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Abstract

Previous studies have confirmed that there are many differences between animal and plant

microRNAs (miRNAs), and that numerical features based on sequence and structure can

be used to predict the function of individual miRNAs. However, there is little research

regarding numerical differences between animal and plant miRNAs, and whether a single

numerical feature or combination of features could be used to distinguish animal and plant

miRNAs or not. Therefore, in current study we aimed to discover numerical features that

could be used to accomplish this. We performed a large-scale analysis of 132 miRNA

numerical features, and identified 17 highly significant distinguishing features. However,

none of the features independently could clearly differentiate animal and plant miRNAs. By

further analysis, we found a four-feature subset that included helix number, stack number,

length of pre-miRNA, and minimum free energy, and developed a logistic classifier that

could distinguish animal and plant miRNAs effectively. The precision of the classifier was

greater than 80%. Using this tool, we confirmed that there were universal differences

between animal and plant miRNAs, and that a single feature was unable to adequately dis-

tinguish the difference. This feature set and classifier represent a valuable tool for identify-

ing differences between animal and plant miRNAs at a molecular level.

Introduction

Plant and animal microRNAs (miRNAs) play crucial roles in developmental timing[1–10], cel-
lular differentiation[11, 12], proliferation[13–20], apoptosis[21–26], cell identity and fate[1],
and response to environmental stress[11, 12, 27], and appear to predominantly exert their
influence by controlling their target genes. There are many obvious similarities between plant
and animal miRNAs [28–31]. For example, their mature lengths always range from 19 to 24
nucleotides, they regulate gene expression through interactions with target mRNAs, and these
targets are often involved in regulating key developmental events. However, there are also
many differences [28–31]. The first step of animal miRNA biogenesis involves DROSHA
nuclease, but this role is carried out by DCL1 in plants. Some animal miRNAs are generated
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from polycistronic transcripts located in intergenic regions of the chromosome, while others
are produced from introns, whereas the majority of plant miRNAs are derived from single pri-
mary transcripts from loci found in the intergenic regions. In addition, animal miRNAs mainly
act by translational repression using targets at the 30-UTR, whereas plant miRNAs mainly reg-
ulate their targets by cleavage in the coding region of the RNA.

Recently, several studies have shown that miRNA genes are lineage-specific or species-spe-
cific, and that numerical features of miRNA genes also be conserved[32, 33]. Numerical fea-
tures of miRNA genes refer to quantity index which are used to describe nucleotide content,
secondary structure information, free energy and information entropy and so on. These find-
ings imply that there may be numerical differences between animal and plant miRNAs. We
therefore aimed to identify any significantly different numerical differences and explore the
possibility that these differences could be used to distinguish between animal and plant
miRNAs.

We selected 10951 animal and 3188 plant miRNA genes frommiRBase (version21)[34] for
use as a basic library and examined 132 numerical features that included sequence, structure,
energy, and information entropy using the Perl program.We systematically analyzed numeri-
cal differences between animal and plant miRNAs using several statistical analysis methods.
We found several numerical features, which include helix number, stack number, length of
pre-miRNA, MFE and so on that could be used to differentiate between plant and animal
miRNA genes. However, none of the numerical differences were sufficient on their own to
clearly distinguish between individual animal and plant miRNAs. Using these results, we devel-
oped an efficient classifier to distinguish between plant and animal miRNAs based on the dif-
ferences in the miRNA numerical features. Our findings demonstrate that combinations of
numerical features can be used to effectively identify plant and animal miRNAs.

Materials and Methods

miRNAs gene sequences

We selected 10951 animal and 3188 plant miRNA genes frommiRBase for use in this analysis.
Details on these genes are shown in Table 1.

Obtaining numerical features of miRNA

We extracted 132 numerical features that included sequence, structure, energy, and informa-
tion entropy by designing a Perl program (S1 File). These features were divided into eight clas-
ses, and the serial numbers and names of the features are described in S1 Table. The first class
referred to the frequency characteristics of single nucleotides. The second class referred to two-
base combinations of the four bases A, C, G, and U, while the third class referred to three-base
combinations of the four bases.

The fourth class referred to frequency features of the secondary structurematching state.
Based on RNA secondary structure predicted by Mfold[35], the matching state of each nucleo-
tide was describedusing the method presented by Xue et al [36]. For example, “C++.” indicates
that this nucleotide at the site is "A", with a left matching site, a right mismatching site in the
secondary structure and itself is a matching site. Examples are shown in Fig 1. There were 32
frequency features for the secondary structurematching state of miRNAs.

