
are shared among all subtypes which contain nucleosome assembly and mammary
morphogenesis genes, and a number of modules that are specific to subtypes. This
modular heterogeneity, which increases with global heterogeneity, relates to tumor
aggressiveness. Indeed, we observe that Luminal A, the most treatable of subtypes, has
the lowest modular heterogeneity whereas the Basal-like subtype, which is among the
hardest to treat, has the highest. Furthermore, our analysis shows that a higher degree
of global heterogeneity does not imply higher heterogeneity for all modules, as
Luminal B shows the highest heterogeneity for core modules.

Conclusions: Overall, modular heterogeneity provides a framework with which to
dissect cancer heterogeneity and better understand its underpinnings, thereby
ultimately advancing our knowledge towards a more effective personalized cancer
therapy.
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Background
Breast cancer is the most common cancer in women worldwide [1]. The discovery of
breast cancer subtypes and subsequent development of treatments aimed at each of
the subtypes has allowed for a great reduction in the mortality of breast cancer [2-4].
But despite this progress, tumors with similar characteristics continue to respond dif-
ferently to the same treatment [5]. It is therefore imperative to continue dissecting the
heterogeneity of breast cancer [4].
Breast tumor heterogeneity can be defined as variation among patients [6]. Five sub-

types of breast cancer have been characterized to date based on their gene expression
profiles [7]. Named the intrinsic subtypes they are: Luminal A, Luminal B, HER2-enriched
(also called HER2-related), Claudin-low and Basal-like. Breast tumors can also be clas-
sified based on the immunohistochemical profile (IHC) of three key receptors: the
estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor
receptor 2 (HER2). The four IHC based subtypes are: ER-/PR-/HER2- (triple-negative),
ER-/PR-/HER2+, ER+/ or PR+/HER2+, and ER+/ or PR+/HER2-. IHC-based and intrin-
sic subtypes overlap (Figure 1). The first IHC-based subtype overlaps with Basal-like and
Claudin-low intrinsic subtypes, the remaining three overlap HER2-enriched, Luminal B
and Luminal A, respectively [6]. Subtypes range in aggressiveness. Basal-like, Claudin-
low, HER2-enriched and Luminal B tumors are significantly more aggressive than Lumi-
nal A tumors [7], with Basal-like and Claudin-low at the top of the ranks. Basal-like and
Claudin-low are part of triple-negative breast cancers, which currently for them there is
no effective therapy (Figure 1) [4,8-10]. The subtype of a tumor will therefore inform the
clinicians of the course of action and determine the patient’s odds of survival [4,11,12].
Breast cancer subtypes also vary in their degree of intra-subtype heterogeneity; more

aggressive subtypes are more heterogeneous. Harrell et al. assessed the degree of hetero-
geneity of 298 different breast cancer gene expression signatures across the five intrinsic
subtypes (Figure 1) [13]. By using pooled gene signatures they were able to show that
all subtypes are more heterogeneous than normal breast tissue and that the Basal-like
subtype is the most heterogeneous. Based on the immunohistochemical classification,
ER-negative breast tumors, which are composed primarily of the Basal-like tumors,

Figure 1 The relative degree of heterogeneity of various breast cancer subtypes. The intrinsic subtypes
have been ranked from the left (yellow) to the right (red) according to their heterogeneity degrees in which
Luminal A and Basal-like are poorly and highly heterogeneous, respectively. The second row shows the
overlap of the intrinsic based subtype classification with that of IHC based. The last row shows the availability
of targeted therapy for each subtype. The relatively more heterogeneous Basal-like and Claudin-low are the
subtypes with very poor prognosis since no therapeutic has been tailored to their biology thus far (See the
text).
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were also found to be significantly more heterogeneous than the rest of histological
subtypes [8,14].
However, what remains unclear from these observations is whether particular subtypes,

such as ER-negative or Basal-like tumors, are more heterogeneous across all of their
tumor traits such as proliferation ability or angiogenic potential. Conversely, it is also
unclear whether subtypes with less heterogeneity at the whole transcriptome level, such
as Luminal A, could show increased heterogeneity in specific traits. Finally, there could
also be a subset of the transcriptome that is heterogeneous for all breast tumors andwould
thus constitute a core source of cancer variability. The focus of this study is to explore the
distinction between global and local transcriptome heterogeneity. To do so we develop a
framework that makes use of network theory to build and characterize gene modules and
of ecological measures of diversity with which to quantify and compare global and local
heterogeneities across the five intrinsic subtype of breast cancer.
Namely, we employed β-diversity as the measure of heterogeneity [15]. Park et al.

