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Abstract: A series of exohedral actinide borospherenes, An&Bm, and endohedral borospherenes,
An@Bn (An=U, Np, Pu; m = 28, 32, 34, 36, 38, 40; n = 36, 38, 40), have been characterized by density
functional theory calculations. The electronic structures, chemical bond topological properties and
spectra have been systematically investigated. It was found that An@Bn is more stable than An&Bn

in terms of structure and energy, and UB36 in an aqueous solution is the most stable molecular in
this research. The IR and UV-vis spectra of An&Bm and An@Bn are computationally predicted to
facilitate further experimental investigations. Charge-transfer spectroscopy decomposes the total
UV-Vis absorption curve into the contributions of different excitation features, allowing insight into
what form of electronic excitation the UV–Vis absorption peak is from the perspective of charge
transfer between the An atoms and borospherenes.

Keywords: actinides; borospherenes; bonding characteristic; density functional calculations

1. Introduction

Metal-doped borospherenes have generated a lot of interest in the scientific com-
munity and massive amounts of research have been performed regarding endohedral
and exohedral borospherene. Boron can form a variety of different compounds, includ-
ing boron nanotubes [1,2], planar or quasi-planar structures [3–9], borospherenes and
core-cell structures [10,11], due to its short covalent radius, lack of electrons, and high
coordination number.

In 2014, Zhao et al. synthesized the first all-borofullerene [12], which set off a wave
of experimental and theoretical research into borospheres. In the same year, Jian et al.
reported the prediction of a B38 [13] fullerene analogue with the first-principles calculation.
In 2015, Zhao et al. theoretically predicted the smallest all-boron cage, B28, composed
of two B12 units [14]. Its structure is superior to other isomers (bicyclic tubes, bowls,
and quasi-planar triangular networks), and exhibits strong aromaticity. In 2018 and 2020,
Li et al. presented two new axially chiral members, cage-like B34, B+

35 and seashell-like B+
31,

B32, to the borospheren family [15,16], and revealed the universal bonding pattern of σ + π

double delocalization in this type of borospheren.
Because of the important application of boron in the nuclear industry and the peculiar

physical and chemical properties of actinides, the interaction between actinides and borophene
is also a research hotspot. Wang et al. reported a unique actinide-encapsulated U@B40
cage structure using density functional theory (DFT) calculations, and indicated that U@B40
exhibits a 32-electron closed-shell configuration [17]. Shi et al. explored a series of actinide
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borospherenes AnBn (An=U, Th; n = 36, 38, and 40) [18]. Their results indicate that doping with
the right actinides may stabilize various boroballenes and open up an avenue for boroballene
modification and functionalization. In 2020, Du et al. investigated M@B36 (M = Ti, Zr, Hf, Ce,
Th, Pa+, U2+, Np3+, and Pu4+), which all meet the 32-electron principle [19].

In this work, a series of actinide metalloborospherenes, An&Bm and An@Bn (An=U,
Np, Pu; m = 28, 32, 34, 36, 38, 40; n = 36, 38, 40), have been examined systematically.
Electronic structures, bonding characteristics, charge transfers, and IR and UV-vis spectra
were predicted. The solvation effect in an aqueous solution is discussed in all processes
of the research. In addition, we systematically compared the properties of the exohedral
and endohedral structures in order to obtain a relatively comprehensive understanding of
actinide metalloborospherenes.

2. Results
2.1. Exohedral Actinide Borospherenes

The structure of pure boron clusters has been well studied, and the structural informa-
tion has been vividly described. B28 and B32 are seashell-like borospherene cages with C2
symmetry, B34 is aromatic and cage-like with C2 symmetry. The planar B36 can be trans-
formed into a cage-like structure with the doping of actinide atoms. B40 is a fullerene-like
cage with D2d symmetry.

The electrostatic potential (ESP) on the molecular vdW surface analysis of boro-
spherenes was depicted to determine the adsorption sites of actinides, and the correspond-
ing ESP-mapped molecular surfaces are shown in the Supporting Information Figure S1.

According to the ESP, actinide was decorated on the proper site (the lowest PES value)
of borospherenes for the geometry optimization. In addition, different spin multiplicities
were considered in the structure optimization process, and the ground-state structure
was examined by the TDDFT method. The results of TDDFT verification show that the
excitation energies of the obtained structure are positive, indicating that these electronic
structures are more stable than the excited state. The corresponding geometry coordinates
of An&Bm and An@Bn (An=U, Np, Pu; m = 28, 32, 34, 36, 38, 40; n = 36, 38, 40) are listed in
Table S1 in the Supporting Information.

