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Glycans are part of the essential components of a cell. These compounds play a funda-
mental role in several physiopathological processes, including cell differentiation, adhe-
sion, motility, signal transduction, host–pathogen interactions, tumor cell invasion, and 
metastasis development. Glycans are also able to exert control over the changes in tumor 
immunogenecity, interfering with tumor editing events and leading to immune-resistant 
cancer cells. The involvement of glycans in cancer progression is related to glycosylation 
alterations. Understanding such changes is, therefore, extremely useful to set the stage 
for their use as biomarkers, improving the diagnostics and therapeutic strategies. Herein, 
we discuss the basis of how modifications in glycosylation patterns may contribute to 
cancer genesis and progression as well as their importance in oncology field.
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GLYCOSYLATiOn AS An eSSenTiAL PROTein  
POST-TRAnSLATiOnAL MODiFiCATiOn

Post-translational modifications (PTMs) exert an important role in controlling protein function in 
eukaryotes. PTMs comprise processes such as acetylation, carbonylation, methylation, hydroxyla-
tion, nitration, palmitoylation, phosphorylation, sulfation, ubiquitination, and glycosylation (1, 2). 
It is universally accepted that deregulation of such PTMs may lead to the development of a number 
of diseases. The glycosylation is the most common PTM and occurs in all domains of life. As a 
result, they impart an additional level of “information content” to underlying protein structures (3, 
4). Two basic types of protein glycosylations are N- and O-glycosylations (Figure 1) with significant 
differences in terms of their biosynthesis and structures, as well as their location within the protein 
chain (5). In N-linked glycans, the nitrogen atom in the side chain of asparagine is attached to 
N-acetylglucosamine (GlcNAc). The sequence can be Asn–X–Ser or Asn–X–Thr, where X is any 
kind of amino acid except proline. In O-linked glycans, the oxygen atom in the side chain of serine 
or threonine is attached to N-acetylgalactosamine (GalNAc) (5). Furthermore, the glycopeptides 
Asn-GlcNAc or Ser/Thr-GalNAc may be extended by numerous and specific glycosyltransferase 
activities (6, 7) (Figure 1).

ALTeReD TUMOR-CeLL GLYCOSYLATiOn PROMOTeS CAnCeR 
viRULenCe

During the past few years, we have seen a breakthrough in understanding the molecular and 
cellular mechanisms of immune cell activation and homeostasis. Several studies have shown 
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FiGURe 1 | The two major types of protein glycosylation. The 
attachment of sugar moieties to proteins is a post-translational modification 
that provides greater proteomic diversity to the proteins. N-linked 
glycosylation occurs through the asparagine residues of the protein, while 
O-linked glycosylation occurs through serine or threonine.
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that glycosylation orchestrates important features in several 
pathological processes, mainly in cancer development and/or 
progression (8–11). Extensive progresses in defining the cellular 
and molecular networks that regulate the immune responses 
against different sort of tumors have renewed our enthusiasm 
to search for potential cancer immunotherapies. However, 
the successful translation of novel mechanistic insights into 
effective tumor immunotherapy is hindered by a number of 
obstacles, including the ability of tumor cells to generate a 
tolerant microenvironment (12–15). The immune response is 
crucial not only to elicit protection against pathogens but also 
to maintain immune surveillance against the development 
of malignant cells. From this perspective, the development 
of cancer can be seen as a failure of immune surveillance 
(16–18). The notion that the immune system can recognize 
and extinguish developing transformed cells was originally 
exemplified by the Burnet and Thomas’ hypothesis concerning 
the mechanisms of cancer immune surveillance (19, 20). This 
hypothesis supports that the immunoediting of tumor antigens 
is responsible for sculpting the immunogenic phenotypes of 
transformed cells that eventually induce immunocompetent 
hosts. However, most tumor-associated carbohydrate antigens 
(TACAs) do not elicit strong humoral responses and, in fact, 
pieces of evidence have shown that the aberrant expression of 
glycan structures, as well as occurrence of truncated structures, 
precursors, or novel structures of glycan might prevent effective 
immune responses against tumor cells (21–23). Some TACAs 
with immunomodulatory or immunosuppressive properties are 
presented in Table 1.