also adapted the Shannon and Simpson diversity indices from ecology to measure the
degree of intra-tumor genetic heterogeneity of invasive breast carcinoma in 8q24 copy
number data [16]. We used β-diversity for its intuitive derivation and interpretabil-
ity but most importantly for its ability to make simultaneous comparison of multiple
groups by inheriting the power of ANOVA [15]. We refer to this framework as ‘modular
heterogeneity’.

Methods
Data

We used the breast microarray gene expression data that has been published by Harrell
et al. [13], and can be retrieved from the repository of UNC Microarray Database by
searching for the name of its authors: https://genome.unc.edu/cgi-bin/SMD/publication/
viewPublication.pl?pub_no=107. This data set has some advantages over other breast
cancer data sets. It was shown that variation of expression values of genes in this data
set stems from the biology and not from cohort/ source or 7 Agilent microarray plat-
forms [13]. It contains a compendium of normal breast epithelium and different subtypes
of breast cancer. Also, all of the samples had been processed in the same lab. We pre-
processed the data according to Harrell et al. and we averaged the normalized log 2
ratio of the probes mapped onto the same gene [13]. The probes without mapping onto
any gene symbol were discarded. This process resulted in 13,822 genes. We focused our
downstream analysis on 286 unique samples out of 414 ones. They include Normal breast
tissues, Claudin-low, HER2-enriched, Basal-like, Luminal A and Luminal B, Metastatic
Claudin-low, Metastatic HER2-enriched, Metastatic Basal-like, Metastatic Luminal A,
and Metastatic Luminal B breast tumor subtypes, which for them 17, 42, 22, 31, 80, 45,
8, 13, 17, 6, 5 samples available, respectively. Afterwards, we quantile normalized the 286
selected arrays by employing library limma implemented in R in order to make experi-
ments comparable with each other. We chose quantile normalization for between array
normalization for its high efficacy. Also, studies with focus on investigating the variance
of gene expression in microarray experiments compared the effect of different between
array normalization techniques, and finally employed the quantile normalization in their
downstream analysis [17]. Then, median absolute deviation (MAD) of expression val-
ues of all the genes across all the samples were calculated and 2,511 transcripts with

https://genome.unc.edu/cgi-bin/SMD/publication/viewPublication.pl?pub_no=107
https://genome.unc.edu/cgi-bin/SMD/publication/viewPublication.pl?pub_no=107
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MAD greater than the Upper Quartile Q3 were selected and used in the rest of the
analysis.

β-diversity

We utilized the concept of β-diversity as a measure of heterogeneity of each phenotypic
state of breast. It is defined as the variability in species’ composition among sampling
units for a given area at a given spatial scale [15]. Also, the relative abundance of species
can be incorporated into it. It is calculated by taking the average distance (or dissimi-
larity) from an individual unit to the group centroid, using an appropriate dissimilarity
measure [15,18]. β-diversity is quite flexible as any meaningful distance measure can be
adapted to it. Most importantly, simultaneous comparison of heterogeneity among sev-
eral different areas or groups is possible. Briefly, a null statistical model stating that there
is no difference among heterogeneity of sampling units across different regions is defined.
Afterwards, ANOVA test on the computed distance of each individual to its correspond-
ing group spatial median or centroid in the full dimensional space of species is employed
in order to reject the null hypothesis at the significance level of interest, with either per-
mutation or traditional F ratio test. This distance based ANOVA is called multivariate
analysis of dispersion [19], which is also capable of addressing a few common problems in
biological experiments such as failure of normality requirement of variables, and higher
number of variables than that of samples [19]. Method ‘betadisper’ implemented in R
library vegan together with its associated methods has implemented multivariate analysis
of dispersion.

