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Abstract
The importance of the thyroid hormone (TH) transporter, monocarboxylate transporter 8

(MCT8), to human neurodevelopment is highlighted by findings of severe global neurological

impairment in subjects with MCT8 (SLC16A2) mutations. Intrauterine growth restriction

(IUGR), usually due to uteroplacental failure, is associated with milder neurodevelopmental

deficits, which have been partly attributed to dysregulated TH action in utero secondary to

reduced circulating fetal TH concentrations and decreased cerebral thyroid hormone receptor

expression. We postulate that altered MCT8 expression is implicated in this pathophysiology;

therefore, in this study, we sought to quantify changes in cortical MCT8 expression with IUGR.

First, MCT8 immunohistochemistry was performed on occipital and parietal cerebral cortex

sections obtained from appropriately grown for gestational age (AGA) human fetuses

between 19 weeks of gestation and term. Secondly, MCT8 immunostaining in the occipital

cortex of stillborn IUGR human fetuses at 24–28 weeks of gestation was objectively compared

with that in the occipital cortex of gestationally matched AGA fetuses. Fetuses demonstrated

widespread MCT8 expression in neurons within the cortical plate and subplate, in the

ventricular and subventricular zones, in the epithelium of the choroid plexus and ependyma,

and in microvessel wall. When complicated by IUGR, fetuses showed a significant fivefold

reduction in the percentage area of cortical plate immunostained for MCT8 compared with

AGA fetuses (P!0.05), but there was no significant difference in the proportion of subplate

microvessels immunostained. Cortical MCT8 expression was negatively correlated with the

severity of IUGR indicated by the brain:liver weight ratios (r2Z0.28; P!0.05) at post-mortem.

Our results support the hypothesis that a reduction in MCT8 expression in the IUGR fetal brain

could further compromise TH-dependent brain development.
Key Words

" MCT8

" human fetus

" CNS

" intrauterine growth

restriction (IUGR)
icen
.0 U
Journal of Endocrinology

(2014) 220, 85–95
Introduction
Intrauterine growth restriction (IUGR) describes the fail-

ure of a fetus to attain its genetically determined growth

potential, with the most common underlying etiology
being uteroplacental failure associated with abnormal

placental development. IUGR is often characterized by

continued head and brain growth at the expense of other
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less vital organs resulting in an elevated brain:liver weight

ratio postnatally (Cox & Marton 2009). IUGR complicates

5–10% of pregnancies and is associated with increased

perinatal mortality (Kady & Gardosi 2004). Survivors

demonstrate an increased prevalence of cognitive impair-

ment compared with babies born appropriately grown for

gestational age (AGA). They have lower school achieve-

ments and intelligence quotient (IQ) scores (Leitner et al.

2007), and 5% show neurodevelopmental delay at the age

of 9–10 years (Kok et al. 1998). Significantly reduced

circulating concentrations of free thyroxine (T4) and

tri-iodothyronine (T3) (Kilby et al. 1998) and decreased

expression of cerebral thyroid hormone receptor (TR)

expression (Kilby et al. 2000) in growth-restricted human

fetuses are postulated to contribute to this neurodevelop-

mental morbidity. Examination of growth-restricted fetal

guinea pigs has shown a compensatory increase in brain

deiodinase type 2 (DIO2) expression, which could increase

local concentrations of the active thyroid hormone (TH)

ligand, T3, from T4 conversion (Chan et al. 2005). In clinical

practice, once IUGR is diagnosed antenatally, timely

delivery aimed at avoiding in utero demise while

prolonging gestation as far as possible for fetal maturity is

the mainstay of management. Currently, there are no

in utero therapies to reduce the risk of neurocognitive

impairment in IUGR. An increased understanding of how

TH-responsive neurodevelopment is altered in IUGR may

lead to the development of novel therapies to improve

long-term outcome.

Monocarboxylate transporter 8 (MCT8) is a highly

specific plasma membrane TH transporter (Friesema et al.

