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Abstract
In recent years, the rodent has come forward as a candidate model for investigating higher level visual abilities such as object
vision. This view has been backed up substantially by evidence from behavioral studies that show rats can be trained to express
visual object recognition and categorization capabilities. However, almost no studies have investigated the functional
properties of rodent extrastriate visual cortex using stimuli that target object vision, leaving a gap compared with the primate
literature. Therefore, we recorded single-neuron responses along a proposed ventral pathway in rat visual cortex to investigate
hallmarks of primate neural object representations such as preference for intact versus scrambled stimuli and category-
selectivity. We presented natural movies containing a rat or no rat as well as their phase-scrambled versions. Population
analyses showed increased dissociation in representations of natural versus scrambled stimuli along the targeted stream, but
without a clear preference for natural stimuli. Along the measured cortical hierarchy the neural response seemed to be driven
increasingly by features that are not V1-like and destroyed by phase-scrambling. However, there was no evidence for category
selectivity for the rat versus nonrat distinction. Together, these findings provide insights about differences and commonalities
between rodent and primate visual cortex.
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Introduction
Visual perception is the end product of a series of computations
that start in the retina and culminate in several cortical areas.
Althoughwe can readily experience this end product effortlessly,
decades of intensive research still have not yielded a full picture
about the computations taking place beyond the point where vis-
ual information first arrives at the cortex, the primary visual area
(V1). Until a few years ago, the neural underpinnings of visual
perception were mainly investigated in primates and cats. With
the recent surge of rodent studies involving new techniques

which have proven to be of high value to disentangle themechan-
isms of visual processing (Huberman and Niell 2011), questions
concerning the functional properties and capabilities of areas in
rodent extrastriate visual cortex have become highly relevant. Be-
havioral experiments have found evidence in rats for forms of
higher level visual processing (Zoccolan et al. 2009; Tafazoli et al.
2012; Vermaercke and Op de Beeck 2012; Alemi-Neissi et al. 2013;
Brooks et al. 2013; Vinken et al. 2014; Rosselli et al. 2015; for review,
see Zoccolan 2015), fueling the idea that these animals might be
useful as an alternative and experimentally more flexible model
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to tackle certain questions related to these complex visual
capabilities.

In primates, extrastriate visual areas further integrate visual
features that are encoded in V1 into more complex representa-
tions (Orban 2008). These areas have traditionally been grouped
into 2 anatomically and functionally distinct pathways: a dorsal
stream and a ventral stream (Mishkin and Ungerleider 1982; Kra-
vitz et al. 2011). The latter is responsible for the transformations
that eventually produce the ingredients necessary for extraordin-
ary abilities such as object recognition, namely high selectivity
distinguishing between objects, combined with tolerance for a
range of identity preserving transformations, such as changes
in size, position, viewpoint, illumination, etc. (DiCarlo and Cox
2007; Dicarlo et al. 2012). The result is a high level representation
that manifests itself in strong categorical responses in monkey
and human ventral regions, with, for example, a high selectivity
for the distinction between animal and nonanimal pictures
(Kiani et al. 2007; Kriegeskorte, Mur and Bandettini 2008). This
category selectivity comes on top of a general preference in pri-
mate occipitotemporal cortex for natural, intact images com-
pared with scrambled versions of these stimuli. Thus, in
primates the computations along the ventral pathway introduce
a bias in favor of coherent stimuli containing surfaces and objects
over random texture patterns. This preference for intact coherent
images was found higher up in this pathway through human
functional magnetic resonance imaging (fMRI, Grill-Spector
et al. 1998), monkey fMRI (Rainer et al. 2002), and monkey sin-
gle-neuron physiology (Vogels 1999). This bias does not exist in
lower levels of the pathway where sometimes even a preference
for scrambled images is found (Rainer et al. 2002), potentially de-
pending upon the exact scrambling procedure (Stojanoski and
Cusack 2014).

Can we find evidence for similar computations being per-
formed in the rodent brain? Previous research has suggested
that anatomically the rodent visual cortex consists of 2 streams
resembling the dorsal and ventral pathways in primates (Niell
2011;Wang et al. 2012). Already some steps have been taken to in-
vestigate the functional properties of rodent extrastriate cortex
using drifting bars and gratings (Andermann et al. 2011; Marshel
et al. 2011) and simple shapes (Vermaercke et al. 2014). Marshel
et al. (2011) reported thatmouse latero-intermediate area (LI) pre-
fers high spatial frequencies, which might indicate a role in the
analysis of structural detail and form. Vermaercke et al. (2014) re-
port an increase in position tolerance, consistent with the pri-
mate ventral visual stream, along a progression of 5 cortical
areas starting in V1 and culminating via LI in recently established
lateral occipitotemporal area TO (Vermaercke et al. 2014). This in-
creased position tolerance paralleled a gradual transformation of
the selectivity for the simple shapes used in the study. However,
these areas were hardly selective to stationary shapes and were
more responsive tomoving stimuli, which contrasts with the pri-
mate ventral visual stream.More complex stimuli such as natural
movies have rarely been used in rodents, with 2 recent excep-
tions (Kampa et al. 2011; Froudarakis et al. 2014). In those studies
the focus was primarily on the population code in primary visual
cortex. Kampa et al. (2011) measured responses of V1 layer 2/3
populations to dynamic stimuli (including natural movies),
showing reliable stimulus-specific tuning and evidence for func-
tional sub-networks (despite the lack of orientation columns in
rodent V1). Froudarakis et al. (2014) found that natural scenes
evoke a sparser population response compared with phase-
scrambledmovies, leading to an improved scene discriminability
that also depended on cortical state. Both studies focused on pri-
mary visual cortex and not explicitly on coding of movie content.

Here we investigated whether the 2 most salient functional hall-
marks of neural object representations in primates might also
exist in rodents: preference for intact versus scrambled stimuli
and category-selective responses. To achieve this, we recorded
action potential activity in 3 areas belonging to this putative ven-
tral stream in rats with the aim of systematically comparing how
stimulus representations change across areas: V1, LI, and TO. LI is
themost downstreamarea in the putative ventral visual pathway
which has been identified in both mice and rats (Espinoza and
Thomas 1983; Wang and Burkhalter 2007); TO extends even fur-
ther to rat temporal cortex and its responses to simple grating
stimuli and shapes already suggested a higher-order processing
comparedwith the other areas (Vermaercke et al. 2014).While re-
cording neural responses, we presented natural movies belong-
ing to different categories, as well as phase-scrambled versions
of thesemovies. Based on the primate research, wewould expect
very different results in higher stages of the cortical processing
hierarchy. First, a functional hierarchy would be supported by a
systematic and gradual change in population representation of
scrambled versus natural movies across areas. Second, a change
culminating in a preference for natural movies would show that
this functional hierarchy is comparable to the primate ventral
visual stream in this respect, a notion that would even be more
supported bya categorical representation toward themost down-
stream area TO.