The fifth class included the length of miRNA genes, the number of bulge loops, the number
of helices, the number of interior loops, and the number of stacks. Except for the length of the
gene, the features were taken fromMfold predictions of secondary structure. Detailed examples
are shown in Fig 1. The sixth class included the minimum free energy (MFE)[37], the adjusted
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MFE[38], and the MFE index[39], while the seventh class included G+C content, (G+C)/(A
+U) ratio, A/C ratio, and G/U ratio.

The eighth class referred to features related to information entropy. The information
entropy[40] was calculated using the formula:

E ¼ �
X

plog
2
p ð1Þ

Formula (1) generated four kinds of information entropy (IE) related to the frequency of
single nucleotides (IESN), dual nucleotides (IEDN), triple nucleotides (IETN), and the match-
ing state frequency of the secondary structure (IESS). The eight classes were designated A–H in
corresponding order. The p-value is frequency of every class nucleotides (For example, fre-
quency of A, C, G and U or frequency of AA, AC, AG, AU, CA, CC, CG, CU, GA, GC, GG,
GU, UA, UC, UG and UU). Formula (1) generated four kinds of entropy information related

Table 1. Basic information of candidate species.

Species Class Species Name Number of miRNA precursor

Animal Ciona intestinalis 348

Animal Xenopus tropicalis 189

Animal Gallus gallus 734

Animal Canis familiaris 324

Animal Equus caballus 341

Animal Monodelphis domestica 460

Animal Macaca mulatta 615

Animal Homo sapiens 1872

Animal Pan troglodytes 656

Animal Pongo pygmaeus 634

Animal Ornithorhynchus anatinus 396

Animal Mus musculus 1186

Animal Rattus norvegicus 449

Animal Bos taurus 798

Animal Sus scrofa 280

Animal Danio rerio 346

Animal Fugu rubripes 129

Animal Bombyx mori 489

Animal Drosophila pseudoobscura 210

Animal Caenorhabditis elegans 223

Animal Capitella teleta 124

Animal Schmidtea mediterranea 148

plant Physcomitrella patens 229

Plant Arabidopsis thaliana 298

Plant Glycine max 505

Plant Medicago truncatula 672

Plant Populus trichocarpa 352

Plant Vitis vinifera 163

Plant Oryza sativa 592

Plant Sorghum bicolor 205

Plant Zea mays 172

Note: All sequences come from miRBase database.

doi:10.1371/journal.pone.0165152.t001
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to the frequency of single nucleotides, dual nucleotides, triple nucleotides, and the matching
state frequency of the secondary structure.

The 132 numerical features of 10951 animal and 3188 plant miRNA have been obtained
and kept in S2 Table.

Basic statistical analysis methods

We applied a two-sample Kolmogorov-Smirnov test[41, 42] and t-test to determine whether
there were numerical differences between animal and plant miRNAs. The two-sample Kolmo-
gorov-Smirnov test is a nonparametric test that can be used to compare two samples. The Kol-
mogorov-Smirnov statistic quantifies a distance between the empirical distribution functions
of two samples, and is sensitive to differences in both location and shape of the empirical
cumulative distribution functions of the two samples.

The Kolmogorov-Smirnov statistic for two given cumulative distribution functions F1(x)
and F2(x) is shown below:

D ¼ supjF1ðxÞ � F2ðxÞj ð2Þ

The sup is abbreviation of the supremum of one numerical set.

Feature selection and classification method

We applied several feature selectionmethods to analyze numerical features of the miRNAs,
and used the selected features to build a classifier for differentiating between animal and plant
miRNAs. Seven feature selection search methods were selected: BestFirst, ExhaustiveSearch,
GeneticSearch,GreedyStepwise, LinearForwardSelection, RandomSearch, and RankSearch.

