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ABSTRACT The distribution of a phenotype on a phylogenetic tree is often a quantity of interest. Many phenotypes have imperfect
heritability, so that a measurement of the phenotype for an individual can be thought of as a single realization from the phenotype
distribution of that individual. If all individuals in a phylogeny had the same phenotype distribution, measured phenotypes would be
randomly distributed on the tree leaves. This is, however, often not the case, implying that the phenotype distribution evolves over
time. Here we propose a new model based on this principle of evolving phenotype distribution on the branches of a phylogeny, which
is different from ancestral state reconstruction where the phenotype itself is assumed to evolve. We develop an efficient Bayesian
inference method to estimate the parameters of our model and to test the evidence for changes in the phenotype distribution. We use
multiple simulated data sets to show that our algorithm has good sensitivity and specificity properties. Since our method identifies
branches on the tree on which the phenotype distribution has changed, it is able to break down a tree into components for which this
distribution is unique and constant. We present two applications of our method, one investigating the association between HIV genetic
variation and human leukocyte antigen and the other studying host range distribution in a lineage of Salmonella enterica, and we
discuss many other potential applications.
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UNDERSTANDING phenotypic variations and their rela-
tive association with genotypic variations is one of the

central aims of molecular biology. The expression of a phe-
notype is usually dependent on both genetic and environ-
mental factors, with heritability measuring their relative
importance (Visscher et al. 2008). When the heritability is
nonzero, genetically similar individuals are more likely to
have similar phenotypes, and this is especially relevant for
species that reproduce clonally, so that closely related individ-
uals are virtually identical genetically. However, genotype–
phenotypemaps are usually complex and phenotypic plasticity

means that phenotype expression can differ even for geneti-
cally identical individuals due to dependency on environmen-
tal factors (DeWitt et al. 1998; Agrawal 2001). Conversely,
observing closely related individuals with the same phenotype
does not necessarily imply a low importance of environmental
factors, since close relatives are also likely to live in the same
environmental conditions (Visscher et al. 2008). The same
effect also occurs in sexually reproducing species as evolution-
ary forces such as spatial population structure, environmental
pressures, and inbreeding result in groups within which indi-
viduals are more genetically homologous, and therefore more
phenotypically similar, than individuals from different groups
(Pritchard et al. 2000; Lawson et al. 2012).

Tounderstand the relationship between aphenotype anda
genotype, it is necessary to investigate how the phenotype is
distributed according to genotypic values. This requires quan-
tifying how the genotypes are related to each other, which is
often achieved using phylogenetic trees (Yang and Rannala
2012). For clonal organisms, the tree may represent the
clonal genealogy of how individuals are related with one
another for nonrecombinant regions (Didelot and Falush
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2007; Didelot et al. 2010). For sexual organisms, the phylog-
enies may be built for individual genomic loci, resulting in
so-called gene trees by contrast with the species tree that
contains them (Maddison 1997). Visual inspection of a phy-
logenetic tree with tips annotated by phenotypes gives a first
impression of their relationship, and this type of figure fea-
tures heavily in the molecular biology literature of both
clonal and sexual organisms. A more quantitative approach
is, however, needed if the tree is too large to be shown, if the
interesting patterns are too subtle to be seen, or to estimate
evolutionary parameters and test competing hypotheses.

Phylogenetic comparative methods can be used, for exam-
ple to test the phylogenetic signal in a phenotype (Hillis and
Huelsenbeck 1992; Blomberg et al. 2003) or to compare the
association between two phenotypes given the phylogeny
(Garland et al. 2005), but do not provide a complete descrip-
tion of the phenotype distribution on a tree. One of the most
popular phylogenetic comparative methods is ancestral state
reconstruction of the phenotype given the tree (Cunningham
et al. 1998; Pagel 1999). Application of this method can pro-
vide quantitative insights, for example an estimate of the
phenotypic evolutionary rate. The maximum-likelihood ap-
proach to ancestral state reconstruction (Yang et al. 1995)
has been extended in many ways by refining the model of
phenotypic evolution on the tree, for example by allowing the
detection of branches where the phenotypic evolutionary
rate changes (Revell 2008; Revell et al. 2011). However, an-
cestral state reconstruction is problematic for any phenotype
with imperfect heritability: Identical genotypes can then have
different phenotypic values, implying an infinitely high rate
of phenotypic evolution between them that is not biologically
meaningful. Other difficulties arise if the phylogeny is imper-
fectly reconstructed or the phenotype inaccurately measured,
which is always a possibility. Consequently, ancestral state
reconstruction does not always provide reliable results, for
example when applied to phylogeography (De Maio et al.
2015).