The optimized molecular structures of the An&Bm complexes are shown in Figure 1,
and the average bond length of An-B are listed in Table 1. The An-B average bond lengths
for the identical actinides exhibit a tendency of first falling and then rising, and boron
clusters of the same size indicate an overall rise from U to Pu, which may be a result of the
atomic size for actinides. The An-B chemical bond, on the other hand, is lengthened in the
solution instance.

Table 1. Average bond length r(Å) of An and adjacent B atom in An&Bm in vacuum and in aqueous
solution using the C-PCM model (in parentheses) at PBE-ZORA/def2-TZVPP-SARC level.

¯
r (Å) B28 B32 B34 B36 B38 B40

U 2.57 2.55 2.54 2.49 2.52 2.57
(2.62) (2.59) (2.58) (2.56) (2.56) (2.59)

Np 2.59 2.55 2.55 2.52 2.52 2.57
(2.64) (2.62) (2.60) (2.59) (2.58) (2.61)

Pu 2.60 2.57 2.56 2.54 2.53 2.59
(2.64) (2.63) (2.61) (2.62) (2.59) (2.65)

Bonding energies were used to evaluate the interaction strength of An-B and the
results are plotted in Figure 2. For boron clusters of the same atomic number, the binding
energy of U-B is the strongest, and the variation in the amount of boron atoms is minor.
The connection of Pu-B, on the contrary, is the weakest. The change is larger as the number
of boron atoms increases, and the fluctuation range is 4–7 eV.
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Figure 2. The binding energy (eV) of ground-state An&Bm (An=U, Np, Pu; m = 28, 32, 34, 36, 38, 40)
in PWPB95-ZORA/def2-TZVPP-SARC level.

The representative optimized structure of An&Bm is shown in Figure 3. As shown, for
the geometry of An&B36, where An is just above the center of the hexagonal hole, and B36
has little deformation.

To gain further insight into the interaction features of An&Bm, we performed an
electron density topological analysis using an electron local density function (ELF) and the
quantum theory of atoms in molecules (QTAIM) method. The topological parameters of
the An–B bond critical points (BCPs) of AnB36 as the representative metalloborospherenes
are listed in Table 2, and the corresponding parameters of other complexes are collected in
Table S2.
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Table 2. Topological parameters for the An–B bond critical points (BCPs) of the AnB36 clusters at
PBE-ZORA/def2-TZVPP level *.

Species Bond ρ(r) ∇2ρ(r) G(r) V(r) H(r) −V(r)/G(r) ELF

UB36 U-B1 0.084 0.090 0.052 −0.082 −0.030 1.569 0.446
U-B6 0.084 0.092 0.053 −0.082 −0.029 1.560 0.440

NpB36 Np-B1 0.077 0.096 0.049 −0.073 −0.025 1.505 0.406
Np-B6 0.077 0.096 0.049 −0.073 −0.025 1.505 0.405

PuB36 Pu-B1 0.073 0.103 0.048 −0.070 −0.022 1.461 0.375
Pu-B6 0.073 0.103 0.048 −0.070 −0.022 1.461 0.375

* Parameters are density of all electrons ρ(r), Laplacian of electron density ∇2ρ(r), Lagrangian kinetic energy G(r),
potential energy density V(r), total energy density H(r) [H(r) = G(r) + V(r)] and ELF.

Previous studies [20] of actinide-containing systems have proven that the energy
density proposed by Cremer and Kraka [21] can be used as the criterion to correctly explain
the nature of chemical bonds. The more negative the H(r) value, the more obvious the
covalent character. For typical ionic bonds, the −V(r)/G(r) < 1, and for classical covalent
bonds, the −V(r)/G(r) > 2.

As shown in Table 2, two-bond critical-point An-B BCPs indicate the existence of An-B
bond interactions in An&B36. The negative H(r) as well as −V(r)/G(r) between 1 and 2
indicating the An–B bonds are partial covalent interactions. Moreover, from U to Pu, the
H(r) value is gradually increasing, and the ratio −V(r)/G(r) is gradually decreasing and
tends to be 1, indicating that the covalent character is gradually weakening.

For other complexes of An&Bm, except for the number of bond critical points, the prop-
erties of chemical bonds and the changing rules of topological parameters are consistent
with An&B36, as reflected in Table S3 in the Supporting Information.