Materials and Methods
Much of the materials and methods have been described previ-
ously in detail (for descriptions of the apparatus, methodological
details, and functional criteria, see Vermaercke et al. 2014; for a
description of the stimuli, see Vinken et al. 2014). Therewas how-
ever no overlap and animals were completely naïve with respect
to the stimulus set. Here we focus upon the details which are
most important and most relevant in the context of the present
study.

Animals

Experiments were conducted with 7 male FBNF1 rats, aged 14–30
months (21 on average) at the start of the study. This specific
breed was chosen for their relatively high visual acuity of 1.5 cy-
cles per degree (Prusky et al. 2002). Surgery was performed to im-
plant a head post and a recording chamber. The craniotomy was
centered −7.9 mm anterioposterior and −2.5 mm lateral from
bregma. This location allowed the electrode to pass through 5 dif-
ferent visual areas, including our 3 target areas, when entering at
an angle of 45°: V1, latero-medial area, LI, latero-lateral area, and
TO (Vermaercke et al. 2014). As described in Vermaercke et al.
(2014), we performed histology in 5 out of the 7 rat brains, con-
firming that the electrode tracks followed trajectories similar to
that study (therefore also confirming a sampling bias toward
upper layers in V1). After recovery, the animals were water de-
prived and had ad libitum access to food pellets. Housing condi-
tions and experimental procedures were approved by the KU
Leuven Animal Ethics Committee.

Stimuli

The set of stimuli used in this experiment corresponds to the
training set described in Vinken et al. (2014). The set consisted
of 20 movies: 10 natural movies and the phase-scrambled ver-
sions of these movies. The natural movies had a duration of 5 s
and were recorded at 30 Hz (thus including 150 frames) and
sized 384 × 384 pixels. Five of them contained a rat, while the
other 5 contained a moving object. For each rat movie, a nonrat
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moviewas chosen from our own database of 537 five-secondmo-
vies in order to match relatively well on pixel intensities, con-
trast, and changes in pixel intensities (Vinken et al. 2014). The
ratmovies showedmoving rats of the same strain as the subjects.
Three of the paired nonratmovies contained a train, one a gloved
hand moving in and out of the screen, and one a moving stuffed
sock. For each movie a phase-scrambled version was created ac-
cording to the procedure described previously, which allows for a
better framewise match according to statistics such as average
pixel intensity, contrast, changes in pixel intensity across succes-
sive frames, as well as spatial power spectrum compared with
standardmethods (Vinken et al. 2014). See Figure 1 for snapshots
of each movie. The original movies and their scrambled versions
were created at a size of 384 × 384 pixels (to reducememory load),
but in the electrophysiological experiment the movies were
shown at a size of 768 × 768 pixels.

Electrophysiological Recordings

As described at full length by Vermaercke et al. (2014), the rats
were head-fixed and placed in front of a 24″ LCD screen
(1280 × 768 at 60 Hz), which was γ corrected to obtain a linear
transfer function between pixel intensity values and luminance.

The animal’s nose pointed at the left edge at an angle of 40° and a
closest eye-to-screen distance of 20.5 cm. The movies were al-
ways presented at the full height of the screen (768 pixels) and
positioned on the horizontal axis according to the estimated re-
ceptive field location (see receptive fieldmapping below). This re-
sulted in a stimulus width ranging from 50 to 74 visual degrees
depending on the position (as the eye-to-stimulus distance var-
ies according to position). During the experiments every fifth
(movie experiment) or tenth (receptive field estimation) stimulus
presentation a water reward was given. Recordings were per-
formed with a Biela Microdrive and single high-impedance elec-
trodes (FHC, Bowdoin, ME; ordered with impedance 5–10 MΩ) in
areasV1, LI, and TO. Spike detectionwas done using customwrit-
ten code in Matlab (The MathWorks, Inc., Natick, MA), with the
spike detection threshold set to detect spikes with a peak-to-
peak amplitude of 4 times the standard deviation (SD) of the
noise. Single units (SUs) were isolated based on cluster analysis
of the properties of the recorded waveforms (the first n principal
components, where nwas optimized to the situation) using Klus-
taKwik 1.6, followed by a manual check in SpikeSort 3D 2.5.1.
Spike waveforms that could not be separated into SUs were
pooled into one multiunit (MU) cluster per recording site (each
spike waveform was only used once, so there is no overlap

Figure 1. Representative snapshots of the movies used in the experiments. First row depicts the original natural rat movies, with the corresponding scrambled versions

represented on the second row. The third row depicts the natural stimuli belonging to the nonrat category, each matched to the rat movie displayed in the same column

(see Materials and Methods, Stimuli). From left to right: 3 movies of a toy train, one with a stuffed sock, and one with a gloved hand, with the corresponding scrambled

versions representedon the fourth row. The fullmoviesare available at http://ppw.kuleuven.be/home/english/research/lbp/downloads/ratMovies (Last accessed19April 2016).
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between SU and MU). On average the peak-to-peak amplitude of
themean spikewaveformwas 12.4, 12.9, and 11.3 times the SD of
the noise for V1, LI, and TOunits respectively. For all except 2 (one
in V1 and one in TO) of the neurons included for analysis, this sig-
nal-to-noise-ratio was higher than the criterion value of 5 used
by Issa and DiCarlo (2012). For MU clusters these values were
4.9, 4.7, and 4.6 for V1, LI, and TO, respectively (note that these
values are limited in the lower end by the spike detection thresh-
old of 4 times the SD of the noise).

Receptive Field Mapping
Boundaries of the 5 aforementioned different areas were esti-
mated based on changes in retinotopy as described previously
(Vermaercke et al. 2014). A rough estimate of a site’s population
receptive field could be obtainedmanually by using continuously
changing shapes or drifting gratings that could be moved across
the screen. A quantitative estimate of receptive field size and lo-
cation was achieved by flashing a hash symbol at 15 locations
(3 rows × 5 columns) on the screen. Movies were translated
along the horizontal screen axis in order to best cover the recep-
tive field. We chose to record from V1, LI, and TO, and not the 2
additional intermediate areas LM and LL, because the elevation
of the receptive fields encountered in V1, LI, and TO tends to be
very similar (see Fig. 2C in Vermaercke et al. 2014). In contrast,
the receptive fields encountered in LM and in particular LL
show a very different elevation, which would make it difficult
to compare results between the different areas (the receptive
fields of the neuronal populations would then cover different
parts of the movies).

Presentation of Movies
In the main experiment, rats were passively viewing the 10 five-
second natural movies and the phase-scrambled versions of
thesemovies. Thesewere presented in randomorder intermitted
by a 2-s blank screen, with 10 repetitions per movie. The pixel

intensity value of the blank screen and the part of the screen
not covered by the movies was set equal to the average pixel in-
tensity of all movies.

Data Analysis

We maintained 2 criteria to include units for analysis: units
needed to be isolated for the full 10 presentations of each
movie and have an average net response of >2 Hz for at least
one movie.