When heritability is not complete, a phenotypic measure-
ment can be seen as just one realization from the phenotypic
distribution of a given individual, with this distribution being
what evolves on the tree rather than the phenotypic measure-
ment itself. Based on this idea, here we present a novel
Bayesian statistical method that takes as input a phylogenetic
tree and discrete tip phenotype measurements and iden-
tifies the branches on which the phenotype distribution has
changed. The tree is therefore divided into monophyletic
and paraphyletic groups that have unique distributions over
the phenotype space. We also perform Bayesian hypothesis
testing (Kass and Raftery 1995) to assess whether there is
evidence for different parts of the tree having distinct pheno-
type distributions. We build a stochastic model in which
changepoints occur on a phylogenetic tree (Didelot et al.
2009), each of which affects the distribution of observed
phenotype for the descendent leaves. Careful parameteriza-
tion enables the use of a fixed-dimension Markov chain
Monte Carlo (MCMC) algorithm (Gilks et al. 1995) to sample

from the posterior distribution of the model parameters, and
we reserve reversible jumps (Green 1995) to compare the
model with a model without any changepoint. In the follow-
ing sections we present our model, our inference procedure,
and the results of simulation studies to measure the sensitiv-
ity and specificity of our method. Finally we present the ap-
plication of our method to two real data sets in human
immunodeficiency virus (HIV) evasion and bacterial ecology.

Model and Methods

Description of the model

We consider that changepoints happen as a Poisson process
with rate l on the branches of the input tree. For a phenotype
with K categories, wemodel each changepoint event as a new
probability mass function q ¼ ðq1; . . . ; qKÞ that specifies the
probability of having each of the K phenotypes for the indi-
viduals affected by the changepoint. Figure 1 illustrates the
model for K¼ 2: The observed phenotype of each individual
is shown on the tips of the tree, which are colored black and
red. Changepoints have happened on three branches that
divided the tree into four sections (white, blue, green, and
yellow). All individuals in the same section have the same
distribution q over the phenotype space.

Let N and B denote the number of tips and branches in the
tree, respectively (if the tree is bifurcating, then B ¼ 2N2 2).
We define b ¼ ðb1; . . . ; bBÞ as a binary vector with B elements
that represent the branches of the tree. If branch i holds at
least one changepoint, then bi ¼ 1; otherwise bi ¼ 0: Let m
denote the number of sections of the tree divided according
to b (Figure 1). The likelihood of the observed phenotypes of
the individuals D is given by

pðDjq1; . . . ;qm;bÞ ¼
YK

j¼1

qx1j1j ⋯
YK

j¼1

qxmj

mj ; (1)

where qi ¼ ðqi1; . . . ; qiKÞ and qij gives the probability
that an individual in section i expresses phenotype j,
so that

PK
j¼1qij ¼ 1  for  i ¼ 1; . . . ;m: We also define

xi ¼ ðxi1; . . . ; xiKÞ; where xij is the number of observed indi-
viduals in section i that have expressed phenotype j, so thatPm

i¼1
PK

j¼1xij ¼ N:
Assuming that the length of branch i is known, the prior

probabilities of branch i having no or at least one changepoint
are respectively Prðbi ¼ 0jlÞ ¼ e2lli and Prðbi ¼ 1jlÞ ¼
12 e2lli ; so that

PrðbjlÞ ¼
YB

i¼1

�
e2lli

�12bi�
12e2lli

�bi
: (2)

We consider a flat Dirichlet prior for all qi such that
pðqiÞ ¼ GðKÞ and an exponential prior on l with mean 1=T;
where T ¼ PB

i¼1li is the sum of the branch lengths of the tree.
This implies a parsimonious prior expectation of one for the
number of changepoints on the tree.
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We are now in a position to describe the posterior distri-
bution of the model parameters qi; . . . ;qm;b and l:

pðq1; . . . ;qm;b;ljDÞ ¼ pðDjq1; . . . ;qm;b; lÞpðq1; . . . ;qm;b; lÞ=pðDÞ
} pðDjq1; . . . ;qm;bÞpðq1Þ . . . pðqmÞpðbjlÞpðlÞ