Global transcriptome heterogeneity

We computed the β-diversity values of all of the phenotypic states by including all
the transcripts, as measures of their global transcriptome heterogeneity. In order to do
so, the expression values of 2,511 transcripts were first robust standardized. Conse-
quently, the median absolute deviation and median of each transcript became one and
zero, respectively, across all samples compiled together [20]. This guaranties that expres-
sion values of each gene contributes equally to the variation in the calculated pair-wise
Euclidean distances among samples. We chose Euclidean distance for it has intuitive
meaning and is the most common distance metric in genomics. Afterwards, the new
distance transformed variables were subjected to multivariate analysis of dispersion. In
the next step, we performed 30 pair-wise comparisons in order to examine the signif-
icance of difference in heterogeneity among different phenotypic states; 5 for normal
versus cancerous states, 5 for cancerous versus their corresponding metastatic states,
10 for cross cancerous states, and 10 for cross metastatic states. We performed 10,000
permutations on the residuals in order to have P-values at 0.01 level of significance
[21]. Finally, we FDR adjusted all of the 30 calculated P-values to correct for multiple
comparisons.

Local transcriptome heterogeneity

We calculated the β-diversity values for each module to quantify the degree of the het-
erogeneity at the local level (each module) for various phenotypic states. Therefore,
the expression values of the transcripts composing each module were first separately
robust standardized [20]. Then, pair-wise Euclidian distances across all of the samples
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were computed for each module, separately. Afterwards, the new distance transformed
variables were subjected to multivariate analysis of dispersion. We performed 30 pair-
wise comparisons per each module, the same way as we did for assessment of global
transcriptome heterogeneity. Finally, all of the 240 calculated P-values (30 × 8 modules)
based on 10,000 permutations on the residuals were FDR adjusted to correct for multiple
comparisons.

Weighted gene co-expression network

We employedmethodology developed by Zhang et al. [22] in order to construct the global
breast weighted co-expression network. Further details about the described methodology
have been elaborated in [23]. In the following two sections, we provide the reader with an
overall process and how it has been utilized in this study. Library WGCNA implemented
in R (Weighted Gene Co-Expression Network Analysis) was used in order to construct
the breast weighted gene co-expression network [24].

Constructing the breast cancer global network

A gene co-expression network is defined as a group of genes, which represent the nodes
of the network. The edges between each pair of nodes are formed given their correspond-
ing genes are co-expressed. Correlation coefficient between expression values of each pair
of genes can serve as a proxy for measuring the strength of co-expression between each
pair of genes. Among the various correlation coefficients, bi-weight mid-correlation has
some advantages whichmakes it a suitable choice for co-expression analysis of microarray
gene expression data. It inherits the high power of Pearson correlation on one hand, and
the high robustness of Spearman correlation on the other hand [23]. Therefore, signed
bi-weight mid-correlation coefficients were calculated for all pairs of genes across all the
samples lumped together and the corresponding correlation matrix was formed conse-
quently. Afterwards, this correlation matrix was turned into a similarity matrix, S = [

sij
]

with this transformation, sij = 1+cor(i,j)
2 in which cor(i, j) stands for the correlation coef-

ficient between pair of genes i and j. This transformation makes the entries of S fall in
domain [0, 1].
Next, the constructed similarity matrix was transformed into a weighted adjacency

matrix, A = [
aij

]
which each of its entries measures the strength of each between node

connection. This can be done by employing power adjacency function aij = abs(sij)β in
which the power β is called a soft threshold. This technique is known as soft-thresholding
because the edges of final network will be weighted instead of being binary. On the other
hand, soft-thresholding saves the continuity of measured correlation coefficients. The
right choice of parameter β is important. The power β is chosen in such away that the fre-
quency distribution of the connectivity of nodes approximates scale free topology, which
is a biologically plausible assumption [25]. Recall that connectivity of each node is defined
as the sum of its weighted connections to other nodes, ki = ∑n