2003). Its importance to human CNS development has

been highlighted by discoveries of different mutations

within the MCT8 gene (SLC16A2) in subjects with a variety

of X-linked mental retardation syndromes, characterized

by severe psychomotor and cognitive impairment and

accompanied by elevated serum free T3 concentrations but

normal or low free T4 concentrations (Dumitrescu et al.

2004, Friesema et al. 2004, Schwartz et al. 2005).

In mice, MCT8 facilitates the entry of TH into the

brain parenchyma across the blood brain–barrier (Ceballos

et al. 2009) and, at a cellular level, the entry of TH into

neurons (Trajkovic et al. 2007), where MCT8 is responsible

for 75% of T3 uptake (Wirth et al. 2009). In rodents, TH

affects cell proliferation and differentiation of neuroblas-

toma cells (Garcia-Silva et al. 2002) and oligodendrocytes

(Jones et al. 2003), neuronal migration (Lavado-Autric

et al. 2003, Auso et al. 2004), synaptogenesis (Gilbert

& Paczkowski 2003), and cerebellar Purkinje cell

dendritic outgrowth (Heuer & Mason 2003). T3 has a
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proproliferative effect in human neuronal precursor cells,

NT2, but MCT8, independently of T3, could repress NT2

proliferation (James et al. 2009), suggesting another role

for MCT8 apart from TH transport. However, the lack of

neurological defects in Mct8-knockout mice (Wirth et al.

2009) emphasizes the need for studies in humans. From

7 weeks of gestation, the human fetal cerebral cortex

is potentially TH responsive, expressing a range of TH

transporters including MCT8 (Chan et al. 2011) and all

the major TR isoforms (nuclear transcription factors

that bind to T3 to regulate gene transcription), and

demonstrates pre-receptor regulation by DIO2 and deio-

dinase type 3 (DIO3) (which inactivates T4 and T3) (Chan

et al. 2002). Fetal neurons are believed to be the main

target for TH action in the brain.

We hypothesize that human fetal cortical MCT8

expression is reduced with severe IUGR, which could

further compromise neurodevelopment. In this study, we

first carried out localization studies for MCT8 expression

in the human fetal cerebral cortex from mid-gestation

onwards. We then compared cortical MCT8 expression in

severe IUGR human fetuses with that in AGA human

fetuses that were stillborn.
Subjects and methods

Brain samples

This study was approved by the South Birmingham

Research Ethics Committee. Written consent for blocks

and slides to be used in research and teaching was

obtained in all cases. Cases were identified retrospectively

from reports of all post-mortems conducted at the

Birmingham Women’s Hospital over a 3-year period.

Only a minority of cases fulfilled our strict inclusion

criteria: normal karyotype, no histopathological evidence

of intrauterine infection, and limited or no maceration

(indicating very short death-to-delivery intervals). Gesta-

tional ages were determined by first-trimester ultrasound

scan for crown–rump length. Sections of formalin-fixed

paraffin-embedded (FFPE) samples were then obtained

from the hospital archive of histopathology blocks.

First, sections of the fetal cerebral cortex (occipital and

parietal) obtained during the second (19–20 weeks; nZ3)

and third (26–37 weeks; nZ3) trimesters from AGA fetuses

with unexplained intrauterine deaths were examined.

Sections of normal adult occipital cortex (one female

aged 55 years and one male aged 37 years) sampled at post-

mortem and donated to the London Neurodegenerative
Published by Bioscientifica Ltd
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Diseases Brain Bank (King’s College London, Institute of

Psychiatry) were obtained for comparison.

Secondly, sections of the occipital cerebral cortex

obtained from stillborn human fetuses between 24 and

28 weeks of gestation were obtained and categorized as

either IUGR (nZ7) or AGA (nZ5) (Table 1). IUGR was

defined as having i) a birth weight below the third

percentile for gestation, based on customized growth

charts, which account for maternal weight, height, parity,

ethnicity, gestation, and fetal sex (Gardosi et al. 1992) and

ii) a brain:liver weight ratio O4 (Cox & Marton 2009).