Fig 1. Partial numerical features of miRNA. Osa-mir156a secondary structure as predicted by Mfold. H1~H7 denote helices. I1~I2

denote interior loops. T1 denote terminal loops or hairpin loops. B1~B3 denote bulge loops. ‘G++.’ indicates that the left base of G is a

matching base (‘+’ denote matching, the left base of G base corresponding to the first mark behind G) and the right base of G is

mismatching base (‘.’ denote mismatching, the right base of G base corresponding to the third mark behind G). G base is a matching base

(the mark of G base is the second mark behind G).

doi:10.1371/journal.pone.0165152.g001
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These methods have been describedpreviously[43]. The cfsSubsetEval and FilteredSubsetEval
attribute evaluators[44] were selected, and the Logistic[45]and J48[46]models were selected as
classification algorithms. NaiveBayes, BayesNet, FilteredClassifier, ZeroR, and RandomForest
were used as describedpreviously[47]. Those algorithms have been implemented by Weka
[48]. About attribute evaluators, search methods and classification algorithms, we have intro-
duced their details in S3 Table.

Results

Evaluating numerical differences between animal and plant miRNAs

based on a single numerical feature

We used a Kolmogorov-Smirnov test and a t-test to analyze 132 numerical features in animal
and plant miRNAs. Because the Kolmogorov-Smirnov test was more sensitive than the t-test,
the majority of the statistical inferences were generated by the Kolmogorov-Smirnov test. The
t-test was used to judge higher or lower values for every numerical feature between animal and
plant miRNAs.

Evaluating results for 132 numerical features. Results of our analyses are shown in Fig 2
and S1 Table. When the p-value threshold was set as 0.001, we found that there were 129 signif-
icant different features by Kolmogorov-Smirnov test, and 105 significantly different features by
t-test. This demonstrated that there were universal differences between animal and plant
miRNAs.

To further clarify our results, the threshold for the Kolmogorov-Smirnov test statistic was
set at 0.15. Using this threshold, we selected 17 significantly different numerical features: AU%,
GU%, AUC%, GAC%, GAU%, GUC%, CUC%, A. . .%, U. . .%, helix number, interior loop
number, stack number, length of pre-miRNA, MFE, adjusted MFE,MFE index, and informa-
tion entropy of secondary structure. Except for GU%, GAC%, GUC%, and CUC%, the results
for all features were higher in plant miRNAs than in animal miRNAs.

Specific differences between animal and plant miRNAs based on the top three signifi-
cant numerical features. The Kolmogorov-Smirnov test statistic was much higher for three
out of the 17 significantly different numerical features, specifically stack number, length of pre-
miRNA, and MFE.We designed a bar plot for analyzing differences in the three features
between animal and plant miRNAs in detail. Our results are shown in Fig 3.

As shown in Fig 3A, we found that the distribution of pre-miRNA length in animals was
more concentrated than that observed in plants, with>65% of sequences being 70–100 nt in
length. The length of plant pre-miRNA was more diverse: only 35% of plant pre-miRNAs were
in the 70–100 nt range, and nearly 5% of sequences were longer than 318 nt. In contrast, there
were very few animal pre-miRNAs that were longer than 160 nt.

We found that the distribution of animal miRNA MFE values was also more concentrated
than that of plants, with over 85% of animal MFE values greater than −46.2 kcal (Fig 3B).
Again, the MFE values for plant miRNAs were more widely distributed. Only 50% of plant
miRNAs had a MFE value greater than −46.2 kcal, but nearly 4% were larger than −126.2 kcal.
Few animal MFE values were less than −76.2 kcal (Fig 3B).

Fig 3C shows that distribution of animal miRNA stack numbers was highly concentrated,
and over 90% of animal stack numbers were less than 35. Few animal stack numbers were
higher than 40. Only 60% of plant miRNA stack numbers were less than 35, but over 20% were
more than 40.

Although there were very obvious differences between animal and plant miRNAs based on
these three numerical features, there was a large amount of overlap. This showed that a single
feature was not sufficient for distinguishing between animal and plant miRNAs.
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Single feature differences law for animal and plant miRNAs based on the Kolmogorov-
Smirnov test statistic. To outline a law for identifying differences between plant and animal
miRNAs using a single numerical feature, we selectedC%, G%,MFE index, and length of pre-
miRNA. The Kolmogorov-Smirnov test statistic was from small to large. Based on these
parameters, we designed a frequency density plot that included four subplots. The selected fea-
tures were on four different levels based on the Kolmogorov-Smirnov test statistic. As shown
in Fig 4, although feature distribution differences became clearer the closer the Kolmogorov-
Smirnov test statistic became to 0.5, there was still a large area of overlap between animal and
plant feature distribution density curves. This again showed that a single numerical feature was
not sufficient to differentiate between animal and plant miRNAs. In general, we found that the
larger the value of the Kolmogorov-Smirnov test statistic, the more significant the difference

Fig 2. Statistical test results of differences between animal and plant miRNAs based on 132 numerical features and two test methods.