j �=i,j=1 aij. Then the square
of the correlation between logarithm of connectivity distribution, log(p(k)), and that of
connectivity, log(k), is defined as scale-free fitting index (R2). This index tells us how
well the frequency distribution of connectivity of nodes approximates scale free topology.
Networks with R2 closer to 1 estimates scale free topology criterion to a better extent.
Thus, the computed similarity matrix was raised to different values of β spanning a range
from 1 to 30 and their corresponding R2s were calculated. By drawing computed values
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of R2 against their corresponding βs, we noticed that scale-free fitting index of R2 curve
reached its saturation point at power 13 with R2 = 0.9. The power of 13 is also the number
that developers of the method had suggested. Therefore, we raised the computed simi-
larity matrix to power 13, and constructed the adjacency matrix of breast weighted gene
co-expression network.

Module identification

In order to find subset of genes (module) that are tightly connected with each other, the
distances between all pairs of genes are calculated based on the adjacencymatrixA. After-
wards, the computed distance matrix is subjected to a clustering method which results
in detecting the modules. As a measure of node similarity, which is used subsequently to
make a distance matrix, topological overlap [26] between genes is a reasonable choice.
Topological overlap measure between a pair of genes assesses the relation of each pair of
genes with the rest of the genes across the network in contrast with adjacency matrix in
which this feature is missing. It is simply the normalized version of the number of shared
neighbors between a pair of nodes in a graph. Plus, it is a robust measure that filters the
effect of noisy edges with low signal, and has been successfully utilized in biology [22,23].
Thus, we transformed the computed adjacency matrixA into a topological overlap matrix
(TOM) and subsequently into a distance matrix, 1 − TOM. Then, average linkage hierar-
chical clustering was applied to the calculated distance matrix. Finally, ‘Dynamic Hybrid’
cutting algorithm [27], which has been successfully employed in other studies [28,29],
was utilized in order to cut branches off the dendrogram, thus giving rise to detecting the
modules. Consequently, we found 8 different gene co-expression modules, and used them
in our downstream analysis. Note that according to the described methodology, a gene
co-expression module is defined as a subset of genes with high topological overlap. Dif-
ferent modules were labeled with different colors in order to be distinguished from each
other.

Gene ontology analysis

We employed Gorilla [30], http://cbl-gorilla.cs.technion.ac.il/, in order to infer what bio-
logical process each module contributes to. All of the 2,511 genes used in this study were
considered as reference background gene list. Each module was then separately analyzed
against the reference gene list.

Results
Global heterogeneity

Before delving into the modular analysis of breast cancer heterogeneity, we first mea-
sured the β-diversity across the available transcriptome (2,511 transcripts) to assess the
global transcriptome heterogeneity for all subtypes.We found an increment in β-diversity
from normal to Basal-like states (Figure 2b; gray). Basal-like having a significantly higher
β-diversity than the Luminal subtypes (corrected P-value < 0.01) but only slightly higher
than those of Claudin-low and HER2-enriched. Transition from cancer to metastatic
stage showed only a minimal increase in global transcriptome β-diversity and once at the
metastatic level, all subtypes showed a similar values (Additional file 1: Table S1). Our
assessment of global transcriptome heterogeneity using β-diversity is largely consistent
with the findings of Harrell et al. [13].

http://cbl-gorilla.cs.technion.ac.il/
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Figure 2 Alteration of global andmodular β-diversity values in distinctive phenotypic states of breast
tissue. a Colored matrix representing 105 out of the 240 pair-wise comparisons performed in this study. The
colored cells represent tests with FDR corrected P-values < 0.01. Subtype comparisons are ordered based on
global β-diversity. Modules are ordered based on the number of subtypes in which they exhibit significantly
higher β-diversity than normal breast tissue. Notably purple and blue modules significantly show larger
β-diversity in all of the phenotypic states of breast tumor compared to that of normal state. The pink module
has been removed from this matrix. The corresponding metastatic states are not shown since none of the
subtypes at this state shows significantly different levels of β-diversity when compared to their cancerous
counterparts or among themselves (See the text). b Box plots corresponding to the patterns of β-diversity
across subtypes. Gray box plots correspond to global β-diversity for the available transcriptome. Colored box
plots correspond to modules as indicated in the legend in panel a. Each box plot depicts the distribution of
Euclidean distances between patients and their corresponding subtype spatial median (See the text).