Although we had not prospectively documented the

presence of fetal growth restriction prenatally before

death, the post-mortem features were highly suggestive

of this pathology. IUGR is likely to be significant, as the

phenotype was associated with fetal demise.
Immunohistochemistry

FFPE sections (5 mm) of cortical samples were immuno-

stained for MCT8 using an avidin–biotin peroxidase

technique (Vectastain Elite; all reagents from Vector

Laboratories (Peterborough, UK) unless otherwise stated)

as per the kit instructions as described previously (Chan

et al. 2011). Briefly, after dewaxing and serial rehydration,

the sections were incubated in 10 mM sodium citrate buffer

(pH 6.0) in a 95 8C water bath for 10 min. After washing in

50 mM Tris/0.15 M saline (pH 7.5; TBS), the sections were

blocked with 10% normal goat serum (Sigma–Aldrich) in

diluting buffer (TBS, 0.3% Tween 20, and 2% BSA) for

20 min. Then, consecutive sections were incubated over-

night at 4 8C with rabbit anti-MCT8 (4790) (Sigma–

Genosys Ltd., Haverhill, UK; Vasilopoulou et al. 2010,

Chan et al. 2011) at a concentration of 1 mg/ml, anti-glial

fibrillary acidic protein (GFAP, glia marker; Dako M0761 at

1:120 (Carpinteria, CA, USA)), or anti-CD68 (microglia

marker; Dako M0876 at 1:100). The sections were incu-

bated with biotinylated goat anti-rabbit secondary

antibody at 1:200 for 30 min followed by incubation in

5% HRP for 5 min and then in the avidin–biotin–

peroxidase complex for 30 min. Immunoreactivity was

visualized with 3,3 0-diaminobenzidine (15 min). All the

steps were separated by TBS–Tween washes. Sections used

for localization studies were lightly counterstained with

Mayer’s hematoxylin and mounted in Vectamount. Slides

for comparisons of IUGR fetuses with AGA fetuses were

mounted with aqueous Vectashield H1000 without coun-

terstaining. The sections were examined using bright-field

microscopy using a Zeiss microscope, and images were

captured using the AxioVision Software (Oberkochen,
http://joe.endocrinology-journals.org
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Germany). The specificity of this MCT8 antiserum (4790)

has been determined previously (Vasilopoulou et al. 2010,

Chan et al. 2011) and confirmed in the studies by pre-

incubating the primary antibody with blocking peptide

(25 mg/ml) before application to adjacent sections.

Negative control immunostaining was also performed for

each tissue sample by omitting the primary antibody.
Quantification of MCT8 immunostaining

Comparisons of IUGR fetuses with AGA fetuses focused on

the occipital cerebral cortex, which is involved in visual

perception and interpretation. The in utero development

of this structure is thought to be TH responsive (Zoeller &

Rovet 2004) and affected in IUGR (Dowdeswell et al. 1995).

We quantified i) the percentage area of cortical plate

immunostained for MCT8 and ii) the proportion of

microvessels stained for MCT8 in the subplate, with the

researcher blinded to the experimental grouping.

MCT8 staining in the cortical plate For each fetus,

five images (20! magnification) from the MCT8-

immunostained section and five corresponding images

from the adjacent section processed with the omission of

the primary antibody as a negative control were analyzed.

An objective measure of the area containing brown pixels

corresponding to immunoreactive staining for MCT8 was

quantified using the software ImageJ (U. S. National

Institutes of Health, Bethesda, MD, USA) as described

previously (Ferreira & Rasband 2012). Briefly, bright-field

images were converted to grayscale ‘RGB stack’, and the

green channel image was used for analysis. A grayscale

cutoff point derived from the corresponding negative

controls was set as the threshold signifying positive

staining and the same threshold applied to the immuno-

stained sections for each fetus. The total area of tissue

stained above the threshold was quantified and expressed

as a proportion of the total tissue area examined. The area

fraction of background noise, as determined by applying

the same threshold to the corresponding negative control,

was subtracted from the area fraction of tissue stained to

give the true proportion of area of tissue staining positively

for MCT8. Since the area of staining could also be affected

by cell density, the number of cell bodies (nuclei) within a

250!250 pixel field in each quadrant of every image

analyzed was counted and averaged to determine the

relative cellularity, which was used to correct the area

stained for MCT8. The corrected percentage of area stained

for each fetus was then expressed relative to the mean of

the AGA group, which was assigned an arbitrary value of 1.
Published by Bioscientifica Ltd
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MCT8 staining inmicrovessels MCT8 immunoreac-