} ðGðKÞÞm Qm
i¼1

QK
j¼1

qxijij
QB
s¼1

�
e2lls

�12bs �12e2lls
�bs Te2Tl:

(3)

Thedimensionalityof themodelparameters changeswithbas
the number of sections on the tree depends on b and each
section has its own distribution over the phenotype space.
This could potentially be addressed using reversible jumps
(Green 1995). Instead we marginalize all the qi; which re-
sults in a fixed-dimensionmodel. Themarginal posterior den-
sity for b and l is given by

pðb; ljDÞ ¼ R
q1
⋯

R
qm
pðDjq1; . . . ;qm;bÞ

3 pðq1Þ⋯pðqmÞdq1⋯dqmpðbjlÞpðlÞ=pðDÞ

} ðGðKÞÞm Qm
i¼1

QK
j¼1

R 1
0 qxijij dqij   Te

2Tl QB
s¼1

�
e2lls

�12bs�12e2lls
�bs

} ðGðKÞÞm Qm
i¼1

QK
j¼1Gðxij þ 1Þ

G
�
K þPK

j¼1xij
�   Te2Tl

YB

s¼1

�
e2lls

�12bs�
12e2lls

�bs
:

(4)

Inference

We use a MCMC (Gilks et al. 1995) to sample from the
posterior distribution of b and l. We use a symmetric pro-
posal for b where the proposed value b⋆ is the same as b
except for one randomly chosen branch i for which
b⋆i ¼ 12 bi: Therefore if the randomly chosen branch i
holds a changepoint in b; it does not hold a changepoint
in b⋆ and vice versa. To update lwe propose from a normal
density with mean equal to the current value of l and
variance equal to 0.1; i.e., l⋆jl � Nðl; 0:1Þ:When the pro-
posed l⋆ is lower than zero, the move is rejected and
the chain stays at l. The calculation of the Metropolis–

Hastings acceptance ratios is given in Supplemental Mate-
rial, File S1.

Model selection

We want to assess whether there is any evidence for differ-
ential distribution of phenotypes on different parts of the tree.
We compare our model (indexed 1) against the null model
(indexed 0) of no changepoints on the tree, which is
equivalent to l ¼ 0; by calculating the Bayes factor (Kass
and Raftery 1995) for the two models. To do this we use
reversible-jumpmoves (Green 1995) to sample from the joint
distribution pððj; ujÞjDÞ;where j is the index of the model and
uj is the parameters of model j. For a move from null to
alternative (0 to 1) model, to match dimensions we generate
two random variables u and v and map them such that
ðl⋆;b⋆Þ ¼ ðu; vÞ: In addition we set the proposal distribution
for u and v; qðu; vÞ in model 0 to be the same as the prior
distribution on l and b in model 1. Thus for a proposed move
from model 0 to model 1 we have

qðu; vÞ ¼ qðuÞqðvjuÞ ¼ Te2Tu
YB

i¼1

�
e2uli

�12vi�
12e2uli

�vi
:

(5)

The probability of acceptance of this move is given by

hðð0Þ/ð1; ðl⋆;b⋆ÞÞÞ ¼ 1∧
pð1; ðl⋆;b⋆ÞjDÞpð1/0Þ
pð0jDÞpð0/1Þqððu; vÞj0Þ

����
@ðl⋆; b⋆Þ
@ðu; vÞ

����

¼ 1∧
pð1; ðu; vÞjDÞpð1/0Þ

pð0jDÞpð0/1Þqððu; vÞj0Þ3 1

¼ 1∧
pðDjðu; vÞ; 1Þpððu; vÞj1Þpð1Þpð1/0Þ

pðDj0Þpð0Þpð0/1Þqððu; vÞj0Þ

¼ 1∧
pðDjðu; vÞ; 1Þpð1/0Þ

pðDj0Þpð0/1Þ :

(6)

A move from model 1 with parameters ðl;bÞ to model 0 is
made deterministically and is accepted with probability

Figure 1 Illustration of the model.
Changepoints occurred on three
branches, which divided the tree into
four sections (white, blue, green, and
yellow), each of which has different
probabilities of the first (black) and sec-
ond (red) phenotypes.
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h
�ð1; ðl;bÞÞ/ð0Þ� ¼ 1∧

pðDj0Þpð0/1Þ
pðDjðl;bÞ; 1Þpð1/0Þ: (7)