Selected bond lengths, the fuzzy bond order (FBO), and the Hirshfeld charge of the
AnB36 complex in a vacuum are listed in Table 3. The ground states of UB36, NpB36, and
PuB36 are triplet, quartet and quintet, respectively. From U to Pu, the fuzzy bond order
value becomes smaller and the bond becomes longer, indicating that the covalent bond
becomes weaker. Here, the actinide atoms possess a huge electric charge, which in turn
leads to a large dipole moment shown in Table S11. To explain this charge distribution,
we created a map of the electron density differences to accurately and comprehensively
describe the transfer process. As displayed in Figure 4, the shapes of their density-difference
maps are similar. It can be seen that there are positive-valued regions between An-B,
indicating that the formation of covalent bonds is accompanied by the accumulation of
electron density between the bonding atoms.
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Table 3. Selected bond lengths r(Å), fuzzy bond order (FBO), Hirshfeld charge of An&B36 complex
in vacuum.

Species 2S + 1 Bond r(Å) FBO Hirshfeld

U&B36 3 U-B1 2.36 1.04 −4.28739 (U)
U-B6 2.36 1.06

Np&B36 4 Np-B1 2.39 0.97 −4.34314 (Np)
Np-B6 2.39 0.97

Pu&B36 5 Pu-B1 2.40 0.97 −4.35974 (Pu)
Pu-B6 2.40 0.97
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(red) represent regions where electron density increases, the dotted lines (blue) represent the region
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DOS analysis was used to investigate the orbital characteristics in depth. The total, partial
and overlap population density of the state (TDOS, PDOS and OPDOS) curves of Np&B36 are
plotted in Figure 5, and the corresponding images of the other An&B36 examples are plotted
in Figure S2. Fragment 1 is defined as An atomic orbits, and Fragment 2 is defined as B36
orbits. Taking Np&B36 as an example, it can be seen that below the highest occupied orbital,
B36 contributes to almost all of the density of states. Moreover, there is an interaction between
B36 and Np atoms, which can be explained by the OPDOS value being greater than zero. This
is consistent with the conclusion of the previous QTAIM analysis.

Figure 6 presents the IR spectra of U&B36, Np&B36 and Pu&B36 complexes and the
vibrational modes of the corresponding peaks. The vibrations corresponding to the high-
frequency peaks are mainly contributed by B36, and the peak frequencies gradually decrease
from U to Pu. Two modes at 166.5 and 235.9 cm−1 were assigned to the contraction vibration
of the U atom and B36. In contrast, the vibration peaks of Np&B36 and Pu&B36 in the low-
frequency region are increased, but there is no contraction vibration of the An atom and B,
such as U&B36. More IR and UV-vis spectras of An&Bm are available in Figures S3 and S4
and IR and UV-vis spectras of An@Bn shown in Figures S5 and S6.
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Figure 6. IR spectra of An&B36 (An=U, Np, and Pu) cluster at the PBE-ZORA/def2-TZVPP-SARC
level, plotted by broadening discrete lines with Lorentzian function setting full width at half-
maximum (FWHM) as 20 cm−1.

2.2. Actinide Endohedral Borospherenes

The predicted low-lying endohedral structures of the studied An@Bn at PBE level are
depicted in Figure 7, and the corresponding structural parameters are listed in Table S1.
Except for U@B38 and U@B40, the multiplicity of the An@Bn structure remains unchanged
compared with An&Bn. Both ground states of U@B38 and U@B40 are singlet. In addition,
U@B36 shows the property of a 32-electron closed-shell singlet and the shells of s, p, d and f
are filled. The minimum frequencies of U@B40, Np@B40 and Pu@B40 are 26.92, 54.01 and
54.77 cm−1, respectively.
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As depicted in Figure 8, the binding energy differences of An@Bn in vacuum and in
aqueous solution were less than 0.5 eV, except for Np@B38 and Pu@B40. The binding energy
of the endohedral structure is double that of the exohedral structure for the same chemical
formula. Taking UB36 as an example, the binding energies of U&B36 and U@B36 are 16.4
and 7.7 eV, respectively.

Molecules 2022, 27, x FOR PEER REVIEW 8 of 12 
 

 

As depicted in Figure 8, the binding energy differences of An@Bn in vacuum and in 
aqueous solution were less than 0.5 eV, except for Np@B38 and Pu@B40. The binding energy 
of the endohedral structure is double that of the exohedral structure for the same chemical 
formula. Taking UB36 as an example, the binding energies of U&B36 and U@B36 are 16.4 
and 7.7 eV, respectively. 

