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The Protective Role of the
Carbohydrate Response Element
Binding Protein in the Liver: The
Metabolite Perspective
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The Carbohydrate response element binding protein, ChREBP encoded by the MLXIPL
gene, is a transcription factor that is expressed at high levels in the liver and has a
prominent function during consumption of high-carbohydrate diets. ChREBP is activated
by raised cellular levels of phosphate ester intermediates of glycolysis, gluconeogenesis
and the pentose phosphate pathway. Its target genes include a wide range of enzymes
and regulatory proteins, including G6pc, Gckr, Pklr, Prkaa1,2, and enzymes of
lipogenesis. ChREBP activation cumulatively promotes increased disposal of phosphate
ester intermediates to glucose, via glucose 6-phosphatase or to pyruvate via glycolysis
with further metabolism by lipogenesis. Dietary fructose is metabolized in both the
intestine and the liver and is more lipogenic than glucose. It also induces greater
elevation in phosphate ester intermediates than glucose, and at high concentrations
causes transient depletion of inorganic phosphate, compromised ATP homeostasis and
degradation of adenine nucleotides to uric acid. ChREBP deficiency predisposes to
fructose intolerance and compromised cellular phosphate ester and ATP homeostasis
and thereby markedly aggravates the changes in metabolite levels caused by dietary
fructose. The recent evidence that high fructose intake causes more severe hepatocyte
damage in ChREBP-deficient models confirms the crucial protective role for ChREBP in
maintaining intracellular phosphate homeostasis. The improved ATP homeostasis in
hepatocytes isolated from mice after chronic activation of ChREBP with a glucokinase
activator supports the role of ChREBP in the control of intracellular homeostasis. It is
hypothesized that drugs that activate ChREBP confer a protective role in the liver
particularly in compromised metabolic states.
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CHREBP—A TRANSCRIPTION FACTOR
ACTIVATED BY DIETARY
CARBOHYDRATE

The liver has a central role in carbohydrate metabolism by net
production of glucose by glycogenolysis and gluconeogenesis in
the post absorptive state to maintain blood glucose homeostasis
and net uptake of dietary sugars after a meal when the products
of dietary carbohydrate digestion comprising glucose, fructose
and other sugars are absorbed from the intestine into the portal
vein and transported directly to the liver. The Carbohydrate
response element binding protein ChREBP, is a transcription
factor that is adaptively expressed in the liver in response to high
dietary carbohydrate loads and it is also expressed in the
intestine, kidney, adipose tissue, and pancreatic b-cells (1–3). It
was first purified from livers of rats fed a high carbohydrate diet
in a search for the mechanism by which the liver pyruvate kinase
gene (Pklr) is induced by high glucose (1). Prior work had
identified several genes including Pklr and enzymes of
lipogenesis that are induced in hepatocytes by high glucose,
independently of insulin through a consensus sequence (ChoRE,
carbohydrate response element) composed of two enhancer (E)-
boxes (CANNTG) separated by five nucleotides (4, 5). ChREBP
is commonly described as a “lipogenic transcription factor” that
mediates the conversion of glucose into lipid in liver, adipose
tissue, and pancreatic b-cells or as a “glucose-sensor” because it is
activated in liver and pancreatic b-cells in response to elevated
glucose (6, 7). Genome-wide analysis of ChREBP binding sites in
mouse liver and white adipose tissue identified thousands of
candidate target genes, some of which are consistent with a
lipogenic role whereas others, which remain to be functionally
validated, implicate more diverse functions (8). One proposed
function for ChREBP is in maintenance of cellular ATP and
metabolite homeostasis (9, 10). Although this function is
expected to be ubiquitous, it has a particularly important role
in the liver which is exposed to a wider and more variable
concentration range of glucose and fructose than extrahepatic
tissues, because the products of carbohydrate digestion that are
absorbed from the gut are delivered directly to the liver via the
portal vein. Here we review recent evidence for the role of
ChREBP in metabolite homeostasis in liver.
CHREBP STRUCTURE AND ISOFORMS

ChREBP, also known as MondoB, and its close paralog MondoA,
which is expressed at high levels in muscle, are members of the
Myc-Mlx superfamily of basic helix-loop-helix leucine zipper
transcription factors. Both ChREBP and MondoA bind to the
DNA E-boxes by forming heterodimers with Mlx (Max like
protein X). Accordingly, the gene names of MondoA and
ChREBP are Mlxip (Mlx interacting protein) and Mlxipl (Mlx
interacting protein like), respectively (11).