We set pð1/0Þ ¼ 0:05 and pð0/1Þ ¼ 0:5 and we assume
the prior probabilities of the two models are equal,
pð0Þ ¼ pð1Þ ¼ 0:5:

Simulation studies

To investigate the performance of our method, we performed
two simulation studies, each of which involved repetition
over many simulated data sets. In all of these simulations
for simplicity we used a binary phenotype and sampled from
the posterior distribution of the model parameters, using 107

iterations of our MCMC algorithm. All of these simulations
were implemented for a single genealogy simulated using
the coalescent model (Rosenberg and Nordborg 2002) with
1000 leaves shown in Figure S1. First, we tested how the
number of individuals affected by a changepoint and the
magnitude of the change in phenotype distribution affect
the statistical power to detect a changepoint. Second, we
tested the model selection procedure and the relationship
between the posterior expectation of number of changepoints
and the true numbers of changepoints. Third, we quantified
the effect of threshold on the point estimate of b:

Data availability

All themethods described in this article are implemented in
a software package called TreeBreaker, which is freely
available for download at https://github.com/ansariazim/
TreeBreaker.

Results

Simulation study of statistical power

This simulation study was designed to assess the power of the
method to detect changepoints on the branches of the tree.
The power depends on two factors: the magnitude of the
change in the distribution over the phenotype categories,
which we refer to as p, and the number of individuals affected
by the changepoint, which we refer to as n. The probability of
each phenotype is 0.5 before the changepoint, and after the
changepoint the probability of one phenotype increases by p
whereas the probability of the other phenotype decreases by
p. Changepoints with small p are difficult to detect as they
result in small changes to the observed pattern of distribution
of phenotype that are likely to happen by chance alone.
Changepoints with small n are also difficult to distinguish
as lack of data makes the inference more uncertain. We ex-
pect that changepoints with large p and large n are easier to
detect.

The space of n3 p was divided into a grid where n ¼
ð10; 30; 60; 130; 330; 500Þ and p ¼ ð0:1; 0:2; 0:3; 0:4; 0:5Þ:
For each node of the grid ðni; pjÞ; 50 data sets were simulated
where in each case an appropriate branch of the tree shown
in Figure S1 was chosen to have a changepoint, with the
remaining branches not having any changepoints. Figure 2

shows for each node of the grid the mean marginal posterior
probability of having a changepoint for the branch with the
changepoint. A changepoint that causes large changes to the
distribution of the phenotype categories and affects a large
number of individuals is inferred with a high posterior prob-
ability. Changepoints that cause small changes in the distri-
bution or affect few individuals or both result in small
posterior probability of having a changepoint.

Simulation study of model and parameter inference

This simulation study was designed to assess our model
selection procedure, the effect of number of changepoints
on the inference, and the effect of cutoff thresholdon thepoint
estimate of b: We simulated 100 data sets for each case of
0, 1, . . ., 10 changing branches in the tree. The distribution
over the phenotypes was uniformly sampled in each case. For
each simulated data set the Bayes factor of our model against
the null model was estimated (Figure 3A). For the 100 data
sets with no changepoint on the tree, all the estimated Bayes
factors supported the null model (no changepoint on the
tree). Changepoints that result in small changes in the distri-
bution or affect a small number of individuals will not be
detected. Therefore for some of data sets with a single chang-
ing branch there is no support for the alternative model, but
for some there is strong support for the alternative model. As
the number of changing branches on the tree increases, the
number of data sets with posterior support for the alternative
model increases. Overall, our method is conservative and
should not result in significant evidence for the existence of
changepoints unless there are substantial data to support it.

Next, we used the simulations to gauge the relationship
between the true number of simulated changing branches and
its posterior expectation, estimated using Bayesian model
averaging (Hoeting et al. 1999). Figure 3B illustrates the
results. In the absence of any changepoint, the mean of pos-
terior expectation of number of changing branches is always
close to zero. When there are changing branches on the tree,
the posterior expectation is downward biased compared to
the real value. This is expected as our method cannot detect a
changepoint that results in small changes in the distribution
or affects few individuals or both. As a result our method is
conservative in estimating the number of changepoints on
the tree.