Network construction andmodule composition

In order to assess the modular nature of transcriptome heterogeneity we partitioned the
available transcriptome into co-expressed gene modules. We used data from all stages
(normal, cancer and metastatic) and subtypes (286 samples) independently of tumor
heterogeneity so as to make our modules comparable between subtypes. We used co-
expression modules as a proxy for tumor traits for two reasons. First, correlation among
gene expression patterns has been used to effectively capture underlying regulatory and
signaling circuits [31]. Second, co-expression modules are conserved across species and
are organized into coherent functions [32,33]. We determined our co-expression mod-
ules by building a global breast cancer transcriptional network using weighted gene
co-expression analysis [22]. This method has been widely used and has a good ability
to recapitulate empirical results [28,34-37]. Additionally, it is computationally tractable
but does not trivially reduce the problem of network inference to pair-wise correlations
between genes. Applying a Dynamic Hybrid cutting algorithm to the network yielded
eight modules based on high topological overlap (See Methods for additional details).
We characterized the modules with gene ontology (GO) analysis. The genes constitut-

ing each module were compared to a background gene list consisting of all 2,511 genes
in the study (Additional file 2: Table S2). Four modules were significantly enriched for
GO biological process terms (P-value < 0.01; FDR corrected). Three of these had fully
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coherent terms. We refer to them by their GO terms as the nucleosome assembly (col-
ored purple, 109 unique genes), immune response (yellow, 369) and cell cycle (turquoise,
329) modules. The fourth of these modules was enriched for extracellular matrix orga-
nization, developmental processes, biological adhesion, and angiogenesis among others;
we refer to this module as the polyvalent module (orange, 620). Another three modules
were enriched but did not satisfy multiple testing. Their enriched GO terms, however,
did reflect a coherent function. We refer to these modules as mammary morphogenesis
(blue, 509), signaling (red, 241) and metabolic process (green, 228) modules. One module
remained uncharacterized (pink, 67). Table S3 in Additional file 3 contains the names of
all of the genes constituting these modules.

Modular heterogeneity

Having defined a set of modules with which to distinguish between global and local dif-
ferences we were then able to quantify the degree of β-diversity for each module in each
subtype and perform all pair-wise comparisons between the five intrinsic subtypes and
normal breast tissue (Figure 2a and Additional file 4: Table S4) We performed a total
of 30 pair-wise comparisons per module across all stages and subtypes. When com-
pared to normal tissue, we detected a change in β-diversity in at least one subtype for
all modules except the uncharacterized module (pink). Because this module showed no
biological enrichment and no change in any pair-wise comparison we obviated it from
further results and discussion, it will however continue to contribute to multiple test cor-
rection. As expected, we observed that the number of modules with higher β-diversity
than normal breast tissue increases monotonically for subtypes with increasingly large
global β-diversity (Figure 2a; top left). In this sequence of increasing global β-diversity,
the first two modules to change are nucleosome assembly and mammary morphogenesis
in Luminal A. The cell cycle and metabolic process modules follow for HER2-enriched,
then the immune response module is added in Luminal B, followed by the polyvalent
module in Claudin-low and finally the signaling module, which is exclusive to Basal-like.
The notable exception to this trend is the metabolic process module, which does not have
higher β-diversity in Claudin-low. Compared to normal breast epithelium as the healthy
reference phenotypic state, the only modules with increased heterogeneity in all of the
breast cancer subtypes are nucleosome assembly and mammary morphogenesis. We thus
call them the core breast cancer modules (Figure 2a; bottom left).
However, when we compared the subtypes to each other, this pattern of gradual accre-