ChREBP is a large ~100 kDa protein comprising a DNA
binding domain in the C-terminal region and nuclear import and
export signals in the N-terminal region which interact with
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importins and the scaffolding protein 14-3-3 during shuttling
between the cytoplasm and nucleus. The N-terminal segment
contains regions conserved in Mondo homologs that comprise a
low glucose inhibitory domain (LID) that controls a glucose
response activation conserved element (GRACE) which mediates
transcriptional activation (12). ChREBP (full-length) translocates
at high glucose from the cytoplasm to the nucleus and
conformational changes in the LID and GRACE modules allow
its binding to the ChoRE elements on target genes and
recruitment of co-regulators. This model was supported by a
truncated form of ChREBP lacking the N-terminal 1-196 residues
(containing the inhibitory domain) which is constitutively active
at low glucose (13, 14). For detailed reviews see (6, 7).

A key breakthrough in understanding ChREBP function
came with the identification by Herman and colleagues of a
second shorter isoform, termed ChREBP-b, resulting from
alternative splicing at a new exon-1B, with a different
promoter and transcription start site at exon-4 resulting in a
shorter protein (687 vs. 864 amino acids) than the full-length
ChREBP which is now called ChREBP-a (15). The b-isoform
shows some functional similarities to the truncated ChREBP
lacking the autoinhibitory domain (667 amino acids) in being
constitutively nuclear and thereby fully active at low glucose (15).
This contrasts with ChREBP-a which is predominantly present
in the cytoplasm and translocates to the nucleus only during
metabolite challenge (16). The ChREBP-b isoform was first
identified in adipose tissue but later confirmed to be expressed
in liver, intestine, kidney and pancreatic b-cells though not in
skeletal muscle (17–20). Intriguingly, a comparison of the
functional ChoRE sites of ChREBP-b in adipocytes, liver and
pancreatic b-cells found that liver and b-cells share a common
ChoRE element that is further upstream from the ChoRE that is
active in adipocytes and adipose tissue (19), indicating tissue-
specific transcriptional regulation of ChREBP-b, but also
similarities between liver and pancreatic b-cells.
CHREBP-b MRNA—A BIOMARKER OF
CHREBP ACTIVATION

The expression of ChREBP-b is driven by a ChoRE and
accordingly by substrate-mediated translocation of ChREBP-a
into the nucleus (15, 19). What has been more challenging to
unpick is the role of ChREBP-b in auto-regulation of ChREBP-a
and ChREBP-b (19, 20) and also the relative roles of ChREBP-a
and ChREBP-b on the downstream target genes (8, 21).

Prior to the discovery of the ChREBP-b isoform, ChREBP
mRNA levels in liver or isolated hepatocytes were found to be
modestly (< 2-fold) raised in conditions of markedly elevated
glucose 6-P as occurs in experimental models of high glucose or
glucose 6-phosphatase deficiency (22). However, selective
measurement of ChREBP-b versus ChREBP-a mRNA showed
in most cases greater fold-changes in ChREBP-b than ChREBP-
a during metabolic activation in adipose tissue, liver, intestine,
and pancreatic b-cells. In mouse adipose tissue ChREBP-b was
more responsive to overnight fasting and refeeding and to
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https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Agius et al. The Protective Role of ChREBP
overexpression or downregulation of Glut4 (15). In mouse liver,
dietary glucose or fructose and glucokinase activator (GKA)
drugs caused 4-8-fold elevation in ChREBP-b mRNA with
little change in ChREBP-a mRNA, with similar responses in
mouse hepatocytes challenged with sugars and GKAs (23, 24).
Interestingly in rats, fasting and refeeding caused a 40-fold
increase in ChREBP-b (25). It is noteworthy that Gck mRNA
also shows several-fold larger changes in rat compared with
mouse hepatocytes (24, 26, 27) but whether this is due to
intrinsic species differences or to differences in the severity of
nutritional state remains unclear.

Two elegant complementary studies on the ChREBP-b
isoform in pancreatic b-cells using si-RNA to selectively target
the ChREBP-b transcript, showed that the latter isoform
mediates glucose-induced b-cell proliferation and induction of
ChREBP target genes (19) but it also exerts negative feedback on
ChREBP-a mRNA and on downstream ChREBP target genes
(20). These studies also showed a remarkably wide variability in
the ChREBP-b to ChREBP-a mRNA ratio as a function of
extracellular glucose concentration in islet and b-cell models
(19) and in various mouse models of diabetes (20). Zhang and
colleagues (19) showed ~8-fold lower ChREBP-b to ChREBP-a
in the proliferating rat INS-1E b-cell line but far lower ratios
(> 1000–10,000 fold) in rat and human islets. Correspondingly,
the fold increment in ChREBP-b mRNA during glucose
challenge paralleled the fractional initial value ranging from
8-fold to 1000-fold for the b-cell line and islets, respectively.