Preprocessing
Before all analyses, peristimulus time histograms (PSTHs) with a
bin width of 1 ms were made for each trial across the [−1999,
6000]-ms interval (with stimulus onset at 0 ms). To estimate the
response onset latency the PSTHswere averaged across trials and
stimuli and smoothed with a Gaussian kernel (3 ms full width at
half maximum). Response onset latency was defined per unit as
the first time point after stimulus onset where the smoothed
PSTH exceeded a threshold of the baseline activity (calculated
from the [ −999, 0]-ms window) plus 3 times the baseline activity
SD. For all further analyses, only a 4800-ms timewindowafter re-
sponse onset was used, with the first 200 ms cutoff to ignore the
onset peak mainly for fitting the motion energy model. For con-
sistency the same 4800-ms window was used for all other ana-
lyses, even though the inclusion of the window does not affect
the results in any significant way.

Sparseness and Reliability
Response sparseness for a certain neuron to a certain movie was
quantified using the index defined by Vinje and Gallant (2000):

S ¼ 1� ð1=nÞððPi riÞ2=
P

i r
2
i Þ

1� ð1=nÞ

 !
;

Figure 2. Schematic illustration of how dissimilarity matrices were calculated. For the analysis of the population representation we started with the responses of SUs,

averaged across repeated stimulus presentations and summed across the 201 to 5000 ms window calculated from response onset (as indicated by the summation

symbol). PSTH’s in this example figure illustrate responses averaged across stimulus presentations of 5 SUs to 3 movies (A–C), all arbitrarily selected for the purpose of

illustrating the methods. This was done for each stimulus (e. g. A–C, in this example) to get raw response vectors. These raw responses were further standardized per

neuron, by calculating the Z-scores across stimuli. Next the correlation matrix was calculated from these normalized response data by pairwise correlation of the

stimulus response vectors. For the stimulus dissimilarity matrix each value in this correlation matrix was subtracted from one, resulting in values between 0 and 2,

where 0 indicates the lowest dissimilarity (i.e., an identical population response pattern) and 2 indicates the highest dissimilarity (i.e., a highly different population

response pattern). To visualize the stimulus space as represented by the population of neurons, we performed multidimensional scaling on the dissimilarity matrix

and present the stimuli using the first 2 dimensions. Stimuli plotted closer together (A,B in this example) have a more similar population response pattern than

stimuli plotted further apart (A,C, and B,C in this example).
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where S is the sparseness index for a neuron with average (across
trials) response ri to frame i of a stimulus with n frames. Onset of
thefirst bin is the estimated response latency plus 200 ms (seepre-
processing) and the bin-width is ∼33.3 ms, which corresponds
with the frame rate. This sparseness index can vary between
0 and 1,with values close to 0 indicating a dense response, and va-
lues close to 1 indicatinga sparse response. Response reliability for
the time course of the response of a certain neuron to a certain
movie was estimated using the Spearman–Brown correction as
follows

nrxx0
1þ ðn� 1Þrxx0 ;

with the average correlation across time between 2 trials rxx’
(across all combinations) and number of trials n. As before, the
bin width to calculate the reliability was set to correspond with
the frame rate of 30 Hz.

Population Representation
For each population of neurons (i.e., in V1, LI, or TO) pair-wise
stimulus dissimilarities were calculated based on the correlation
distance using the average responses to full movies. First, firing
rates were averaged across trials and per stimulus across the
entire 4800-ms interval, resulting in 20 responses per neuron.
Second, responses of each neuron were transformed to Z-scores
(across stimuli). Third, for each stimulus a response vector was
created containing the transformed responses of each neuron
to that particular stimulus. Finally, dissimilarity between a pair
of stimuli is defined as 1− r (Pearson correlation) between the re-
sponse vectors of the 2 stimuli in question. Figure 2 illustrates
how we used this method to create dissimilarity matrices.

Spatiotemporal Motion Energy Model
To simulate the relative response of V1-like cells we calculated
the output of a spatiotemporal motion energy model (Adelson
and Bergen 1985). Specifically, the spatiotemporal receptive
field of a modeled V1 neuron is based on a 3-dimensional
Gabor filter, with a certain frequency, orientation, and location
relative to the stimulus. The output of the filter (calculated
through linear multiplication with the stimulus) is then squared,
and summed with the output of the quadrature pair to that filter
which is 90° out of phase. This squared and summed output gives
a physiologically plausible measure of motion energy. The
square root of thismeasure is ourmodeled response of a complex
V1 cell (Nishimoto and Gallant 2011). See Figure 3 for a schematic
representation of this process. Awide range of Gabor filters span-
ning different frequencies, orientations, and locations is then
used tomodel our set of V1 cells. Thus, we end upwith amodeled
V1 complex cell for each spatiotemporal frequency, orientation,
and spatial location included in the model. The output of each
modeled cell is then standardized by calculating the Z-score
across all movie frames. The set of Gabor filters spanned 8 differ-
ent directions, 6 different spatial frequencies, and 6 different
temporal frequencies. The spatial frequencies were log spaced
between 0.04 and 0.15 cycles per degree and the temporal fre-
quencies between 0 and 15 Hz, based on the optimal responses
of rat V1 neurons reported by Girman et al. (1999). Each filter oc-
curred at different spatial locations. Grid spacing was identical to
what is reported by Nishimoto and Gallant (2011) and depended
on spatial frequency: filters were separated by 2.2 SDs of the
Gaussian envelope, with one SD set to half a cycle of the sine
wave. Next, the output of these filters was used as predictors in
a regularized linear regression model with an early stopping

rule (David et al. 2007; Nishimoto and Gallant 2011) fitted to the
neural responses using code from the STRFlab toolkit (version
1.45, retrieved from http://strflab.berkeley.edu/). The model was
estimated at 5 different latencies, ranging from 20 to 153 ms in
steps of the duration of one frame. For each unit and latency
the model was fit 10 times, each time refraining 2 movies (i.e., a
natural movie and its scrambled pair) from the fitting procedure
for cross-validation and using the remaining 18 movies for train-
ing themodel. Reported accuracies refer always to data that were
not included in the training set.

Statistical Analysis
For statistical inference we relied on the bias-corrected acceler-
ated bootstrap (BCa; Efron 1987) by random sampling with re-
placement (10 000 iterations) of the neurons/units (unless
indicated otherwise) to estimate the 95% confidence interval
(CI) of the statistic in question. In addition, randomization tests
(10 000 iterations) are used to estimate the distribution of the
test statistic in question under the null hypothesis in order to cal-
culate P-values. In several places we report the slope of a linear
regression to quantify gradual change across the 3 regions in
the pathway under investigation for reasons of simplicity and in-
terpretability, without the intention of making strong claims of
linearity. However, we formally tested for a deviation of linearity
by including categorical dummy variables for each region in the
regression. In none of the cases wherewe report a slope did a cat-
egorical predictor showa significant effect, whichwould indicate
that there would be a nonlinear component. Thus the simpler
model with one linear trend is preferred.

Results
We recorded the activity of single neurons in 3 areas of awake
rats, namely V1, LI, and TO (Vermaercke et al. 2014), while pre-
senting natural movies containing a rat or not as well as
scrambled movies. The recordings yielded 50 (out of 58, or 86%)
responsive SUs for V1, 53 (out of 88, or 60%) for LI, and 52 (out
of 84, or 62%) for TO, as well as 25 (out of 25, or 100%), 33 (out of
35, or 94%), and 26 (out of 30, or 87%) responsive MU sites for
each area respectively (percentages indicate the proportion of
units that passed the inclusion criteria for analysis, that is, an
average net response of more than 2 Hz for at least one movie).