In addition we used the simulation results to assess the
effect of a cutoff threshold on the point estimate of b: For each
of the data sets we inferred a point estimate for b by applying
a threshold to the consensus representation of b (marginal
posterior probability of having a changepoint for each branch
of the tree). The threshold was changed from 0 to 1 with
increments of 0.01. For each threshold value, the false posi-
tive rate and the true positive rate across all of our 1100 sim-
ulations were calculated. Figure 3C shows the true positive
rate as a function of the false positive rate. This so-called
receiver operating characteristic (ROC) curve has a high area
under the curve of 0.891, indicative of good performance
of the algorithm (Bradley 1997). The choice of the cutoff
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threshold is a trade-off between minimizing the number of
incorrectly inferred changepoints and maximizing the num-
ber of correctly inferred changepoints. This choice depends
on the application and the weight given to sensitivity and
specificity in the application.

To test the sensitivity of our method to inaccuracies in the
input phylogenetic tree, we repeated the runs for the same
simulated data sets described above but using for inference a
tree that had been randomized as follows. Patristic distances
were computed for all pairs of leaves in the original tree, each
pairwise distance d was replaced with a uniform random
draw from interval ½0:1d; 1:9d�; and a new tree was computed
from these new distances, using UPGMA. Both model selec-
tion (Figure S2A) and the inference of the number of change-
points to have happened on the tree (Figure S2B) remained
accurate in spite of the randomization of the tree, which
shows that our inference method is relatively robust to small
inaccuracies in the phylogenetic reconstruction.

Detecting cytotoxic T-lymphocytes escape mutations
in HIV

Human leukocyte antigen (HLA) type I genes encode proteins
that arepresent on the surfaceof almost all humancells.When
a cell is infected with a virus, the viral protein is cleaved and
small segments of it called epitopes are presented on the cell
surface by the HLA-encoded proteins. These proteins have a
certain amount of affinity and thus in people with the same
HLAallele, the same epitopewill be recognized andpresented
on the cell surface. Cytotoxic T lymphocytes (CTLs) are part of
the adaptive immune response and recognize these epitopes
before destroying the infected cell. A mutation in one of these
epitopes can result in no or weak binding of the peptide to the
HLA-encoded protein or result in lack of recognition by the
T-cell receptor. Such mutations lead to the virus escaping

the immune response of the host. As thesemutations can have
a fitness cost on transmission to a host with different HLA
repertoire, they may revert back to the wild type (Leslie et al.
2004). Thus the escape mutations on the virus genome are
correlated with the host’s HLA alleles.

However, todetect theseassociationsonehas toaccount for
the possible geographical structuring that could be present in
the data. For instance, the distribution of HIV subtypes is
different in various parts of the world and HLA allele profiles
are also distinct in different populations across the world.
When sampling is across different countries or ethnic groups,
it is possible that HLA alleles will be associated with specific
clusters of the virus simply because of geographical structur-
ing. Several methods have been suggested to account for the
nonrandom distribution of HLA alleles on the tips of the
phylogenetic tree (Bhattacharya et al. 2007; Carlson et al.
2008, 2012). We propose that using our algorithm, one can
determinewhether host HLA alleles are randomly distributed
on the tips of the virus phylogenetic tree or whether there are
clades where the distributions are distinct from each other.
The result can then be used to perform stratified association
studies conditioned on the cladeswith distinct HLA distribution.

We used previously published data (Rousseau et al. 2008)
on a cohort of 261 South Africans to detect HLA-driven evo-
lution of HIV. In this study whole-genome viral sequences
were aligned and then divided into 10 fragments of 1000 nu-
cleotides overlapping by 50 nucleotides. Each partition was
then used to produce a maximum-likelihood phylogenetic
tree. The HLA alleles of the patients were also typed.We used
the 10 phylogenetic trees from this data set and the HLA
information of the patients as the inputs to our algorithm,
considering the presence and absence of each HLA allele
separately. This resulted in 1197 runs of our software. Figure
S3 shows the histogram of the Bayes factors estimated by

Figure 2 Relationship between statistical power and the
number of affected individuals by a changepoint and the
magnitude of the change in phenotype distribution.
Shown is a contour plot of the mean posterior probability
of having a changepoint as a function of number of
affected individuals (n) and the magnitude of the
change in distribution (p). The space of n3p was di-
vided into a grid where n ¼ ð10;30;60; 130;330; 500Þ
and p ¼ ð0:1;0:2;0:3;0:4; 0:5Þ:
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each run. Only the distribution of HLA allele B57 on the tree
of the first region of the HIV genome had a Bayes factor
conclusively rejecting the null model of no association (Fig-
ure 4). There is a clade of 12 viral individuals where 10 of the
hosts have the B57 allele, whereas across the rest of the tree
there are only 7 other hosts with B57 alleles. This clear

nonrandom distribution of the HLA allele B57 could be due
to transmission of the virus between closely related people.
However, we do not detect the same association between the
other 9 trees from the rest of the genome and HLA allele B57.
An alternative explanation may be that HLA allele B57 has a
significant effect on the evolution of the first 1000 nucleotides
of the virus, since HLA allele B57 is associated with slow
progression to disease following HIV infection (Altfeld et al.
2003; Miura et al. 2009).