The expression of ChREBP-b is driven by both ChREBP-a
which is activated by high glucose and by ChREBP-b itself
(which is constitutively nuclear and active) through a positive
feed-back loop resulting in a sustained increase in ChREBP-b
mRNA in conditions of high glucose (19). The elevated
ChREBP-b protein in turn also causes repression of ChREBP-a
at mRNA and protein levels and also of downstream target gene
expression (Pklr, Txnip, Acc1) (20). This implicates a role for the
ChREBP-a to ChREBP-b ratio in the regulation of downstream
target genes and it also supports a role for raised ChREBP-b
mRNA levels as a marker of ChREBP-a activation (Figure 1). In
human adipose tissue and liver, ChREBP-b mRNA levels
correlate with the expression of ChREBP target genes (15, 28,
29), and in adipose tissue ChREBP-b levels also correlate with
insulin sensitivity (28, 29) whereas in liver raised ChREBP
expression correlates with insulin resistance (29), most likely
because ChREBP target genes include G6pc and Gckr (23, 27, 30),
and induction of these genes predicts impaired hepatic glucose
clearance (9).
THE METABOLITE SIGNAL FOR CHREBP-a
TRANSLOCATION TO THE NUCLEUS
AND ACTIVATION

The Case for Glucose 6-P and the
Inefficacy of 2-Deoxyglucose 6-P
ChREBP-a translocates to the nucleus in conditions of high
glucose (16). However, the molecular signaling events are not
Frontiers in Endocrinology | www.frontiersin.org 3
resolved. Glucose per se is ineffective because mannoheptulose
and 5-thioglucose which inhibit glucose phosphorylation block
the induction of ChREBP target genes by high glucose (5, 27, 30).
Inhibitors of glucose 6-phosphatase which markedly raise
phosphate ester intermediates (30) implicate a mechanism
linked to raised intracellular metabolites rather than metabolic
flux, although the latter cannot be unequivocally excluded.
Although these studies show a correlation with elevated
glucose 6-P, linked metabolites such as fructose 6-P, fructose
2,6-P2, and downstream intermediates of glycolysis cannot be
excluded (30, 31). A role for glucose 6-P in ChREBP activation is
widely inferred based on bioinformatic (32) and other
considerations (33, 34). However, the glucose analogue 2-
deoxyglucose, which is phosphorylated on the 6-position by
glucokinase but is not further metabolized by glycolysis, has
modest effects on ChREBP activation in proliferating b-cells
compared with high glucose (34, 35), and is totally ineffective in
parenchymal hepatocytes (5, 30, 31), despite accumulating to
high intracellular levels and particularly when combined with an
inhibitor of glucose 6-phosphatase (30, 31). This total lack of
efficacy of 2-deoxyglucose on ChREBP target gene induction in
hepatocytes rules out an exclusive role for glucose 6-P although it
does exclude a contributory role in conjunction with other
metabolites or covalent modification mechanisms.
Xylulose 5-P and Fructose 2,6-
Bisphosphate
The induction of ChREBP target genes including Pklr and G6pc
in cell models is not confined to high glucose, but other substrates
that bypass glucokinase such as xylitol, dihydroxyacetone and
fructose can mimic high glucose, implicating other candidate
metabolites (30). Uyeda and colleagues identified xylulose 5-P as
an activator of a type 2A protein phosphatase that dephosphorylates
ChREBP and proposed that raised xylulose 5-P in conditions of
high glucose activates ChREBP through dephosphorylation (36).
Other studies showed that dephosphorylation alone is insufficient
for high-glucose activation (33). The xylulose 5-P sensitive
phosphatase also dephosphorylates the bifunctional enzyme
PFKFB1 (phosphofructokinase-2/fructose bisphosphatase-2) that
generates and degrades the signaling metabolite, fructose 2,6-P2
(37). This is synthesized by PFKFB1 from fructose 6-P and its levels
in hepatocytes correlate with hexose 6-P in conditions of basal
cAMP (30, 38). In conditions of raised glucagon levels, protein
kinase A mediated phosphorylation of Ser32 inhibits the kinase
activity and PFKFB1 thereby functions as a bisphosphatase
converting fructose 2,6-P2 to fructose 6-P. Expression of a kinase-
deficient bisphosphatase active variant of PFKFB1 to deplete
fructose 2,6-P2 abolishes ChREBP activation in conditions of high
glucose or gluconeogenic precursors, implicating an essential role
for raised fructose 2,6-P2 in ChREBP activation (30, 38). This
indicates an additional role of xylulose 5-P in ChREBP activation
through raised fructose 2,6-P2 (37). Unlike intermediates of the
glycolytic pathway which cannot be modulated independently of
proximal or distal metabolites (31), fructose 2,6-P2 can be
modulated more selectively because it is a dead-end metabolite,
derived from and degraded to fructose 6-P. It is noteworthy,
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https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Agius et al. The Protective Role of ChREBP
however, that fructose 2,6-P2 could only be modulated in conditions
of raised glucose 6-P or triose phosphates and therefore additional
co-ordinate roles for glucose 6-P or other metabolites cannot be
excluded (30, 38).