Figure 3. Schematic representation of the motion energy model (based on

Nishimoto et al. 2011), described under Materials and Methods, Data Analysis,

Spatiotemporal Motion Energy Model. In short, input stimuli (movies) are run

through a bank of quadrature pairs of Gabor filters, each with a certain

spatiotemporal frequency and orientation and located on a grid covering the

stimulus. The output of each pair is then squared and summed to give a

physiologically plausible measure of motion energy. The end result is finally

obtained by taking the square root to model a compressive nonlinearity. This

final output is calculated for each of the spatiotemporal frequencies and

locations covered by the bank of Gabor filters and standardized per filter across

frames. In a next step, the neural response is predicted as a linear combination

of those standardized outputs.
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We tested for (1) a change in representation of stimulus type (nat-
ural versus scrambled) across areas, supporting a functional hier-
archy, (2) the emergence of a categorical representation for the
distinction between rat and nonrat movies, and (3) the emer-
gence of a preference for natural movies along these areas.

Stimulus Representations in V1, LI, and TO

To get an idea of how the stimuli are represented by the popula-
tions of neurons, we investigated the neural stimulus dissimilar-
ities in the N-dimensional representational space defined by the
average response of N neurons to the individual stimuli (Fig. 2).
Two stimuli that elicit a very different response in the population
of recorded neurons will result in a higher dissimilarity value. On
the other hand, if a population of neurons shows the same re-
sponse pattern to 2 different stimuli, the dissimilarity value
will be zero. These dissimilarity values can be visualized in a

dissimilarity matrix as in Figure 4A (top row), wheremore yellow
colors indicate higher pairwise stimulus dissimilarity. Visual in-
spection of the dissimilarity matrices suggests that moving from
V1 to TO, a pattern emerges which can be summarized as an in-
creased structuring by quadrants in the matrix: between stimu-
lus type (i.e., natural or scrambled) dissimilarities increase
relative to within stimulus type dissimilarities, which leads to
an increased dissociation of natural versus scrambled movies.
This is also illustrated by the plots on the lower row of Figure 4A,
where the similarity representations are visualized in 2-dimen-
sional space after performing nonmetric multidimensional scal-
ing (MDS) on each dissimilarity matrix (using the function
mdscale in Matlab, The MathWorks, Inc., Natick, MA, with the
number of dimensions set to 2 and criterion set to “stress”).
These plots show an increased separation between natural mo-
vies versus scrambled movies. This increased separation is also
supported by further statistical analyses. The difference of

A

D

B

C

Figure 4. Stimulus representations based on responses averaged across movie durations. Panel A shows the stimulus dissimilarity matrices based on the correlation

distance for each population of neurons recorded in V1, LI, and TO (upper row). Nonmetric MDS is then used to represent the representational space in 2 dimensions

(lower row). Panel B shows the difference between dissimilarities for stimulus pairs of the opposite stimulus type (i.e., natural versus scrambled) and dissimilarities

for pairs of the same type in areas V1, LI, and TO. Gray area indicates 95% confidence bounds for OLS regression, calculated by BCa. Panel C is the same as panel B, but

for the difference between dissimilarities for stimulus pairs of the opposite stimulus category (i.e., rat versus nonrat) and dissimilarities for pairs of the same category.

Panel D contains heatmaps (one per area) displaying the average response to each movie standardized per neuron (Z-score across stimuli). Neurons (rows) are sorted in

descending order according to the values of the average standardized response to naturalmoviesminus that to their scrambled versions. To the right of each heatmap the

average of this value used for sorting is plotted per neuron, with the yellow area indicating neurons that respondmore to natural images than to their scrambled version

and the blue area indicating the reverse. For LI and TO, red hatching indicates how this distribution changed from V1 and LI respectively. Stimuli (columns) are sorted in

the same way as in the dissimilarity matrices: 5 natural rat movies, 5 natural nonrat movies, and their scrambled versions in the same order. Column averages are

displayed below each heatmap (black lines), with the average across stimulus type (yellow for natural movies, blue for their scrambled version) indicated in color.
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average between stimulus type and averagewithin stimulus type
dissimilarities increases per area (Fig. 4B; ordinary least squares,
OLS, slope 0.16, 95% CI [0.06, 0.26], P = 0.003), with a value of
0.20 (95% CI [0.11, 0.32], P < 0.001) for V1 neurons, 0.39 (95%
CI [0.25, 0.54], P < 0.001) for LI neurons, and 0.53 (95% CI [0.36,
0.70], P < 0.001) for TO neurons. Thus, the distinction between
natural and scrambled movies becomes more dominant in
the neural representation when we move up in the cortical
hierarchy.

In order to relate single cell responses to this population effect
we plotted the standardized (per neuron) responses of each neu-
ron to each stimulus that were used to create the dissimilarity
matrices (Fig. 4D). Here we see that the curve showing average
natural minus scrambled responses per neuron (to the right of
each heatmap) is generally shifted to the right for LI compared
with V1. This means that the distribution of a natural versus
scrambled comparison shifts in favor of natural stimuli from V1
to LI causing more neurons to respond more to natural than to
scrambled stimuli. For TO however, this curve has moved to the
right nearly only for neurons respondingmore to natural stimuli.
Thus, in TO the proportion of neurons responding more to nat-
ural stimuli is not necessarily different compared LI, but the nat-
ural/scrambled difference is higher for those that do respond
stronger to natural movies.

Is this increased sensitivity for natural versus scrambled mo-
vies accompanied by an increase in category selectivity, that is, a
differentiation between movies that depict a rat versus movies
without rat? This would result in a similar “structuring by quad-
rants” as described in the previous paragraph, but nowwithin the
left upper quadrant of the dissimilarity matrix. Visual inspection
does not suggest that this pattern exists in the representational
space for the populations of neurons recorded in either V1, LI,
or TO. The MDS plots suggest an overlap in representations
for rat versus nonrat movies without a clear separation. We
performed further statistical analysis where we compared the
averagewithin stimulus category dissimilarities with average be-
tween stimulus category dissimilarities. The results do not show
an emerging trend that would support an increased separation
between representations of rat movies and those of nonrat mo-
vies (OLS slope −0.02, 95% CI [−0.06, 0.02], P = 0.432). Looking at
each area separately, the difference in dissimilarity is −0.02
(95% CI [−0.08, 0.06], P = 0.696) for V1 neurons, 0.04 (95% CI
[−0.03, 0.13], P = 0.269) for LI neurons, and −0.06 (95% CI [−0.10,
−0.01], P = 0.148) for TO neurons. Positive values signify higher
within category similarity than between category similarity,
which is what one would expect in the case of a categorical
representation. None of the areas shows such a categorical re-
presentation. To further strengthen these findings, weperformed
a potentially more sensitive population decoding analysis using
support vector machines as a linear classifier. In agreement with
the other analyses discussed above, the results of the linear
classifier reveal no evidence for a categorical representation
(see Supplementary Material, Population Decoding Analysis).