 
Figure 8. Binding energies of An@Bn in vacuum and in aqueous solution at the PWPB95-ZORA/def2-
TZVPP-SARC level. 

We evaluated the effect of solvation effects on the dipole moment, energy and struc-
ture, and the results are presented in Tables S10 and S11. As can be seen, in An&Bm or 
An@Bn, the value of the dipole moment is larger in the aqueous solution than in vacuum, 
but the rotational constants and single-point energy are almost unchanged. Compared 
with An@Bn, the dipole moment of An&Bm is significantly increased, the rotational con-
stants are small, and the single-point energy is also almost unchanged.  

The QTAIM and ELF analyses results of U@Bn are plotted in Figure 9 and Figure S7-
S8. As can be seen, there is an obvious covalent interaction between the boron atoms, 
which is manifested in the existence of the critical point of the bond and the disynaptic 
valence basin of the ELF. In contrast, the prominent closed-shell interactions between U 
atoms and boron atoms are exhibited, and they exhibit strong multicenter An-B bond 
characteristics, manifested in the existence of the cage critical points. 

Figure 8. Binding energies of An@Bn in vacuum and in aqueous solution at the PWPB95-ZORA/def2-
TZVPP-SARC level.

We evaluated the effect of solvation effects on the dipole moment, energy and structure,
and the results are presented in Tables S10 and S11. As can be seen, in An&Bm or An@Bn,
the value of the dipole moment is larger in the aqueous solution than in vacuum, but
the rotational constants and single-point energy are almost unchanged. Compared with
An@Bn, the dipole moment of An&Bm is significantly increased, the rotational constants
are small, and the single-point energy is also almost unchanged.

The QTAIM and ELF analyses results of U@Bn are plotted in Figure 9 and Figures S7
and S8. As can be seen, there is an obvious covalent interaction between the boron atoms,
which is manifested in the existence of the critical point of the bond and the disynaptic
valence basin of the ELF. In contrast, the prominent closed-shell interactions between U
atoms and boron atoms are exhibited, and they exhibit strong multicenter An-B bond
characteristics, manifested in the existence of the cage critical points.
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U@B36, U@B38 and U@B40. Red points represent bond critical points, lines represent bond paths.

To obtain the depth characteristics of the UV-vis spectrum, the charge-transfer spec-
trum (CTS) [22] of An@Bn has been plotted. The CTS of representative structures U@B36
are presented in Figure 10 and the rest are presented in Figure S9.
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Figure 10. Charge-transfer spectrum of U@B36 at PBE0-ZORA/def2-TZVPP-SARC level. The FWHM
is 0.67 eV with Gaussian curves. The system is divided into two fragments, 1 for U and 2 for B36. The
blue (dashed) line represents the redistribution of fragment U, and red (dash-dotted) line represents
the redistribution of fragment B36. The magenta (short dashed) line and the green (dotted) line denote
MLCT (metal–ligand charge transfer) and LMCT (ligand-to-metal charge transfer), respectively.

As shown in Figure 10, the redistribution of B36 has the largest contribution to UV–
vis, and shows the obvious characteristics of electron transfer from B36 to U. The optical
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absorption of the U@B36 is mostly induced by the electronic excitation of the B36, and the
absorption around 406 nm comes to a certain extent from the electron transfer from B36 to
U, which is triggered when photons are absorbed. The figure also shows that the transition
between the atomic orbitals of U and the U→B36 electron transfer contribute less to the
excitation of optically active electrons, mainly because the valence electron orbital of the U
atom is full and cannot be transferred.

We took into account the spin–orbit coupling (SOC) effects on orbital energies of
actinide borospherenes. Our previous research [20] and the U@B40 results of other research
groups [17] have shown that spin–orbit coupling has little effect on the structure and other
properties of actinide complexes. Here, we calculated the f -orbital populations of the
actinides and the complexes, and the data are shown in Tables S7–S9. It can be seen that
the f -orbital population is consistent, indicating that the calculation results are credible in
the case of ignoring the SOC.