Inhibitory Metabolites Favoring ChREBP
Sequestration in the Cytoplasm
Various metabolites have been identified that promote
sequestration of ChREBP in the cytoplasm including the
ketone bodies, 3-hydroxybutyrate, and acetoacetate which are
elevated during fatty acid mobilization from adipose tissue (39)
and raised AMP levels, which occur in liver during fasting in
conjunction with a decrease in the ATP/ADP ratio (40). AMP
was shown to bind to the bimolecular complex of ChREBP and
the targeting protein 14-3-3 but not to either protein in isolation
and may thereby favor sequestration of ChREBP bound to 14-3-3
in the cytoplasm (40). This effect of raised AMP may in part
contribute to the inhibition of recruitment of ChREBP to the
nucleus by metformin in conditions of high glucose (41, 42). Cell
metformin levels within the therapeutic range inhibit the high-
glucose mediated induction of ChREBP target genes, in
conjunction with lowering of glucose 6-P and fructose 2,6-P2
(41, 42). Accordingly, multiple metabolites including lower
glucose 6-P and fructose 2,6-P2 and raised AMP may all be
involved in the counter-regulatory effect of metformin on the
glucose activation. The inhibitory effect of AMP on ChREBP
translocation could also explain why in hepatocytes fructose is less
effective than high glucose in ChREBP target gene induction (41).

Covalent Modification of ChREBP: Role
for Acetylation in Activation
ChREBP is phosphorylated by protein kinase-A on residues
within the N-terminal (S196) region that has the nuclear
export and import sequences and within the DNA binding
domain (S626, T666). Phosphorylation affects the binding to
Frontiers in Endocrinology | www.frontiersin.org 4
importin proteins which promote translocation to the nucleus
and also promotes binding to 14-3-3 which favors sequestration
in the cytoplasm (43). Covalent modification by O-
GlcNAcylation promotes stabilization from degradation (44)
but does not seem to be involved in activation. Modification by
acetylation of Lys672 within the DNA binding domain catalyzed
by the histone acetyl transferase coactivator P300 has been
implicated in activation of ChREBP in hepatocytes (45). It was
proposed that models of insulin resistance characterized by
activation of protein kinase-A promote inhibition of the salt-
inducible kinase (SIK) which in turn promotes activation of the
acetyltransferase P300 enhancing ChREBP acetylation (45).

Acetylation on Ne-lysine residues is of particular interest as a
mechanism for ChREBP activation because it is an additional
link to metabolite control via cellular levels of acetyl-CoA and
the NAD+/NADH redox state (46). There are 22 lysine
acetyltransferases (KAT) in five major families of which P300
has been one of the most intensely studied and there are 18 lysine
deacetylases (KDAC) of which the NAD+-dependent sirtuins
have been the most studied (46). Acetylation is dependent on the
level of substrate, acetyl-CoA, and deacetylation on the level of
NAD+ and thereby on the NAD+/NADH redox state. Raised
acetyl-CoA is expected in conditions of substrate overload with
high glucose, fructose, xylitol or ethanol, all of which are known
to cause ChREBP activation (24, 47, 48). Depletion of NAD+,
occurs with reduced substrates such as xylitol and ethanol and is
further enhanced when the malate aspartate shuttle which
transfers NADH reducing equivalents from the cytoplasm to
the mitochondria is inhibited with amino-oxyacetate (42). In
hepatocytes ChREBP is very strongly activated by xylitol in
combination with inhibition of malate aspartate shuttle despite
modest elevation in hexose phosphates (24). The represents an
analogous metabolic state as occurs with ethanol (47, 48)
supporting a potential role for acetylation in mediating the
effects of other reduced substrates like xylitol.
FIGURE 1 | Metabolite-mediated activation of ChREBP-a and induction of ChREBP-b. Substrates that raise cellular levels of hexose-phosphates (C6P) and triose-
phosphates (C3P) cause translocation of full-length ChREBP-a from the cytoplasm to the nucleus and binding to upstream (ChREBP-b) and downstream (ChREBP-a)
ChoREs of the ChREBP gene and to ChoREs of various ChREBP target genes G6pc, Pklr, and Gckr. ChREBP-b which unlike ChREBP-a is present constitutively in
the nucleus exerts positive feedback on its own promoter but negative feedback on the downstream ChREBP-a promoter. This accounts for the modest changes in
ChREBP-a mRNA levels in comparison with ChREBP-b mRNA during high glucose activation.
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INSIGHTS INTO CHREBP FUNCTION
FROM CHREBP-KNOCK DOWN MODELS