As described previously (Vermaercke et al. 2014),moving from
V1 to LI and to TO is characterized by systematic changes in ret-
inotopic location and size of the receptive field. Furthermore, we
might sample neurons with different receptive field properties in
the 3 areas. This couldmean that there are systematic changes in
the area of the stimulus covered by our recorded samples of neu-
rons across areas. However, a control analysis using average local
stimulus statistics for each neuron’s receptive field shows that
this confound cannot account for the increased natural/
scrambled distinction from V1 to TO. In addition, there is no evi-
dence that an emergence of a categorical rat/nonrat distinction

could be hidden by such a confound (see Supplementary
Material, Receptive Field Confound).

Response Statistics for Natural and Scrambled Movies:
Mean, Sparseness, and Reliability

Next, we looked at the average firing rates. Figure 5A shows the
average firing rate for natural and scrambled movies (first aver-
aged per neuron across movies for statistical analysis) for each
area. Overall there is a statistically nonsignificant decrease in fir-
ing rate (OLS slope −2.7, 95% CI [−5.7, 0.1], P = 0.083) moving from
V1 to TO, while the average baseline firing rate does not seem to
vary. The difference in response to natural movies versus
scrambled versions is negative for V1 (see Fig. 5B) and this differ-
ence disappears toward the other areas, or, quantitatively, de-
creases significantly (OLS slope 0.9, 95% CI [0.4, 1.5], P = 0.003).
The average difference is −1.6 for V1 (95% CI [−2.8, −0.8]), −0.6
for LI (95% CI [−1.4, 0.2]), and 0.2 for TO (95% CI [−0.4, 1]). Similar
results are obtained when the difference in firing rate is first di-
vided by the average firing rate per neuron (OLS slope 0.04, 95%
CI [0.01, 0.08], P = 0.020), with an average difference of −0.06 for
V1 (95% CI [−0.10, −0.02]), 0.01 for LI (95% CI [−0.03, 0.06]), and
0.02 for TO (95% CI [−0.02, 0.09]). Control analyses show that
these differences in firing rate between natural movies and
their scrambled versions cannot be explained by differences in
location and size of receptive fields (see Supplementary Material,
Receptive Field Confound). The reason why V1 neurons would
prefer scrambled movies is further explored in a later section.
For inference per neuron, BCa 95% CIs on the average difference
in response to natural movies versus their scrambled version
were calculated for each unit by means of random sampling of
natural/scrambled stimulus pairs. We decided a unit prefers nat-
ural stimuli when this 95% CI excludes zero. This criterion indi-
cates that 4% (95% CI [0, 14], based on the binomial distribution)
of the units in V1 prefer natural stimuli, 23% (95% CI [12, 36]) in LI,
and 27% (95%CI [16, 41]) in TO. Scrambled stimuli are preferred by
32% (95% CI [20, 47]) of the units in V1, 19% (95% CI [9, 32]) in LI,
and 29% (95% CI [17, 43]) in TO. We conclude that, while there is
an increase in the percentage of units consistently responding
more to natural stimuli from V1 to TO, no clear change is evident
for the percentage of units consistently responding more to
scrambled stimuli. Applying the same criterion, rat stimuli are
preferred by 18% (95% CI [9, 31]) of the units in V1, 6% (95% CI
[1, 16]) in LI, and 13% (95% CI [6, 26]) in TO. Nonrat stimuli finally
are preferred by 2% (95% CI [0, 11]) of the units in V1, 11% (95% CI
[4, 23]) in LI, and 0% (95% CI [0, 7]) in TO. In general, it seems that a
higher percentage of units tend to consistently respond more to

A B

Figure 5. Firing rates per area. Panel A shows average (across trials, stimuli, and

neurons) response strength to natural (gray markers) and scrambled (white

markers) movies per area, with the average baseline firing rate indicated by a

horizontal line. Error bars indicate the 95% CI’s calculated by BCa. Panel B

shows the average difference in response strength to natural and scrambled

movies per area. Negative values indicate a stronger response to scrambled

versions of the movies. Error bars indicate the 95% CI’s calculated by BCa.
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rat than to nonrat movies. However, since this is clearest for V1
neurons and since these percentages do not change progressive-
ly across areas, we conclude that this is most likely a result of
lower level stimulus properties that V1 neurons typically respond
to.

Next, we investigated the variation in responsiveness. Natural
stimulation has been shown to increase the sparseness of the
neural response (Vinje and Gallant 2000). We looked at the
sparseness (see Materials and Methods, Data Analysis, Sparse-
ness and Reliability) of each neuron’s response to natural movies
and to their scrambled counterparts. In mouse V1, sparseness
has been shown to be higher for responses to natural movies
than to their scrambled counterparts (Froudarakis et al. 2014).
We confirm this finding for SUs in rat V1, with a difference in
sparseness index of 0.035 (95% CI [0.027, 0.047], P < 0.001; positive
values mean higher response sparseness to natural movies; see
Fig. 6A). Also in LI and TOwe find a higher sparseness for natural
movies, with a difference of 0.028 (95% CI [0.014, 0.042], P < 0.001)
and 0.015 (95% CI [0.004, 0.025], P = 0.011), respectively. Import-
antly, local luminance-based stimulus sparseness calculated
for each neuron’s receptive field cannot explain the difference
in response sparseness (see Supplementary Material, Receptive
Field Confound). However, if lower firing rates would tend to get
higher sparseness index values and vice versa, some of these
differences might be explained by the differences in firing
rates shown before, in particular in area V1. Indeed differences
in firing rates are negatively correlated with differences in
sparseness index for each area, with a Pearson correlation of

−0.28 in V1 (95% BCa interval [−0.50, −0.001], P = 0.050), −0.54 in
LI (95% CI [−0.69, −0.35], P < 0.001), and −0.43 in TO (95% CI
[−0.67, −0.02], P = 0.002). Thus we controlled for differences in fir-
ing rates by taking for each cortical area the 30 units with a differ-
ence in firing rates evenly distributed around zero. For these
units, the average difference in sparseness indices was 0.025 in
V1 (95% CI [0.017, 0.037], P < 0.001), 0.024 in LI (95% CI [0.011,
0.037], P < 0.001), and 0.011 in TO (95% CI [0.004, 0.019], P = 0.010).
Thus, responses to natural movies show a higher sparseness
than responses to scrambled movies, even when we control for
overall responsiveness.

Finally, responses to natural movies are decisively more reli-
able in all 3 areas (Fig. 6B). Reliability of V1 neural responses is on
average 0.056 (95% CI [0.037, 0.072], P < 0.001) higher to natural
movies than to scrambled versions. For LI and TO neurons this
difference is on average 0.090 (95% CI [0.074, 0.108], P < 0.001)
and 0.070 (95% CI [0.047, 0.097], P < 0.001), respectively. In the
case of reliability, we have relatively weak evidence of a possible
influence of differences in response strength: the Pearson corre-
lations between the difference in standardized reliability and the
difference in standardized firing rates are 0.26 in V1 (95% CI
[−0.04, 0.47], P = 0.070), 0.12 in LI (95% CI [−0.08, 0.35], P = 0.385),
and 0.40 in TO (95% CI [−0.040, 0.64], P = 0.003). The results for
the 30 units selected to match for response strength (see para-
graph above) of each cortical area are qualitatively similar to
the results for the whole sample, with a difference of 0.059 in
V1 (95% CI [0.034, 0.081], P < 0.001), 0.095 in LI (95% CI [0.072,
0.120], P < 0.001), and 0.052 in TO (95% CI [0.029, 0.077], P < 0.001).