tivity in microvessels was assessed in the subplate zone, a

layer deep to the cortical plate with a lower density of cells,

where it was easily possible to identify all the microvessels

in bright field based on morphology at 40! magni-

fication. For each fetus, 20 non-overlapping images of the

subplate were taken. The number of immunostained

microvessels was counted and calculated as a percentage

of all the microvessels present. An average of 40.4G1.9

microvessels was counted per fetus. Non-specific staining

of intravascular erythrocytes was disregarded. The percen-

tage of microvessels stained was then expressed relative to

the mean of the AGA group, which was assigned an

arbitrary value of 1.

Statistical analyses

Data were analyzed using the SigmaStat Software, v3.1 (San

Jose, CA, USA). Demographic data were analyzed using the

unpaired Student’s t-test to compare continuous variables

and the Fisher’s exact test to compare contingency tables.

Quantitative data expressed as relative values were used for

analysis using the two-way ANOVA followed by the Holm–

Sidak all pairwise multiple comparisons post hoc analysis.

The quantitative datasets passed the normality and equal

variance tests. Spearman’s rank correlation test was used to

determine significant correlations between the variables.

Significance was taken as P!0.05.
Results

MCT8 immunolocalization within human fetal and

adult cerebral cortex

The developing human fetal cerebral cortex in mid-

gestation is formed by several layers; from superficial to

deep, they are the marginal zone, cortical plate, subplate,

intermediate zone, subventricular zone, and ventricular

zone (lying adjacent to the ventricle; Bystron et al. 2008). At

19 weeks of gestation, sections of the parietal and occipital

cortex obtained from AGA fetuses demonstrated MCT8

immunostaining in all the layers. Immunostaining was

found within the marginal zone, in cortical plate neurons,

a proportion of cells in the subplate zone, in hippocampal

neurons, epithelial cells of the choroid plexus and

ependyma, and in numerous cells in the ventricular and

subventricular zones (Fig. 1A, B, C, D and H). A similar

distribution of MCT8 immunostaining was observed in

sections obtained from AGA fetuses at 26–37 weeks of

gestation. However, with advancing gestation and
http://joe.endocrinology-journals.org
DOI: 10.1530/JOE-13-0400
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maturity of the cortex, there were fewer cells in the

ventricular and subventricular zones and, hence,

correspondingly less MCT8 staining in these layers (Fig. 1D,

EandF).Mostmicrovessels throughout theareas studiedwere

MCT8 positive (Fig. 1G). The absorption of the antibody with

the blocking peptide effectively abolished MCT8 staining,

confirming the specificity of staining (Fig. 1A, B and C).

MCT8 immunostaining corresponded with the well-

described pattern of neuronal cell distribution within the

cerebral cortex, with the greatest staining being observed in

the cortical plate, which is dense with neurons. Neuronal

localization of MCT8 was also supported by our findings

that immunostaining for GFAP and CD68, indicating glia

and microglia respectively, in adjacent sections revealed an

entirely different pattern of distribution in all the layers of

the cortex (Fig. 1J and K) compared with immunostaining

for MCT8. Specifically, there was no GFAP (Fig. 1L) or

CD68 immunostaining in the cortical plate. In addition,

the morphology of cells stained with each antibody was

clearly different. Neurons were identified by a round dense

nucleus and abundant cytoplasm with dendritic branches,

many of which were immunostained for MCT8, in contrast

to astrocytes, which had a large irregular nucleus with clear

nucleoplasm containing a vesicular chromatin pattern and

very small or absent nucleoli showing no MCT8 immuno-

staining (Fig. 1H and I). Within the subplate only a selected

population of neurons were MCT8 positive at every

gestational age examined. In the adult occipital cortex,

microvessels were immunostained for MCT8, but propor-

tionally fewer neurons were immunostained for MCT8

compared with those in the fetal cortex (data not shown).
Comparison of MCT8 immunostaining in the occipital