Genome-wide association studies have identified variants in the
Mlxipl gene that associate with blood lipids, markers of liver
disease and inflammation (49–51). However, there is limited
information on how these variants affect ChREBP function. Most
of the studies using ChREBP knock-down models have provided
evidence for a protective role for ChREBP in liver function
(Figure 2), particularly during challenge with a fructose-
containing diet (52–56) or in other compromised metabolic
states such as glucose 6-phosphatase deficiency (57). ChREBP
knock-down studies have used either total ChREBP deletion (23,
52, 53, 58) or liver-selective models generated by crossing
ChREBPflox mice with albumin-Cre transgenic mice
(LiChREBP-/-) (17, 54, 55) or by short-term ChREBP knock-
down using antisense oligonucleotides (56) or shRNA with
adenoviral vectors (57, 59). While the focus of the earlier
studies was on the liver, ChREBP is also important in the
intestine (17) and in adipose tissue (60). In adipose tissue,
ChREBP has a co-ordinate role with the adaptive glucose
transporter Glut4 which is activated by insulin leading to
increased transport of glucose and phosphorylation to generate
glucose 6-P, which is further metabolized by glycolysis and
lipogenesis (15). Selective knock-down of ChREBP in adipose
tissue results in impaired Glut4 activation by post-transcriptional
mechanisms supporting a requirement for ChREBP for
enhanced glucose metabolism in adipose tissue (60).

Total-ChREBP-/- models are more susceptible to fructose-
induced toxicity than LiChREBP-/- as shown by the high
mortality when transferred to diets high in fructose or sucrose
(17, 52, 61, 62). This is due to ChREBP deficiency in the intestine
which results in compromised fructose absorption,
gastrointestinal stress, inflammation, and food aversion (17).
The intestine expresses all the enzymes required for fructose
metabolism by the “Hers pathway” (63), namely the liver isoform
of ketohexokinase (Khk-C), aldolase B (Ald-B), and triose kinase
(Tkfc), as well as fructose 1,6-bisphosphatase (Fbp1) and glucose
6-phosphatase (G6pc) enabling conversion of triose phosphates
to glucose (17, 61). The respective genes together with Slc2a5,
encoding the fructose transporter Glut5, are all induced in the
intestine during chronic consumption of high-fructose diets (61).
This fructose-induced gene induction is dependent on ChREBP
as shown by the blunted induction in global or intestine-selective
ChREBP-/- models (17, 61). Whereas wild-type mice respond to
diets enriched in fructose or sucrose by increased food intake, the
global and intestine-selective ChREBP-/- mice decrease their food
intake by up to ~70% compared with ~25% decrease for
LiChREBP-/- (17, 61). Strong aversion to dietary fructose also
occurs in mouse models of fructose malabsorption due to
deficiency in Glut5, ketohexokinase, and triose kinase (64–66).