A B

C D

Figure 6. Sparseness and reliability of single neuron’s responses. Panel A contains scatterplots of the sparseness index for natural (N) compared with the same index for

scrambled (S) movies for all neurons recorded in V1 (left), LI (middle), and TO (right). Neurons with a lower index for natural movies are grayed out. Dashed lines indicate

themeans. Histograms of the difference betweennatural and scrambled stimuli are shown in the top right corner of eachplot, with the 95%CI (calculated bymeans of BCa)

of themean indicated by a black bar. Panel B contains the same figures, but for the reliability coefficient. Panel C shows raster plots for an example neuron with relatively

high response reliability of responses to 2 natural movies and their scrambled versions. For this example, response sparseness is much higher for the original stimuli

comparedwith their scrambled version. PanelD shows raster plots for anotherexample neuron. In this case response sparseness indices are equal for the 2 stimulus types.
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Using a V1Model to Explain the Preference for Scrambled
Stimuli and to Predict Neural Responses

To further investigate these findings we used simulated V1
responses to see (1) whether these simulated responses can pre-
dict observed responses and, if the response to (1) is affirmative,
(2) whether these simulated responses can explain the relative in-
crease of the response for naturalmovies and the increased segre-
gation between natural and scrambled movies. In the model,
spatiotemporal motion energy filters (Adelson and Bergen 1985)
are used as modeled V1 complex cells for a set of spatiotemporal
frequencies, orientations, and spatial locations. The output of
these filters can be used to estimate how strong responses in V1
would be to one stimulus relative to another one. Furthermore,
the filters can be used in a model that is fitted to part of the data
in order to predict independent test data (Nishimoto and Gallant
2011). Note that the V1-like filters are linearly combined to predict
the neural responses, which is why themodelmight even capture
the responses of neurons in higher visual areas to the extent that
the complexity of their computations can be approximated by a
linear combination of V1-like filters.

Predicting Neural Responses
The standardized output of each V1 filter was used as a predictor
in a regularized linear regressionmodel that was fit to the neural
data, resulting in a spatiotemporal receptive field estimate con-
sisting of a linear combination of these filters. This receptive
field estimate can then be used to predict the response to a new
stimulus. If this predicted response captures a certain amount of
variability in the response tomovies thatwere not used for fitting
the model, then the fitted receptive field can explain some of the
response properties of the neuron. For this test, we also included
the MU data, since their firing rate is the sum (i.e., a linear com-
bination) of the firing rates of the SUs contained in theMU cluster
which can be accounted for because the model can use a linear
combination of outputs of modeled single cells.

The observed and predicted responses of a V1 example neu-
ron on one natural movie are illustrated in Figure 7A. Histograms
with prediction accuracy (i.e., Pearson correlation between
observed and predicted responses) averaged across all stimuli
are shown in Figure 7B. The model performs reasonably well for
V1 units, with an average prediction accuracyof 0.24 (95%CI [0.21,
0.27], randomization test for difference from zero P < 0.001). To
put this number in perspective, this is lower than the prediction
accuracy of 0.52 reported by Nishimoto and Gallant (2011) in
monkeys. This was to be expected since the number of frames
(data) we used to train themodel (2736) is one order ofmagnitude
lower (on average 27 120 in their case) and since we used natural
movies and not motion enhanced movies. Prediction accuracy is
lower but still significantly different from zero for LI (0.16, 95% CI
[0.14, 0.18], P < 0.001) and even lower but still significantly differ-
ent from zero for TO (0.09, 95%CI [0.07, 0.10], P < 0.001). In general,
accuracy decreases across areas (OLS slope −0.08, 95% CI [−0.09,
−0.06], P < 0.001). Even when including reliability as a covariate
accuracy decreases across areas (OLS slope −0.05, 95% CI [−0.06,
−0.03], P < 0.001). Dividing prediction accuracy by reliability gives
us an estimate of the proportion obtained prediction accuracy
out of the total possible prediction accuracy. When we do this
per neuron and movie, we get an average of 0.46 (95% CI [0.41,
0.51], randomization test for difference from zero P < 0.001) for
V1, 0.34 (95% CI [0.30, 0.38], P < 0.001) for LI, and 0.20 (95% CI
[0.16, 0.24], P < 0.001) for TO. This amounts to a decrease across
areas (OLS slope −0.13, 95% CI [−0.16, −0.10], P < 0.001). Thus, the
aforementioned decrease in response reliability cannot explain
the decrease in the performance of the model from V1 to TO.

Focusing on the performance for single neurons and multiu-
nit clusters, prediction accuracy averaged across all 20 stimuli
(natural and scrambled) is significantly different from zero (i.e.,
the 95% CI—calculated by resampling the stimulus labels—
excludes zero), for 85.3% of the units in V1, 82.5% of the units in
LI, and 56.4% of the units in TO.

To get an estimate of receptive field size, we estimated the
percentage of pixels in the area covered by themovie that modu-
late the neural response. Specifically, we used themedian regres-
sion weights of the V1-like filters (across the 20 training sets used
for cross-validation) in order to estimate the spatial receptive
field. Pixels that were estimated to modulate the response with
a magnitude <50% of that of the pixel that maximally modulated
the response were excluded, to ignore the pixels that contribute
relatively nothing. Based on this approach, V1 neurons were esti-
mated to be modulated on average by 8% of the movies’ pixels
(95% CI [7%, 10%]), LI neurons by 14% (95% CI [12%, 17%]), and
TO neurons by 16% (95% CI [13%, 20%]). This means that for LI
neurons this movie frame coverage was 6% higher than for V1
neurons (95% CI [3%, 9%], P < 0.001) and for TO neurons it was
8% higher than for V1 neurons (95% CI [5%, 12%], P < 0.001). The
difference in coverage between TO and LI neurons was 2% (95%
CI [−2%, 7%], P = 0.294).

In sum, the simulated V1model allows us to predict neural re-
sponses in each of the investigated areas, and reveals several dif-
ferences between the areas which can be expected given their
position in the cortical hierarchy: the model works better for V1
than for the other areas, and the estimated receptive field size
is smallest in V1. Thus, the model can be used to further investi-
gate potential differences in how these 3 neuronal populations
respond to natural and scrambled movies.