cortex of AGA and IUGR fetuses

There were no significant differences between the IUGR

and AGA cohorts in terms of gestational age and fetal sex

(Table 1). Compared with the AGA group, the IUGR group

had significantly lower raw birth weights (P!0.05; with all

the customized birth weight percentiles being under the

third percentile), but the raw brain weights were not

significantly different between the two groups, with brain

weights being well preserved for gestation even in the IUGR

cohort (1.08 relative to the expected mean). However, the

relative brain weights (ratio to the expected mean for

gestation) in the IUGR group were still lower compared

with those in the AGA group (P!0.05). The brain:liver

weight ratios in the IUGR group were significantly higher

compared with those in the AGA group (P!0.01). Atrophy

of the thymus secondary to chronic stress in IUGR (Cox &
Published by Bioscientifica Ltd
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Figure 1

MCT8 immunohistochemistry of cerebral cortex sections obtained from

structurally normal fetuses with unexplained intrauterine death. Corres-

ponding negative controls (antibody absorption by the blocking peptide)

of adjacent sections are shown in panel inserts in the bottom right corner

for (A, B and C). At 19 weeks, MCT8 was located in the cortical plate within

the parietal cortex (PC) with less staining in the marginal zone (MZ) (A),

in the choroid plexus (CP) (B), and the hippocampus (C). MCT8 immuno-

staining was also observed in the ependymal cells lining the ventricle (V)

and in numerous cells within the ventricular zone (VZ) and subventricular

zone (SVZ) at 19 weeks (D), 26 weeks (E), and 37 weeks (F). MCT8

immunostaining was observed in the wall of a microvessel in the subplate

at 19 weeks (G) and in neurons in the intermediate zone at 19 weeks (H)

and 37 weeks (I; arrow points to a neuron). An adjacent section stained

with GFAP is shown in a panel insert in the bottom right corner for (H)

showing differences in the morphology of immunostained cells. At

19 weeks, CD68 immunostaining for microglia (J) and GFAP immuno-

staining for glia (K) in the ventricular and subventricular zones showed a

different pattern of staining compared to that of MCT8. There was also a

lack of GFAP staining in the cortical plate and marginal zone of the parietal

cortex at 19 weeks (L). Magnification barZ50 mm.
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Marton 2009) was also evident by the significantly reduced

raw thymus weights (P!0.01) and thymus weights relative

to the expected mean for gestation (P!0.001). All these

indicate that the IUGR cohort comprised cases at the severe
http://joe.endocrinology-journals.org
DOI: 10.1530/JOE-13-0400
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end of the spectrum. Most of the IUGR cases demonstrated

features of chronic uteroplacental failure on placental

examination (Table 1; ReCoDe C4 and C5), which were

absent in the AGA cohort.
Published by Bioscientifica Ltd
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Figure 2

Quantification of MCT8 immunostaining in the occipital cerebral cortex of

intrauterine growth-restricted (IUGR) fetuses (nZ7; black bars) compared

with that in the occipital cerebral cortex of appropriately grown for

gestational age (AGA) fetuses (nZ5; white bars). The percentage area of

cortical plate and the proportion of microvessels in the subplate

immunostained for MCT8 are expressed relative to the mean of the AGA

group, which was given an arbitrary value of 1. Columns and error bars

represent the mean and S.E.M. Statistically significant difference, *P!0.05.

Figure 3

Representative sections showing MCT8 immunostaining of the cortical

plate of an intrauterine growth-restricted (IUGR) fetus (A) and an

appropriately grown for gestational age (AGA) fetus (B) within the

occipital cerebral cortex. Corresponding negative controls (no primary

antibody) of adjacent sections are shown in a panel insert in the bottom

right corner. An example of a positively MCT8-immunostained microvessel

in the subplate (C) compared with a negative one (shown in a panel insert

in the bottom right corner) from the same section immunostained for

MCT8 is shown.
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The overall two-way ANOVA, which analyzed the

entire dataset, indicated significantly reduced MCT8

expression in the occipital cortex of IUGR fetuses

compared with that in AGA fetuses (P!0.05). However,

post hoc tests indicated that the difference was significant

only for cortical plate immunostaining (P!0.05; Fig. 2).