tion of high β-diversity modules transitioned into an array of modular combinations of
high β-diversity modules. Notably, Luminal B is the only subtype that varies significantly
within the core modules (Figure 2a; bottom right). It has the highest β-diversity in the
nucleosome assembly module, which is higher than that of Luminal A, and in the mam-
mary morphogenesis module, which is higher than those for Claudin-low and Basal-like
(Figure 2b; purple and blue).
Using Luminal A as a reference, the least aggressive subtype with the lowest β-diversity,

we see that only the first non-core module, cell cycle, shows an increase in β-diversity
for all non-Luminal A subtypes (Figure 2a; top middle, turquoise). All non-core mod-
ules show higher β-diversity for Basal-like and Claudin-low differs significantly for the
immune response module (Figure 2a; top middle). The pattern observed for the Lumina
A comparisons resembles a sparser version of the pattern we see in the Normal tissue
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comparisons. Finally, in the rest of pair-wise comparisons, only the Basal-like subtype
is able to distinguish itself from Luminal B in the cell cycle, polyvalent and signaling
modules (Figure 2a; top right). Metastases derived from all five intrinsic subtypes did
not show significantly different levels of β-diversity when compared to their cancerous
counterparts or among themselves (Additional file 5: Figure S1).
With regards to the trends for each module, core modules show a sharp difference

between all subtypes and normal tissue but then plateau across the subtypes with the
exception of the Luminal B module, which is above the rest (Figure 2b; purple and blue).
The cell cycle module, which is the first non-core module, exhibits a similar plateau with
the exception of the Luminal A subtype which is closer to normal (Figure 2b; turquoise).
It is also the first module in which Basal-like exhibits its characteristic higher β-diversity.
The metabolic process module shows an intermediate behavior between core and non-
core modules, although in this instance it is the HER2-enriched module which breaks
away from the group and is comparable in β-diversity to Basal-like (Figure 2b; green).
The next module in the modular progression, immune response, shows a gradual increase
from normal tissue to Basal-like (Figure 2b; yellow). Finally, the last two non-core mod-
ules show opposite patterns to the core modules. Where the majority of subtypes have
β-diversities similar to normal-tissue, Claudin-low and Basal-like in the polyvalent mod-
ule and Basal-like, and HER2-enriched to some extent, in the signaling module show the
highest β-diversity.

Discussion
We have shown that breast cancer heterogeneity is contained in gene modules and that
this modular heterogeneity increases monotonically across the five intrinsic subtypes of
breast cancer. We found a core of two modules that are shared among all subtypes and a
number of modules that are particularly heterogeneous in specific subtypes. This mod-
ular heterogeneity increases with global heterogeneity, which in turn relates to tumor
aggressiveness. Indeed, we observe that Luminal A, themost treatable of subtypes, has the
lowest modular heterogeneity (two out of seven) whereas the Basal-like subtype, which is
among the hardest to treat, has the highest (seven out of seven). Furthermore, our analy-
sis shows that a higher degree of global heterogeneity does not imply higher heterogeneity
for all modules. Basal-like and Claudin-low subtypes have the highest global heterogene-
ity yet, for the core module mammary morphogenesis, Luminal B is significantly more
heterogeneous than both.We were unable, however, to detect significant changes in mod-
ular heterogeneity for the metastatic tumors and only observedminimal increments. This
may be due to an absence of power due to the small number of metastatic samples in our
study.
The functional enrichments of these modules recapitulate some of the biologi-

cal processes which play important roles in the biology of breast cancer. The first
of the core modules, nucleosome assembly, contains many histone genes. Alteration
of chromatin assembly has been shown to play an important role in the progres-
sion of breast cancer and is concordant with the observation that global epigenomic
changes underlie the heterogeneity of tumors [38-41]. The second of the core mod-
ules, mammary morphogenesis, contains FOXA1 (forkhead box protein A1), ESR1
(estrogen receptor 1), AR (androgen receptor) and WNT4 (wingless-type mmtv inte-
gration site family, member 4). All of these genes play important roles in the healthy
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physiology of breast tissue and, when deregulated, in the pathogenesis of breast cancer
[39,42-46].
The first of the non-core modules, cell cycle, shows higher heterogeneity in all sub-