Key insights into the roles of intestinal fructose metabolism or
absorption and food aversion have emerged from studies using
stable isotopes combined with knock-down of genes essential for
fructose metabolism (66, 67). Jang and colleagues determined
intestinal fructose metabolism and absorption, by oral gavage of
Frontiers in Endocrinology | www.frontiersin.org 5
mice with equimolar loads of 13C-labeled fructose and glucose
ranging from 0.2 to 2 g/kg body weight and analysis of 13C-
labeled substrates in the portal vein (67). This showed that
intestinal fructose metabolism saturates at ~0.5g/kg body
weight, whereas fructose absorption into the portal vein
saturates around 2 g/kg body weight. During fructose gavage,
fructose 1-P the first intermediate of fructose metabolism
accumulates to higher levels in the intestine (> 6 nmol/mg
protein) than in liver (67) or in hepatocytes challenged ex vivo
with high fructose (68). This could be explained by the high
fructose concentrations in the gut lumen and the high capacity of
the intestinal epithelium for uptake of fructose (via Glut5) and
inorganic phosphate (64, 69), whereas fructose metabolism in
hepatocytes is limited by the capacity of the fructose transporter
(70) and by hepatic uptake of inorganic phosphate (Pi), as shown
by the acute depletion of liver cytoplasmic Pi which in turn leads
to compromised mitochondrial ATP production (71). At low
doses of dietary fructose that do not exceed the intestinal
capacity for fructose metabolism (< 0.5 g/kg in rodent
equivalent to 3 g per person in man (67)) the exposure of the
liver to fructose is in the micromolar range (< 0.2 mM) (67).
Fructose concentrations of 50–200 µM do not cause hepatic ATP
depletion (72) but can maximally activate liver glucokinase by
dissociating it from the glucokinase regulatory protein resulting
in stimulation of glycogen synthesis and glycolysis (73, 74).
Estimates of sugar consumption in man range from 8%-20%
by energy or 30–100 g sucrose/per day (75). If intestinal fructose
metabolism in man saturates at equivalent levels as in rodents,
when normalized for energy intake (67), then Western diets with
a high sugar intake (75) would exceed the capacity for intestinal
fructose metabolism resulting in liver exposure to millimolar
fructose, which causes ATP depletion (71).

Studies on LiChREBP-/- models from three independent
groups have shown that during challenge with high-fructose or
high-sucrose diets the ChREBP deficiency in liver associates with
raised plasma alanine aminotransferase (ALAT) activity, a
marker of hepatocyte damage, establishing a protective role for
hepatic ChREBP in fructose metabolism (17, 54, 55). Various
hypotheses can be considered for ChREBP-mediated protection
from fructose-induced liver damage. One proposed hypothesis is
that ChREBP attenuates cholesterol biosynthesis by promoting
SREBP2 degradation (53). This was supported by raised liver
cholesterol levels in a global-ChREBP-/- model and lowering of
cholesterol by ChREBP overexpression (53). However in
LiChREBP-/- models on high-fructose diets, liver cholesterol
was either decreased or unchanged despite raised ALAT (17,
54, 55). Raised hepatic cholesterol in global-ChREBP-/- (53), may
be linked to endotoxemia consequent to intestinal dysfunction
and inflammation as was observed in intestinal-ChREBP-/- mice
(17). A further hypothesis is that ChREBP attenuates
accumulation of hepatic triglycerides and diacylglycerides by
promoting triglyceride secretion (54, 56, 57). However, the raised
ALAT in the LiChREBP-/- did not associate with raised liver
triglycerides or diacylglycerides (17, 54–56), implicating
mechanisms other than cholesterol, triglyceride or diacylglyceride
accumulation in the ChREBP-mediated protection.
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One consistent finding on liver metabolic intermediates from
ChREBP-deficient models irrespective of whether global, liver-
selective or short-term repression is raised phosphate ester
intermediates of glycolysis including glucose 6-P and
phosphoenolpyruvate (17, 55, 58, 59) and of the pentose
phosphate pathway (57) but not UDP-glucose (17, 55) or
fructose 2,6-P2 (58). The target genes of ChREBP include G6pc
(23, 30) and the pentose phosphate pathway enzymes (8). The
raised levels of the substrates of these enzymes are consistent
with a role for ChREBP in maintaining cellular homeostasis of
the intermediates (10). One candidate link to the raised
phosphate esters is enhanced glycogen storage through
allosteric activation of glycogen synthase (76) and inactivation
of glycogen phosphorylase by the raised glucose 6-P levels (77).
Raised liver glycogen levels in ChREBP knock-down models
have been shown on both starch-containing and fructose-
containing diets (22, 23, 55, 58, 59) and a role for excessive
glycogen accumulation in hepatoxicity was inferred from the
correlation between hepatic glycogen levels and raised ALAT in a
LiChREBP-/- model on a high-fructose diet (55).