The upper panel shows results of the Kolmogorov-Smirnov test, while the bottom panel shows results of t-tests. The x-axis shows the serial

number of the 132 numerical features. Description of the numerical features and A–H classes are shown in S1 Table.

doi:10.1371/journal.pone.0165152.g002
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between the animal and plant miRNA numerical feature. As a result of these findings, we
decided to evaluate a combination of features to try to distinguish between plant and animal
miRNAs.

Identification of feature sets that could be used to differentiate between

animal and plant miRNAs

Based on the Kolmogorov-Smirnov test statistic values, the top 17 out of the 132 examined
numerical features were selected.We applied a feature selection technique for these 17 signifi-
cantly different features, including two attribute evaluators, CfsSubsetEval and FilteredSubse-
tEval, and six search methods, BestFirst, ExhaustiveSearch, GeneticSearch,GreedyStepwise,
LinearForwardSelection,and RandomSearch. The analysis was finished by Weka software[48].
Our analysis results are shown in Table 2.

Fig 3. Distribution bar plot of lengths of pre-miRNAs, MFE, and number of stacks for animal and plant miRNAs.

The Fig 3A is a grouping distribution map about length of pre-miRNA about animal and plant. The Fig 3B refer to MFE and

the Fig 3C refer to stack number of miRNAs.

doi:10.1371/journal.pone.0165152.g003

Fig 4. Frequency distribution plot of four numerical features of miRNAs. The C content, G content, MFE index, and length of miRNA were

selected based on results of the Kolmogorov-Smirnov test statistic.

doi:10.1371/journal.pone.0165152.g004
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From the results, we found that four out of the 17 numerical features almost always arose in
the six feature selection strategies. They were helix number, stack number, length of pre-
miRNA, and MFE. Therefore, this feature subset was used as the basis of the classifier.

Building a classifier for animal and plant miRNAs

We applied seven classifiers for two feature subsets. Our analysis results are shown in Table 3.
The seven classifiers included NaiveBayes, BayesNet, Logistic, FilteredClassifier, ZeroR, J48,
and RandomForest. The S1 feature subset included the four features identified by feature selec-
tion, while the S2 feature subset included all 17 significantly different features. Analysis was
performed usingWeka software.

As shown in Table 3, we found that the maximum receiver operating characteristic (ROC)
areas for each classifier all occurred in the logisticmodel for both of the feature subsets. For S1,
the logistic classifier's ROC area was 0.805, and the precision of classification was 0.854. For S2,
the logistic classifier's ROC area was 0.816, with a precision of classification of 0.861. The

Table 2. Results of features selection.

Attribute Evaluator Search Method Selected Feature

CfsSubsetEval BestFirst 118,120,121,122

CfsSubsetEval ExhaustiveSearch 118,120,121,122

CfsSubsetEval GeneticSearch 51,118,120,121,122

FilteredSubsetEval GreedyStepwise 118,120,121,122

FilteredSubsetEval LinearForwardSelection 118,120,121,122

FilteredSubsetEval RandomSearch 120,121,122

Note: Serial number information of being selected features refer to S1 Table. The number 51 represent GUC content frequency, the number 118 represent

number of helix, the number 120 represent number of stack, the number 121 represent length of hairpin and the number 122 represent minimum free

energy of pre-miRNA’s secondary structure. Attribute Evaluator and Search Method refer to papers[43, 44] and all details have been recorded in S3 Table.

doi:10.1371/journal.pone.0165152.t002

Table 3. Results of evaluation based on different classifiers.

Classifier Sample Set TP Rate Precision Recall ROC Area

NaiveBayes S1 0.849 0.843 0.849 0.773

BayesNet S1 0.843 0.833 0.843 0.801

Logistic S1 0.854 0.854 0.835 0.805

FilteredClassifier S1 0.856 0.856 0.856 0.789

ZeroR S1 0.772 0.595 0.772 0.5

J48 S1 0.855 0.851 0.855 0.764

RandomForest S1 0.815 0.804 0.815 0.744

NaiveBayes S2 0.844 0.835 0.844 0.795

BayesNet S2 0.84 0.833 0.84 0.807

Logistic S2 0.86 0.861 0.86 0.816

FilteredClassifier S2 0.861 0.86 0.861 0.778

ZeroR S2 0.772 0.595 0.772 0.5

J48 S2 0.862 0.857 0.862 0.759

RandomForest S2 0.836 0.827 0.836 0.77

Note: 10-fold cross-validation; S1 include the helix, stack number, length and MFE; S2 include AU, GU, AUC, GAC, GAU, GUC, CUC, A. . ., U. . ., helix

number, interior loop number, stack number, length of pre-miRNA, MFE, AMFE, MFEI and IESS.