3. Computational Methods

Geometry optimization and frequency calculation were performed with the PBE [23]
method without symmetry constraints using an ORCA 4.2.1 package [24,25]. Zero-order
regular approximation (ZORA) [26] was employed to consider the scalar relativistic effect
of the actinide atom. For the basis set, ZORA-SARC [27,28] and ZORA-def2-TZVPP were
applied for the actinides and boron, respectively. The singlet-point energies were calculated
employing the PWPB95 [29] method, in which D3 [30] stood for the Grimme’s atom pairwise
dispersion correction, and BJ for Becke–Johnson damping. Time-dependent density functional
theory (TDDFT) was calculated in a PBE0 [31]-def2/TZVPP level with 100 excited states
calculated. The binding nature has been deeply investigated by the Multiwfn package [32].
The bonding characteristics were studied with several reliable methods, such as QTAIM [33],
fuzzy bond order (FBO) [34,35], total, partial and overlap population density of state (TDOS,
PDOS and OPDOS, respectively) [36,37], electron local density function (ELF) [38], and
Voronoi deformation density (VDD) atomic charge population [39]. The solvent effect of the
aqueous solution on the UV–vis spectra and binding energies was considered by using the
conductor-like polarizable continuum model (CPCM) [40].

4. Conclusions

In conclusion, a series of exohedral actinides and endohedral borospherenes (An&Bm
and An@Bn (An=U, Np, Pu; m = 28, 32, 34, 36, 38, 40; n = 36, 38, 40)) were investigated.
The electronic structures, orbital characteristics and spectral information of the systems were
systematically compared in order to obtain a more comprehensive understanding of the actinide
borospherenes. The current results demonstrate that the endohedral structures are more stable
than the exohedral structures, and the stability presents a trend of UBm > NpBm > PuBm,
except for PuB40. Borospherenes contribute to the majority of the DOS and UV–vis in such
systems, and there is an electron transfer from borospherenes to actinides. Furthermore, the
valence electron orbital of an An atom is more readily occupied for specific unique embedded
structures, and can be qualified as a 32-electron system. The findings show that doping actinide
metal atoms into borospherenes may be used to chemically change and functionalize them,
improving their stability and changing their surface reactivity. In view of the diversity of
boroballenes and actinides, we will further study the interaction characteristics of actinide
oxides with various boroballenes. The ultimate goal of these studies is to design and synthesize
corresponding actinide-containing materials. Therefore, the connection and transition from
composite properties to material properties will also be the focus of follow-up research.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/molecules27186047/s1, Table S1. Cartesian coordinates for the An&Bm
(An=U, Np, Pu; m = 28, 32, 34, 36, 38, 40) and An@Bn (An=U, Np, Pu; n = 36, 38, 40) at PBE-ZORA/def2-
TZVPP -SARC level of theory, Table S2. Selected bond lengths [Å], fuzzy bond order (FBO) and VDD
charge (e) of An&Bm (An=U, Np, Pu; m = 28, 32, 34, 36, 38, 40) clusters, Table S3. Topological parameters
for the An–B bond critical points (BCPs) of the An&Bm (An=U, Np, Pu; m = 28, 32, 34, 36, 38, 40)
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clusters at PBE-ZORA/def2-TZVPP level, Figure S1. ESP-mapped molecular vdW surfaces of Bm
(m = 28, 32, 34, 36, 38, 40) at the PBE/def2- TZVPP level, Figure S2. The TDOS, PDOS and OPDOS
curves of Pu&B36 at the PBE-ZORA/def2-TZVPP-SARC level, Figure S3. IR spectra of An&Bm (An=U,
Np, Pu; m = 28, 32, 34, 38, 40) at PBE-ZORA/def2-TZVPP-SARC level, Figure S4. UV/Vis spectra of the
An&Bm (An=U, Np, Pu; m = 28, 32, 34 38, 40) in vacuum (solid lines) and in water using the CPCM
(dash lines) at the PBE0-ZORA/def2-TZVPP-SARC level, Figure S5. IR spectra of An@Bn (An=U, Np,
Pu; n = 36, 38) at the PBE-ZORA/def2-TZVPP-SARC level, Figure S6. UV/Vis spectra of the An@Bn
(An=U, Np, Pu; n = 36, 38, 40) in vacuum (solid lines) and in water using the CPCM (dash lines) at the
PBE0-ZORA/def2-TZVPP-SARC level, Figure S7. Charge-transfer spectrum (CTS) of AnBn (An=U, Np,
Pu; n = 36, 38, 40) at PBE0 ZORA/def2-TZVPP-SARC level.
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