types except in Luminal A. This module highlights the clinical difficulty of targeting
the cell cycle with cytotoxic agents due to most tumor’s high heterogeneity. Triple-
negative tumors, which are primarily of the Basal-like intrinsic subtype, have the highest
heterogeneity for this module. A subgroup of these patients does not develop patho-
logic complete response despite the fact that this subtype has initial responsiveness to
chemotherapy. This might be partly as a result of observed high heterogeneity of cell
cycle [10,47]. Another non-core module, immune response, is known to play a particu-
larly critical role in the progression of breast tumors. A correlation has been observed
between the activity of immunity-related genes and patient survival for the more aggres-
sive intrinsic subtypes, or ER-negative subtypes, which show a high heterogeneity for this
module [48,49]. Because of its gradual increase in heterogeneity across all subtypes this
module is particularly well suited for further refinement of tumor classification. Indeed,
immunity-related genes have already been used to classify patients [50].
Finally, the polyvalent and signaling modules sit at the aggressive end of the modular

spectrum and are only heterogeneous in the subtypes that are most intractable. Func-
tional enrichments for these twomodules reveal biological processes such as extracellular
matrix organization, cell adhesion, angiogenesis, cell migration, cell junction organiza-
tion, synaptic transmission, fluid transport and G-protein coupled receptor signaling; all
of which, despite their clear disparity, point to a common theme of cellular interactions
and tumor-stroma reaction, whereas the first four modules in the modular progression
point toward more inherent cell properties. This particular class of cellular interaction
heterogeneity might be responsible for the recently reported inefficacy of angiogenic
inhibitors in these subtypes [51]. Furthermore, the signalingmodule, which is only hetero-
geneous in the Basal-like subtype contains the EGFR (epidermal growth factor receptor)
gene. EGFR has been implicated in the biology of triple-negative tumors [52]. Unfortu-
nately, it has also been shown that anti-EGFR treatments with the drug cetuximab have
limited success against Basal-like tumors [3].
All interpretations based on functional enrichments must be treated with caution as the

annotations are far from complete or even up to date. There are also inherent limitations
to using modules based on co-expression as genes involved in the same biological process
may not share the same expression pattern.
In the immediate future, we would like to refine our measure of modular heterogene-

ity by further dissection of each module into more biologically meaningful sub-modules.
The assessment of the sub-modules’ relative contributions to breast cancer heterogeneity
might help identify clinically meaningful sub-subtypes and thus provide more effective
personalized medicine. Additionally, we are interested in elucidating the contribution of
intra-tumor heterogeneity to modular heterogeneity and if this phenomenon can also be
observed at the level of individual clones or single cells. On a more theoretical plane,
modular heterogeneity is an appealing framework with which to investigate other tumor
properties such as the development of resistance to treatment through robustness and
evolvability. We hypothesize that cancer cells can more effectively explore their fitness
landscapes by incrementally and combinatorially de-regulating gene modules. Each step
taken in the modular progression could provide a rich neutral space in which to tinker.
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This may allow tumor populations to explore the space of possible trait combinations
more efficiently by pruning vast sections of the transcriptome space.

Conclusion
In this study we have dissected breast cancer heterogeneity and shown (1) that hetero-
geneity is not only a global property of each tumor subtype transcriptome but that it
is concentrated locally in gene modules, (2) that each tumor subtype exhibits a unique
combination of modules that are heterogeneous with respect to normal breast tissue,
(3) that subtypes of breast cancer can have high local heterogeneity despite having low
global heterogeneity and (4) that the number of modules that are heterogeneous when
compared to normal tissue increases with subtype aggressiveness. We propose modular
heterogeneity as a new view on breast cancer heterogeneity that will help us refine the
molecular classification of tumors, assess risk for individual patients and predict response
to treatment.
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