doi:10.1371/journal.pone.0165152.t003
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performance of the classifiers was very similar based on the two feature subsets. Consistent
with our aim of determining the smallest number of numerical features that could be used to
differentiate between animal and plant miRNAs, S1 and the logistic classifier were selected as
our research model. The logistic model was as follows:

LogitðPÞ ¼ 6:1436þ 0:0893x1 � 0:0691x2 � 0:0241x3 þ 0:0263x4 ð3Þ

Where P stands for probability of animal miRNA, x1 denotes helix number, x2 denotes stack
number, x3 denotes length of pre-miRNA; and x4 denotes MFE. The model and its coefficients
were all significant (P = 0.01).

Discussion

Although there were significant differences between animal and plant miRNAs based on each
of the 17 numerical features, none of them could be used in isolation to reliably assess miRNAs.
Therefore, a feature selection and classifiermethodwas applied, and a feature subset and analy-
sis model were obtained.We could distinguish between animal and plant miRNAs using the
logisticmodel that was built based on four numerical features. Candidate miRNAs analyzed
for these four features, specifically helix number, stack number, length of pre-miRNA, and
MFE, could be classified with>85% precision.

Interestingly, 13 of 17 significantly different numerical features were higher in plant miR-
NAs than in animal miRNAs. We speculated that there may be were more complexity and a
larger variety of sequences and structures in plant miRNAs compared with those in animals
[29].

The selected feature subset was composed of the top four features based on Kolmogorov-
Smirnov test statistic values. The larger the Kolmogorov-Smirnov test statistic value the more
significant the difference between animal and plant miRNAs for a certain numerical feature.
This relationship is shown in Fig 4. To clarify this relationship betweenKolmogorov-Smirnov
test statistic value and the detailed numerical difference between animal and plant miRNA, we
used stack number of miRNAs as an example. The results of this analysis are shown in S1 Fig.
Based on the results shown in Fig 4 and S1 Fig, we determined that the Kolmogorov-Smirnov
test statistic value could be used as an evaluation criterion for differences in frequency
distribution.

In this study, several feature selectionmethods were applied and a high level of accuracy
was obtained. However, the relationship among features was not considered. To determine
whether a relationship existed between the features, we calculated the Pearson correlation coef-
ficients between any two features (S2 Fig). This analysis showed that relationships between fea-
tures were ubiquitous, and therefore the nature of a feature relationship might influence the
results of feature selection. Feature transformation may be a goodmethod for obtaining effec-
tive features for classification without such bias.

By our analysis, 17 highly significant distinguishing features were identified and they would
becomemain numerical difference between plant and animal miRNAs. By further analysis, we
found a four-feature subset that included helix number, stack number, length of pre-miRNA,
and minimum free energy, and developed a logistic classifier that could distinguish animal and
plant miRNAs effectively. The precision of the classifier was greater than 80%. Using this tool,
we confirmed that there were universal differences between animal and plant miRNAs, and
that a single feature was unable to adequately distinguish the difference. This feature set and
classifier represent a valuable tool for identifying between animal and plant miRNAs at a
molecular level.
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S1 Fig. Sketch map of distributions of animal and plant miRNAs based on stack number.
(A) Marked empirical distribution function of stack number for animal and plant miRNAs. (B)
Marked frequency distribution of stack number for animal and plant siRNAs. (C) Marked fre-
quency distribution of stack number based on boxed area shown in (B).
(PDF)

S2 Fig. Colormap of correlation coefficientsbetween any two numerical features of the
miRNAs.
(PDF)

S1 File. A Perl script for obtaining numerical features of miRNAs.
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S1 Table. Statistical test results of differences between animal and plant miRNAs based on
132 numerical features and two test methods.
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S2 Table. The 132 numerical features of 10951 animal and 3188 plant miRNA.
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S3 Table. Detail description of attribute evaluators, searchmethods and classification algo-
rithms Program.
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