TUMOR-ASSOCiATeD GLYCAn 
DeTeRMinAnTS SUBveRT KeY 
iMMUnOLOGiCAL DeFenSe 
MeCHAniSMS

The first demonstration that tumor cells express altered glycans came 
from studies showing that monoclonal antibodies may recognize 
such abnormal structures (38). Many of these alterations are accom-
panied by expression of oncofetal antigens on tumor glycoproteins 
as well as glycosphingolipids (38, 39). Furthermore, it is well known 
that modifications in glycan structures may contribute to early stages 
of invasion (40–42), although it is not clear if such alterations may 
also play a role in the genesis of neoplastic cells (43, 44).

Glycosphingolipids as immunosuppressive 
Components in Tumor Cell Progression
Glycosphingolipids might also be involved in tumor cell progres-
sion by causing immune silencing. It has been also described that 
different types of cancer cells occasionally secrete gangliosides 
into the bloodstream (45, 46). In spite of their immunogenic 
properties, shaded membrane sialoglycolipids (gangliosides) may 
cause inhibition of co-stimulatory molecules synthesis, thus, pro-
moting an impairment of dendritic cell (DC) maturation, leading 
to immune silencing by means of the inability of these cells to 
arm effective antitumor T cells responses (47, 48). A promising 
antitumor therapeutic approach using glycosphingolipids relies 
on therapeutic manipulation of these molecules to generate pas-
sive as well as active immunity (49–51).

Role of endogenous Lectins Blocking the 
Adaptive immunity Against Tumor Cells
Alterations in the glycosylation profile in tumor compared to 
health cells are mainly attributed to the gene expression deregu-
lation of glycosyltransferases, enzymes responsible to transfer 
sugars from donor to acceptor substrate molecules, leading to the 
synthesis of immature core glycans (52, 53). Specific glycans may 
bind to cell surface lectins such as galectins, C-type lectins, and 
siglecs [sialic acid (Sia)-binding immunoglobulin-type lectins], 
resulting in the regulation of cancer immune responses due to 
interference with the tumor immunoediting, characterized by 
changes in the immunogenicity of target antigens that could 
favor the dissemination of cancer cells (54–56). Galectins are 
β-galactoside-binding proteins that share homology in the amino 
acid sequence of their carbohydrate-recognition domain. Their 
role in immune responses against tumor cells has been studied 
over the past years (57–59).

In cancer, galectins secreted by tumor cells exhibit tolerogenic 
effects over effector T cells, promoting a cytokine imbalance 
that can either result in T cell anergy or favoring T regulatory 
(T reg) cell activity (60, 61). This immune modulation leading 
to tolerogenic responses against tumor cells can be associated 
with galectin-1 expression (62). The galectin-3, another member 
of galectin family, is known to induce apoptosis of antitumor 
CD8+ T cells (CTLs) in murine model of colorectal cancer (63). 
In addition, galectin-3 was demonstrated to increase the distance 
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TABLe 1 | Glycan types and their main role in the subversion of antitumor immune responses.

Glycan type Glycan structure enzyme immunobiological effect Reference

N-linked glycan  β1,6 GlcNAc-T (MGATS) Helping the growth of cancer cells through 
inactivation of CD4+ T cells and macrophages

(24)

O-linked glycan  β1,4 Gal-T Enhancing the production of anti-inflammatory 
cytokines; inducing a tolerogenic phenotype in 
innate and adaptive immune cells

(25, 26)

 COSMC

N-linked glycan  α 1,3 Fuc-T III Potentiating cancer metastasis; leading to 
lung tumor formation or rejection by NK cells

(27–29)