Inferring host range within a lineage of
Salmonella enterica

Salmonella enterica is a bacterial pathogen made of multi-
ple lineages with different host ranges (Uzzau et al. 2000;
Didelot et al. 2011; Achtman et al. 2012). Many lineages
can infect a wide range of animals, whereas some are mostly
found in specific hosts and yet others have become restricted
to a single host type, for example the Typhi and Paratyphi A
lineages that evolved in convergence toward infecting only
humans (Didelot et al. 2007). The Typhimurium DT104 line-
age has been responsible for a global multidrug-resistant ep-
idemic since the 1990s in both humans and farm animals
(Glynn et al. 1998; Mølbak et al. 1999; Threlfall 2000).
Typhimurium DT104 can infect both animals and humans,
but it is unclear whether there are sublineages within DT104
that infect one host type more than the other and to what
extent the epidemics in animals and humans are associated.
Traditional molecular typing techniques do not provide
enough genetic resolution to answer this question. A recent
study sequenced the whole genomes of 142 human strains
and 120 animal strains isolated in Scotland between
1990 and 2011 (Mather et al. 2013). A maximum-likelihood
tree was computed based on the nonrecombinant core ge-
nome, using RAxML (Stamatakis 2006), and the phenotype
was taken to be animal vs. human source of isolation at the
tips of the tree. We applied ancestral state reconstruction to
this data set, using maximum likelihood under an equal-rates
model (Figure S4). A high rate of state changewas estimated,
corresponding to an expected total of 981 changes through-
out the tree. This rate was driven by short branches sep-
arating human and animal isolates. Consequently, longer
branches were expected to contain several changes, and the
uncertainty about the state at ancestral nodes was high, with
a nearly 50/50 probability for the animal and human states
(Figure S4).

We then applied our own algorithm to this tree, to analyze
the evolution of the phenotype distribution over the phyloge-
netic tree. The null model of random distribution of hosts
around the tree was decisively rejected in favor of the change-
point model, with the reversible-jumpMCMC never exploring
thenullmodelafter initial burn-in.Theposteriormeannumber
of changingbrancheswas9.7,with the95%credibility interval
ranging from5to16.Changes in thehost rangewereespecially
evident on four branches (Figure 5), corresponding to poste-
rior probabilities of 99%, 95%, 90%, and 72%, with two fur-
ther branches with probability 54%, one with 39%, and all

Figure 3 Simulation study of model and parameter inference. (A) Bayes
factor values for the changepoint model vs. the null model, as a function
of the number of changing branches used in the simulation. (B) Distribu-
tion of posterior mean number of changing branches as a function of the
true number of simulated changing branches. (C) ROC curve: true positive
rate as a function of the false positive rate.
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others ,20%. Among the 4 branches with highest support,
the oldest corresponds to an increase in the frequency of in-
fection of animals for a large clade of 265 isolates within
DT104. The other 3 branches all occurred within this clade
and correspond to three separate further increases in the fre-
quency of infection of animals for three subclades containing
12, 15, and 59 isolates, respectively. These results confirm and
refine the original conclusions of the study in which the data
were presented (Mather et al. 2013), that the epidemic of

DT104 in Scotland was not homogenous in humans and
animals. Specifically, a sublineage increasingly became re-
stricted to infecting only animals and not humans, which
could be the result of either adaptation or niche segregation.