Another mechanism linked to compromised phosphate ester
homeostasis particularly during fructose challenge which results
Frontiers in Endocrinology | www.frontiersin.org 6
in rapid elevation in fructose 1-P (23), is the acute lowering of
hepatic ATP (71, 72). This is explained by sequestration of
phosphate in fructose 1-P and triose phosphates, depleting
inorganic Pi (78), which is a substrate for mitochondrial
oxidative phosphorylation, resulting in a decrease in the ATP/
ADP ratio and raised AMP through the adenylate kinase
equilibrium. The raised AMP is degraded to inosine and then
to uric acid (72). In a short-term ChREBP knock-down rat
model, fructose feeding was associated with raised plasma uric
acid (56) implicating compromised hepatic ATP homeostasis
(72) in ChREBP deficiency. It is noteworthy that in rodents as in
most species other than primates that lack uric acid oxidase, the
uric acid is further metabolized to allantoin and elevation in
hepatic urate production may not be apparent from plasma urate
levels (72). Compromised ATP homeostasis also occurs in global
ChREBP-/- mice in conjunction with a reduced cytoplasmic
NADH/NAD redox state (52) and in LiChREBP-/- mice on
either a control or a high-fructose diet (55), and this effect was
reversed by Pklr overexpression implicating a role for this
ChREBP target gene in phosphate homeostasis (55).

Production of reactive oxygen species is implicated in the
hepatic dysfunction linked to high-fructose diets (66). During
FIGURE 2 | Predicting ChREBP function in liver from ChREBP-knock down models. Liver-selective or global ChREBP deletion mouse models have attenuated
mRNA levels of ChREBP target genes, raised hexose phosphate (C6P) and triose phosphate (C3P) esters, increased glycogen storage and decreased lipogenesis
and hepatic triglyceride secretion. They also have impaired hepatic ATP homeostasis. This predicts a role for ChREBP in protecting from liver damage by
carbohydrate overload through induction of ChREBP target genes and attenuated glycogen storage and improved phosphate ester and ATP homeostasis.
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fructose metabolism, glyceraldehyde generated from fructose 1-P
by aldolase B cleavage can be metabolized by either of three
enzymes: triose kinase (Tkfc) which generates glyceraldehyde 3-P;
aldehyde dehydrogenase (Aldh) which oxidizes glyceraldehyde to
glycerate; and alcohol dehydrogenase (Adh) which generates
glycerol (63). Based on the lower affinity of Aldh and Adh for
glyceraldehyde compared with triose kinase, Sillero and colleagues
(63) proposed a hierarchy of mechanisms whereby triose kinase
has a predominant role at low glyceraldehyde whereas Aldh and
Adh have more prominent roles at raised glyceraldehyde when
triose kinase becomes rate limiting. Liu and colleagues showed
that selective deletion of triose kinase in liver causes decreased
partitioning of fructose to lipogenesis and increased production of
glycerate and aggravated oxidative stress and inflammation (66).
They proposed a protective role for triose kinase by restraining
oxidative stress and favoring lipogenesis (66).
THE FRUCTOSE AND GLUCOKINASE
ACTIVATOR PARADOXES

The increase in prevalence of non-alcoholic fatty liver disease
(NAFLD) and other components of metabolic syndrome
including raised blood triglycerides, uric acid and markers of
inflammation is attributed to the increased consumption of
fructose in the diet (79). Therefore, better understanding of the
mechanisms by which ChREBP protects from fructose-induced
liver damage can advance the development of new therapies for
NAFLD. A key feature of fructose metabolism in respect of
ChREBP regulation is that Slc2a5, which encodes Glut5, the
fructose transporter, and also Khk, AldB, and Tkfc which encode
the first three enzymes of fructose metabolism are all functional
ChREBP target genes (54, 80), predicting enhanced hepatic
fructose clearance and metabolism during ChREBP activation.
This contrasts with hepatic glucose metabolism where the
activity of Glut2 (encoded by Slc2a2) is not limiting unlike
Glut5 in relation to fructose metabolism (70) and furthermore
Gck, which determines the flux-generating step of glucose
disposal by the liver, is not a ChREBP target gene (27).
Accordingly ChREBP activation in liver does not increase
hepatic glucose clearance but it restores metabolite homeostasis
in conditions of high glucose by targeting downstream target
genes Gckr and G6pc (9, 10, 23, 30) which restore metabolite
homeostasis without increasing glucose clearance. Given that
Slc2a5, Khk, AldB, and Tkfc are positively regulated by ChREBP,
the protective effect of liver ChREBP in conjunction with dietary
fructose (17, 54, 55) seems paradoxical. In man, autosomal
recessive loss-of-function mutations in the KHK gene resulting
in ketohexokinase deficiency, manifest as a benign condition
“essential fructosuria” in which fructose is excreted in the urine
because of impaired hepatic clearance (81) and likewise in mice
Khk deletion has negligible phenotype (82) and in conjunction
with AldB deficiency is protective (83). Loss-of-function
mutations in AldB cause hereditary fructose intolerance, a
severe condition which manifests as acute liver damage with
Frontiers in Endocrinology | www.frontiersin.org 7
ATP depletion and hyperuricaemia on consumption of fructose,
leading to liver failure (84). Two hypotheses can be considered
for the protective effect of ChREBP in conjunction with a high-
fructose diet. First, that ChREBP deficiency results in greater
impairment of AldB and Tkfc relative to Khk and Slc2a5 thereby
mimicking AldB or Tkfc deficiency (66, 84). Second, that other
ChREBP target genes such as Pklr, G6pc and Gckr have an
overriding role in the adaptive response to fructose. Support for
the latter hypothesis was proposed based on Pklr mediated
protection in a Li-ChREBP-/- model (55). A role for triose
kinase (Tkfc) was supported by the aggravated oxidative stress
and inflammation resulting from Tkfc knock-down (66).