A

C
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Figure 7. Performance of the V1-like motion energy model. Panel A shows the

observed (dashed line) and predicted (full line) response of a V1 example

neuron to each frame of a natural movie (note that the number of frames is 144,

because the first 6 were omitted to get rid of the onset peak). Panel B contains

stacked histograms for the prediction accuracy (Pearson correlation) averaged

across all movies for single neurons (white) and MU clusters (gray) recorded in

V1, LI, and TO. Panel C contains scatterplots of average (across movies) accuracy

for natural versus scrambled movies for SUs and MUs. Histograms of the

difference between natural and scrambled stimuli are shown in the top right

corner of each plot, with the 95% CI (calculated by means of BCa) of the mean

indicated by a black bar. Grayed out markers represent units for which the 95%

CI of the average accuracy as calculated by BCa (resampling all of the 20 stimuli)

does include zero.
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Preference for Scrambled Stimuli in V1 Filters
To investigate the preference for one stimulus type over another,
we calculated the output of the V1-like spatiotemporal motion
energy model, thus before combining the V1 filters into a spatio-
temporal receptive field estimate. For the vast majority of mod-
eled V1 filters, the overall (across time) response to natural
movies is lower than that to their scrambled versions. Figure 8
contains a histogram depicting the standardized response to
scrambled movies subtracted from the response to their natural
counterparts for all filters in the model (in this case 4616), with
98.6% of them preferring scrambled movies. This means that
scrambledmovies do seem to contain relativelymoremotion en-
ergy in virtually all spatiotemporal frequencies regardless of
orientation and location. Other scramblingmethods, such as seg-
ment/box scrambling (i.e., random repositioning of rectangular
image segments), give qualitatively the same result (data not
shown). This characteristic of scrambled stimuli has been re-
ported before in the context of scrambling of still images using
variousmethods including phase scrambling (Stojanoski andCu-
sack 2014) and in an fMRI experiment using phase-scrambled
movies (Fraedrich et al. 2010). The higher amount of motion en-
ergy in scrambled movies can explain the neural preference for
scrambled stimuli especially prominent in the V1 data.

Prediction Accuracy on Natural Versus Scrambled Movies
Scatter plots of average prediction accuracy on natural versus
that on scrambled movies for each unit are shown in Figure 7C.
For all 3 cortical areas, accuracy was higher for natural compared
with scrambled movies: the difference in accuracy for natural
minus that for scrambled was 0.10 for V1 (95% CI [0.09, 0.12],
P < 0.001), 0.07 for LI (95% CI [0.06, 0.09], P < 0.001), and 0.05 for
TO (95% CI [0.03, 0.06], P < 0.001). Given the earlier finding that
responses to natural movies are more reliable than responses
to scrambled movies, this difference in prediction accuracy
might be caused by the difference in reliability. Including reliabil-
ity as a covariate still resulted in an estimated higher accuracy
for natural movies of 0.07 for V1 (OLS estimate, 95% CI [0.06,
0.09], P < 0.001), 0.05 for LI (OLS estimate, 95% CI [0.03, 0.09],
P = 0.003), and 0.05 for TO (OLS estimate, 95% CI [0.03, 0.07],
P < 0.001). Thus, the effect of scrambling on prediction accuracy
doesnot seem to be the result of differences in response reliability.

Discussion
We investigated the neural responses to naturalmovies and their
phase-scrambled versions in rat V1 and 2 extrastriate visual areas
LI and TO, which belong to a distinct pathway reminiscent of the
primate ventral visual stream (Vermaercke et al. 2014).

First, we found an increased clustering of natural versus
scrambled movie representations when progressing from V1 to
TO. The increased dissociation of the 2 stimulus types correlates

with a decreased overall preference for scrambled stimuli in spite
of the stronger motion energy contained in scrambled movies.
A closer look at single cell preferences suggests that the popula-
tion effect is driven by the increase in the proportion of cells
preferring natural stimuli and by an increase in strength of pref-
erence for those neurons that prefer natural stimuli.

Second, unlike what one would expect to see in an object re-
presentation pathway such as the primate ventral visual stream
(Orban 2008), the population representations of the stimulus set
do not culminate into a higher level categorical representation in
area LI or in the most downstream area TO. Of course, we are re-
stricted inmaking strong claims about this by our small stimulus
set and limited amount of neurons per area. However, the neu-
rons used for our analyses were all responsive to at least one
stimulus and did show selectivity, indicating that they did
encode information. Furthermore, as far as we can judge from
the available primate literature, the distinction between animate
and nonanimate stimuli in the monkey and human brain is very
clear. For example, thematrices frommonkeyandhumandata as
shown by Kriegeskorte, Mur, Ruff et al. (2008, Fig. 1) suggest that
this animate/inanimate distinction in primates is at least as clear
as the distinction between natural and scrambled in our rat data.
Given that we can easily pick up the natural versus scrambled
distinction in our rat data, we think we should be able to pick
up a similarly sized effect of rat (animate) versus nonrat (inani-
mate). An effect of this size does not seem to be present for our
stimuli in the recorded neuronal populations. Nonetheless, we
cannot exclude that factors we did not control for, such as atten-
tion or rather the lack thereof, might have influenced such find-
ings. Nor canwe exclude the possibility that other areas in the rat
brain would show such category selectivity. However, it is not
very obvious which other areas would do so.

Finally, a V1-like model that has previously been used to
model receptive field properties of neurons (Nishimoto and Gal-
lant 2011; Talebi and Baker 2012) aswell as voxels in human brain
imaging (Nishimoto et al. 2011) could predict responses of V1
neurons reasonably well, especially when we take into consider-
ation that our experiment was not optimized for fitting such a
model. Similar to what is reported in humans when comparing
primary visual cortex with extrastriate areas (Nishimoto et al.
2011), prediction accuracy was reduced in LI and even more so
in TO, suggesting that such a model was progressively less able
to capture response properties of areas further along this visual
stream. Of course, this is only one model that will not capture
all possible tuning properties of V1 neurons, therefore caution
should be taken in drawing strong conclusions from this piece
of evidence alone.

The sampling bias of upper cortical layers for the V1 record-
ings could explain (some of) the differences that we observe be-
tween recordings in V1 on the one hand and recordings in LI and
TO on the other hand. A previous systematic comparison be-
tween responses in upper and lower layers of V1 did not show
consistent differences (Vermaercke et al. 2014). Likewise, Frou-
darakis et al. (2014) reported no differences between responses
to natural movies in V1 layer 2/3 and V1 layer 4. Moreover, all
the changes across the succession of areas that we do describe
continue in the same direction from LI to TO, where there is no
difference in layer sampling bias. Thus, we argue that a sampling
bias of upper layers in V1 does not invalidate conclusions of grad-
ual changes across the visual processing pathway under
investigation.

Together, these findings support the idea of a functional hier-
archy in these areas. The data suggest that an increasing number
of neurons are driven bymore complex stimulus features that are

Figure 8. Stimulus type preference in output of the V1-like motion energy model.

Negative values indicate filter output for scrambled movies is on average higher

than filter output for natural movies.
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not captured by V1-like filters and destroyed by a phase-scram-
bling method. Indeed, a linear combination of V1-like receptive
fields decreases in efficiency in predicting neural responses the
further up this hierarchy. Nevertheless, the functional hierarchy
does not seem to culminate in neural representations as found in
primates.