Discussion

This study is based on the concept of phenotype distribution,
which is the distribution of phenotypes that a given genotype

Figure 4 Application to HIV immunology. Shown is a phylogenetic tree of 261 HIV-infected individuals from the first 1000 nucleotides with the tips
colored according to presence and absence of HLA allele B57 in the host. The thickness and color of the branches are proportional to the posterior
probability of having a changepoint.
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mayexpress dependingonenvironmental factors, as a result of
phenotypic plasticity (DeWitt et al. 1998; Agrawal 2001). We
presented a model in which the phenotype distribution is
allowed to change along the branches of a phylogenetic tree
and an efficient Bayesian method to perform inference under
this model. Our model for the evolution of the phenotype
distribution is related to previous work on trait evolution with
intraspecific variability, where the trait values recorded at the
tips of a tree are drawn from a distribution whose parameters
evolved as a Brownian motion on the branches of the tree
(Felsenstein 2008; Revell and Reynolds 2012; Kostikova
et al. 2016). A key difference, however, is that here we con-
sidered that there are parts of the tree in which the underlying
parameters remain constant, so that identifying these compo-
nent parts becomes the main objective of inference. We
showed using both simulated and real data that given pheno-
type observations for the leaves of a phylogeny, our method
can detect branches on which the phenotype distribution
changed significantly. Consequently, a phylogeny can be de-
marcated into lineages with distinct phenotype distributions.

There are many ways in which our approach could be
extended, for example to be applicable to continuous rather
than categorical phenotype measurements (Hadfield and
Nakagawa 2010; Felsenstein 2012) or to allow the evolution
of the phenotype distribution to be more progressive, for
example by making the distribution after a changepoint to
be correlated with, rather than independent from, the distri-
bution before the changepoint. In our examples, the trees
were estimated using maximum likelihood and therefore
the branch lengths measure sequence distance rather than
time. The relationship between such branch lengths and phe-
notypic evolution is still an open question (Cunningham et al.
1998). We did not attempt to model the potential for error
in either the input phylogeny or the input phenotype mea-
surements. Uncertainty about the tree could be accounted
for by applying our method to a sample of trees from
the posterior distribution of the trees that are produced by
Bayesian phylogenetic software such as MrBayes and BEAST
(Huelsenbeck and Ronquist 2001; Drummond et al. 2012).
However, we expect that a little inaccuracy in the tree would

Figure 5 Application to Salmonella ecol-
ogy. Shown is a maximum-likelihood phy-
logenetic tree from a previous study of
Typhimurium DT104 (Mather et al.
2013), with the color on the right indi-
cating the isolates came from either
human (red) or animal (black) sources.
The results of our algorithm are shown
by the thickness and redness of the
branches, which are both proportional
to the posterior probability of host range
change on the given branch.
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not drastically affect the result of ourmethod and likewise for
the phenotype measurement, because the results depend on
phenotype distributions that are themselves stochastic. This
is unlike methods that consider changes in the phenotype
itself, such as ancestral state reconstructions (Yang et al.
1995), for which a mistake in a single phenotype mea-
surement implies an additional evolutionary event for the
phenotype. When considering phenotypes with imperfect
heritability (Visscher et al. 2008), we argue that modeling
the evolution of the phenotype distribution is more biologi-
cally relevant than modeling the evolution of the phenotype
measurement.

There are many research areas in which the method we
proposed could be useful, and we presented two examples in
HIV immunology and bacterial ecology. For example, our
approach could help provide a definition of microbial species.
Detecting incipient speciation requires distinguishing be-
tween ecologically distinct populations in the same commu-
nity (Ferris et al. 2003; Sikorski and Nevo 2005; Johnson
et al. 2006). In this case the phenotype would be ecological
or pathogenicity measurements, and the aim is to determine
whether different phylogenetic clades have distinct distribu-
tions over the measurable ecological quantities (Achtman
andWagner 2008; Fraser et al. 2009). Another potential area
of application is genome-wide association studies (GWAS) in
organisms that reproduce clonally. Population structure is a
confounding effect in GWAS (Marchini et al. 2004) and this is
especially important for clonal organisms (Earle et al. 2016).
One way to account for this population structure would be to
use our method to find the clades on the phylogenetic tree
where the phenotype of interest is uniquely distributed and
perform GWAS stratified by those clusters.
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Figure S1: Tree used for the simulation studies. This tree was simulated using 
coalescent model with 1000 terminal branches.



Figure S2: Equivalent of Figure 3 based on inference using a modified tree compared to the 
tree used for simulation.



Bayes Factor (log scale)
1 10 100 1000+

F
re

qu
en

cy

0

50

100

150

200

250

300

350

400

Figure S3: Bayes factor calculation for the HIV study.
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Figure S4: Application of ancestral state reconstruction to the Salmonella dataset.
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Proposal for λ
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