O-linked glycan

N-linked glycan N-glycan  β1,6 GlclMAc-T Resistance against NK cell attack, promoting 
tumor metastasis

(30–33)

O-linked glycan O-glycan  Core 2GnT

N-linked glycan Neu5Gc is not synthesized in humans, it 
is incorporated into human tissues from 
dietary sources. Different sialyltransferases 
can use Neu5Gc as substrate

Neu5Gc-containing glycans are recognized as 
foreign antigens by the immune system and 
induce chronic inflammation

(34–37)
O-linked glycan

Key       
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between the TCR and CD8 molecule in human CTLs infiltrating 
the tumors, a matter that turn them to be anergic (64). Besides 
their role in attenuating adaptive immune responses, galectins 
are also described to be able to impair the antitumor functions of 
natural killer (NK) cells (54).

The C-type lectins constitute by far the largest family of animal 
lectins found as part of membrane proteins and in soluble forms, 
comprising L-selectin, P-selectin, and E-selectin glycoproteins 
(65–67). These molecules act promoting the adhesion of leu-
kocytes to the vascular endothelium, recognizing sialyl Lewis X 
(SLeX), sialyl Lewis A (SLeA), and Sia found in O-linked glycans 
(68). Such Lewis carbohydrate antigens can be also found on 
tumor cells as part of mucin glycoproteins and selectins that 
play a major role in migration processes by binding to endothe-
lium during tissue infiltration along tumor metastasis (69). In 
murin models, mice displaying deficiency in L- and P-selectins 
presented a reduction of the metastisation (70). In addition, 
specific intercellular adhesion molecule-3 grabbing non-integrin 
1 expressed on DCs (DC-SIGN), another transmembrane protein 
belonging to the C-type lectin family, is expressed by DCs and 
binds to aberrant O-glycosylation structures on cancer cells (71, 
72). These abnormal glycoconjugates expressed by tumor cells are 
also able to interact with other class of receptors on DCs as well 
as macrophages, known as macrophage galactose-type C-type 
lectin, which are able to induce cellular cytotoxicity (73).

Role of Sialic Acid Domains in Avoiding 
Cell-Mediated immunity Against Tumor 
Cells
Immune cells continually screen the glycan structures that are 
expressed on cell surface glycoproteins from pathogen and host 
cells. The Sias are part of these multiple cell surface carbohydrates 

(74). The Sia motifs are differently expressed among the species, 
thus, allowing the immune system to distinguish self from non-
self. In this sense, pathogens evolved to express Sia molecules 
mimicking the one present in host cells, therefore, subverting 
the host immunity (75, 76). The idea of Sia as self-associated 
molecular patterns (SAMPs) came from the fact that they may 
elicit inhibitory signals in order to prevent inadequate immune 
responses (77). Nonetheless, a growing body of evidence has been 
pointed out to an extensive contribution of sialoglycan motifs to 
tumor immune subversion (78, 79).

A multiplicity of ways whereby Sia molecules contribute to 
immune evasion mechanisms has been described. Complement 
system has evolved as a first line of defense against non-self 
or invading pathogens (80, 81). In neoplastic transformation, 
inhibition of complement activation allows the tumor cells to 
escape from immune responses (82). In fact, lung cancer cells 
and glioblastomas, for instance, are able to produce the inhibitory 
complement factor H, thus avoiding their elimination (83, 84). 
Tumor cells may evade the complement system activity through 
binding of Sia motifs present on their surface to polyanionic 
sites of the complement factor H component, thus activating a 
complement negative regulatory pathway (85).