Comparison with Previous Research on Rodent
Extrastriate Visual Cortex

Previous research on the functional properties of rodent extra-
striate areas LI and/or TO have only used drifting gratings (Mar-
shel et al. 2011; Vermaercke et al. 2014) or simplistic artificial
stimuli (Vermaercke et al. 2014).

The current study is the first that allows an investigation of
selectivity inmore downstream visual cortex for the complex fea-
tures present during natural stimulation. The increased response
to natural movies relative to scrambledmovies and the decreased
performance of a V1-like energy model significantly extend the
earlier findings of position invariance and simple shape represen-
tations, and support the notion of an increasingly high-level
stimulus representation when progressing from V1 to TO.

Nevertheless, we could not find any evidence for a category-
selective representation in rat extrastriate cortex and to the
best of our knowledge there is no other neural data supporting
this notion. In a recent study, rats could be trained in a 2 alterna-
tive forced choice task to discriminate rat movies from nonrat
movies and could generalize to new previously unseen exem-
plars (Vinken et al. 2014). However, the training was difficult
and took a substantial amount of time, which is consistent
with the absence of a categorical representation in naïve animals.

Comparison with Previous Experiments Using Natural
Stimuli

Previous studies using stationary natural and scrambled images
indicate a preference for natural images in responses of human
lateral occipital complex (Grill-Spector et al. 1998) and monkey
inferior temporal cortex (Vogels 1999; Rainer et al. 2002). In
areas earlier in the ventral visual processing hierarchy responses
have been reported to show a preference for scrambled images in
V1 that disappears in extrastriate visual areas (Rainer et al. 2002).
The current study included a method of scrambling which falls
within the range of methods used previously. Recent studies
zoomed in on this general difference between intact and
scrambled images by including specific methods of scrambling
and focusing upon particular characteristics of natural images.
For example, Freeman et al. (2013) showed inmonkeys and in hu-
mans that responses in V2 were stronger for naturalistic textures
than for spectrally matched noise, while they were the same in
magnitude in V1.

In the current study, the change in preference for natural and
scrambled is similar to all this earlier work when the preference
is expressed in relative terms:more preference for naturalmovies
when moving away from V1. We find a stronger firing rate in re-
sponse to scrambledmovies comparedwith their original natural
counterparts in V1 and this difference decreases in extrastriate
area LI and ends in an equal firing rate for both stimulus types
in TO. Similarly, an fMRI study in humans has reported stronger
early visual cortex activity to spatiotemporally phase-scrambled
movies relative to their original version (Fraedrich et al. 2010).
This result is supported by the motion energy model we used
to show an increased output for scrambled movies when passed
through a bank of V1-like filters, as well as by previous modeling

studies using still images (Stojanoski and Cusack 2014). In the
study by Freeman et al. (2013) the reported equal firing rate for
natural and scrambled images in V1might be the result of control
stimuli that are more carefully matched in spectral properties
than is allowed by our spatiotemporal phase scrambling of the
movies. These previous reports related to phase-scrambling
combined with our own modeling results indicate a parallel be-
tween our experimental results and the earlier findings in pri-
mates: namely, a preference for scrambled stimuli that
disappears in extrastriate cortex (Rainer et al. 2002). Similar to
the present study, Rainer et al. (2002) used a scrambling method
that introduced distortions that the earlier visual system is sen-
sitive to (Stojanoski and Cusack 2014). However, in the present
study this gradual change in stimulus type preference did not
culminate in the higher response to natural stimuli that is ob-
served in monkey inferior temporal cortex (Rainer et al. 2002)
and human lateral occipital complex (Grill-Spector et al. 1998).
This means that inasmuch as the succession of areas where we
recorded can be compared with the primate ventral visual
stream, we could not find support for a preference for natural
stimuli typical of these primate higher visual areas, and find a re-
semblance with more mid-level areas, at best. Another recent
study in rodents reports a stronger response to phase-scrambled
movies in mouse V1 when the animal was sitting still and not
whisking (Froudarakis et al. 2014), which is consistent with our
findings. On the other hand, their recordings when the animals
were whisking and/or running as well as their recordings in
anaesthetized animals showed an equal response to natural mo-
vies and their phase-scrambled controls. These findings suggest
that brain/behavioral state interacts with the effect of phase
scrambling. Our rats were awake and passively viewing the stim-
uli during recordings, but we did not monitor behavioral cues
such as whisking, so we cannot control for this. Overall, the ani-
mals tended to be sitting very still during the recordings. We
speculate that behavioral state might increase the sensitivity for
natural stimulation in rodent visual cortex overall, which then
overcomes the difference in motion energy in V1. Several other
comparisons in our report between natural and scrambledmovies
were also included in the investigation of V1 by Froudarakis et al.
(2014), and for those indices the results tend to be consistent be-
tween the 2 studies. More specifically, we replicate a higher
sparseness and more reliable responses for natural movies.

Implications for the Rodent as a Model for Object Vision

What are the implications of our findings on the idea of the ro-
dent as amodel for object vision? The rodent has become a popu-
lar model in the neuroscience community for tackling questions
on the topic of higher-level and object vision (Glickfeld et al. 2014;
Cooke and Bear 2015). A large and consistent body of evidence ex-
ists in the behavioral literature revealing encouraging visual cap-
abilities in rats (Zoccolan 2015). However, while steps have been
taken to show the existence of 2 anatomically and functionally
distinct streams in mouse visual cortex (Andermann et al. 2011;
Marshel et al. 2011;Wang et al. 2012), it remains an open question
whether and to what extent the rodent ventral visual stream can
be considered as homologous to that of the primate. Here we
show that the proposed homolog of the rat ventral visual stream
may not show certain properties to the same extent as the pri-
mate ventral visual stream, such as higher responses to natural
images, and even lack defining properties like a categorical re-
presentation. This story parallels previous findings that show
both typical (an increase in tolerance for stimulus position), as
well as atypical (an increased response to moving stimuli)
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properties of the pathway (Vermaercke et al. 2014). Together, Ver-
maercke’s et al. (2014) and our results show that we should be
cautious in assuming functional similarities in visual processing
between rodents and primates. Perhaps, we should reconsider
the concept of a ventral visual stream tuned for object recogni-
tion in rats and mice. After all, these are nonfoveal animals,
with a very low visual acuity (Prusky et al. 2000), that might rely
so much on their other senses for object recognition in natural
situations that they lack the functional specialization in visual
cortex. The situation is complicated further by the finer differen-
tiation of this ventral stream in primates into multiple pathways
(Kravitz et al. 2013), and it is unclear which pathway(s) might be
present in rodents, if any.

Conclusion
We recorded neural responses in areas belonging to a proposed
rodent homolog of the primate ventral visual stream in order to
investigate 2 hallmarks of high-level representations in primates:
preference for intact versus scrambled stimuli and category-se-
lective responses. We found that our results parallel changes in
response strength to natural versus scrambled stimuli from pri-
mate primary visual cortex to early extrastriate visual areas.
However, unlike in primate ventral visual stream, in our results
we failed to find a preference for natural stimuli inmost temporal
visual area TO, nor did the targeted pathway lead to category-se-
lective representations.
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