As discussed above, a key feature of hepatic fructose
metabolism that manifests at micromolar fructose is activation
of glucokinase by dissociation from the glucokinase regulatory
protein encoded by the Gckr gene, thereby stimulating hepatic
glucose disposal (73, 74). In this context glucokinase activators
(GKA) mimic the effect of micromolar fructose (85). Recent
work exploring the chronic effects of a glucokinase activator on
the liver provided evidence for activation of ChREBP as
determined from raised levels of ChREBP-b and for improved
ATP homeostasis in the isolated hepatocytes from the mice when
challenged ex vivo with either xylitol or high glucose in
combination with metabolic inhibitors (24). Paradoxically,
improved ATP homeostasis in conditions of high substrate
challenge, occurred despite sustained elevation in phosphate
esters (24). This implicates mechanisms other than the known
target genes (Pklr, G6pc, Gckr) encoding enzymes or regulatory
proteins of the glycolytic and gluconeogenic pathway. Genome
wide analysis had identified, two of the subunits of AMPK as
candidate target genes of ChREBP (8). Compromised ATP
homeostasis in hepatocytes from AMPK-deficient mice is well-
documented (42, 86), making AMPK a candidate functional
target of ChREBP. High glucose or xylitol challenge ex vivo
induced the a1 and a2 catalytic subunits (Prkaa1,2), in
hepatocytes from control mice but not from the GKA treated
mice which showed improved ATP homeostasis (24). The
attenuated induction of Prkaa1,2 in hepatocytes from GKA-
treated mice which have improved ATP homeostasis is shared by
some (Gckr, Fasn) but not by other (G6pc) ChREBP target genes
(24). This indicates a hierarchy of mechanisms resulting in
activation of ChREBP target genes whereby some genes like
Prkaa1,2, Gckr, and Fasn show attenuated induction in
conditions of chronic ChREBP activation in association with
improved ATP homeostasis whereas others like G6pc and
ChREBP-b show sustained induction (24). The underlying
mechanisms remain to be resolved. However, these studies
provide support for drugs that activate ChREBP as a potential
strategy for improving ATP homeostasis in non-alcoholic fatty
liver disease.
PERSPECTIVES

In the past 20 years since the discovery of ChREBP, a major focus
has been on Pklr and G6pc and enzymes of fructose metabolism,
November 2020 | Volume 11 | Article 594041

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Agius et al. The Protective Role of ChREBP
lipid synthesis and secretion. The role of these genes in models of
ChREBP activation or deletion has been well replicated.
Nonetheless differences are noted between diverse models in
the relative prominence of induction of Pklr versus G6pc as
commented on elsewhere (23, 55). These widely studied ChREBP
target genes are only a small fraction of the > 5000 candidate
genes identified in mouse liver by genome wide analysis (8). The
evidence implicating a role for the AMPK catalytic subunits
Prkaa1,2 (24) is of particular interest because it provides a
mechanistic link between the attenuated induction by high
substrate challenge in hepatocytes ex vivo of some (e.g. Gckr,
Fasn, Prkaa1,2) but not other (G6pc) ChREBP target genes in
models of varying resilience of ATP homeostasis. This indicates
that the vulnerability or resilience of hepatocytes to maintaining
ATP is a major determinant of the ChREBP target genes that are
induced by a substrate challenge, and furthermore that the raised
phosphate ester level is not the best marker. In this context a
better understanding of ChREBP function may emerge from
experimental models of mild versus severe metabolic stress,
where different target genes of ChREBP may have greater or
lesser roles.
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