Sialoglycans also play a role in tumor immunity mediated by 
NK cells, which are able to recognize transformed cells due to the 
lack of MCH class I molecules. However, tumor cells in turn may 
express inhibitory receptors impairing the cytotoxicity of NK cells 
(85). The presence of a dense layer of sialoglycans on tumor cell 
surfaces avoids the normal occurrence of immunological synapses 
between cancer and NK cells. Such reduced recognition is believed 
to be enhanced by hypersialylation of tumor ligands for the CD94/
NKG2 family of transmembrane C-type lectin-like receptors 
(NKG2D) expressed by not only NK cells but also NK1.1+ T cells, 
γδ T cells, and activated CD8+αβ T cells and macrophages (86). The 
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NKG2D receptors specifically recognize self-proteins from MIC 
and RAET1/ULBP families induced on the surface of stressed, 
malignant transformed, and infected cells (87). The hypersialyla-
tion of tumor ligands is thought to repulse their interaction with 
NKG2D receptors via highly negative charge (88).

The tumor-derived sialoglycans can also affect antitumor 
functions of NK cells via Sia/siglecs binding (89, 90). In fact, it 
has been shown that the immunomodulatory effects of tumor 
cells in part have influence of interactions between sialoglycans 
derived from transformed cells and the immune inhibitory siglec 
receptors (69). In fact, studies have demonstrated that overex-
pression of siglec ligands in tumor cells leads to impairment of the 
protective immune responses elicited by NK cells and neutrophils 
(91, 92). In addition, blockade of siglec-9 improved antitumor 
neutrophil responses in  vitro (92). Siglec receptor triggering 
with sialylated mucins derived from tumor cells is able to induce 
inhibitory signals to immune cells, a process that is thought to be 
associated with tumor progress (41).

Tumor-derived sialoglycans can target different aspects of the 
immune system to promote evasion responses. It has been shown 
that tumor-derived Sia inhibits the traffic and subsequent exocy-
tosis of lytic granules from CTLs to the immunological synapse, 
disabling a key mechanism whereby these lymphocytes eradicate 
tumor cells (93). Moreover, Sias have also been described to 
take part in the hypersialylation process of Fas receptor (CD95) 
on tumor cells, damping its binding to the Fas-ligand (CD95L) 
expressed by CTLs (94). The blockage of CD95/CD95L interaction 
impairs the downstream activation of caspases and consequently 
disarming the apoptosis machinery that would lead to tumor cell 
elimination (69). In this context, hypersialylation of Fas receptor 
by upregulation of sialyltransferase ST6Gal-I in tumor cells has 
also been described (95).

Besides its effects on cytotoxic T cells, tumor-derived sialogly-
cans are also able to dampen DC functions (96–100). Studies have 
shown that tumor-derived sialogangliosides inhibit the upregula-
tion of co-stimulatory molecules (CD80/CD86) as well as IL-12 
production by DCs, thus impairing T cell effector lymphocyte 
activation (101). This immunosuppressive effect is thought to 
be elicited by the interaction of highly sialylated tumor antigens 

with the siglec receptors expressed by DCs (102, 103). Moreover, 
the interaction of tumor-derived sialylated antigens with siglec 
receptors expressed by macrophages has also been described as a 
mechanism influencing tumor progression (104). In these stud-
ies, siglec-9 expressed by macrophages is shown to induce high 
levels of the immunosuppressive IL-10 cytokine together with 
reduction of the pro-inflammatory TNF-α cytokine associated 
with antitumoral responses (105).

COnCLUDinG ReMARKS

Cell surface glycosylation patterns may suffer important changes 
during pathological conditions, especially in tumor invasion 
processes. Such alterations are the result of genetics as well as 
epigenetics changes, conferring to the tumor cells the ability of 
dissemination by escaping the immunesurveillance mechanisms 
(10, 106). This immune evasion phenomenon is being clarified, 
pointing out an important role for the shield created by altered 
sialylated glycans on the surface of cancer cells on the subversion 
of the immune system. This evolutionary conserved strategy can 
also be observed in some pathogens such as trypanosomatids, 
bacteria, and fungi (57). Understanding how abnormal glycosyla-
tion patterns effectively contribute to tumor-induced immune 
deviation would lead to early detection of potential tissue altera-
tions and ultimately the development of therapeutic approaches 
against cancer.
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