The mean percentage area of cortical plate immuno-

staining after correction for relative cell number was

4.7G1.5% (meanGS.E.M.; 0.2G0.07 relative to AGA) in the

IUGR group compared with 23.3G8.1% (1G0.3 relative to

AGA) in the AGA group (P!0.05), which represents

approximately a fivefold decrease in MCT8 expression

with IUGR (Fig. 2). The cellularity within the cortical plate

was not significantly different between the two cohorts

(IUGR, 1.3G0.1 and AGA, 1G0.1). General observations

of cortical plate images indicated that the decrease

in MCT8 staining was confined to morphologically

defined neuronal cells, while microvessels seemed to be

spared (Fig. 3).

Post hoc tests revealed no statistically significant

difference in the proportion of microvessels stained for

MCT8 in the IUGR samples (27.9G10.0%; 0.6G0.2

relative to AGA) compared with that in the AGA samples

(45.2G9.6%; 1G0.2 relative to AGA; Fig. 2).

However, there was a significant positive correlation

between the area of cortical plate MCT8 immunostaining

and the proportion of microvessels stained in the subplate

(correlation coefficientZ0.71, r2Z0.27; P!0.01) when all
http://joe.endocrinology-journals.org
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Figure 4

(A) Correlation between the relative cortical plate area immunostained for

MCT8 and the relative proportion of microvessels immunostained for MCT8

in IUGR (black dots) and AGA (white squares) fetuses. A significant positive

correlation was observed when all the samples were considered together

(dashed line) and when only the IUGR samples were considered on their

own (straight line), but there was no significant correlation when only

among the AGA samples were considered on their own (dashed and dotted

line). (B) Correlation between the relative cortical plate area immunos-

tained for MCT8 and the brain:liver weight ratio. A negative correlation

was observed when all the samples were considered together. Statistically

significant differences are **P!0.01, *P!0.05.
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the samples were analyzed together. The positive corre-

lation remained significant within the IUGR group

(correlation coefficientZ0.75, r2Z0.12; P!0.05; Fig. 4A),

but there was no significant correlation within the AGA

cohort on its own.

When all the samples were analyzed together, a

negative correlation was also observed between the area

of cortical plate MCT8 immunostaining and brain:liver

weight ratios (correlation coefficientZK0.64, r2Z0.28;

P!0.05; Fig. 4B). There was no correlation between

MCT8 immunostaining in the cortical plate or

microvessels with either gestational age or fetal sex.
Discussion

Changes in TH transporter expression have never been

described in the growth-restricted state. This study is the
http://joe.endocrinology-journals.org
DOI: 10.1530/JOE-13-0400
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first to demonstrate significantly reduced cortical MCT8

expression within the developing CNS of human fetuses

stillborn with severe IUGR. Our results suggest that altered

TH transporter activity in cerebral neurons could be a

contributory factor to the pathophysiology of neurodeve-

lopmental impairment associated with IUGR.

The strength of this study is the use of human fetal

tissue samples, thus eliminating species differences,

particularly relevant, as Mct8-knockout mice lack the

neurological phenotype observed in humans with MCT8

mutations. However, a limitation is the restriction of the

availability of human fetal tissue samples of adequate

quality for investigation, hence, the small number of

samples in this study.

The localization of MCT8 in developing neurons

across the different cortical layers, microvessels, and

choroid plexus reported herein is generally consistent

with the findings of previously published studies of

human fetuses (Roberts et al. 2008, Wirth et al. 2009)

and supports its role in the uptake of TH into the brain

parenchyma from the blood and cerebrospinal fluid, as

well as into neurons, from early fetal development.

Neurogenesis takes place in the ventricular and

subventricular zones with much being completed by 28

weeks of gestation (Bystron et al. 2008). MCT8 staining in

these neuroprecursor-rich areas at 19–26 weeks suggests its

involvement in the regulation of neurogenesis. Indeed, we

have previously demonstrated that MCT8 represses the

proliferation of the human neuronal precursor cell NT2 in

a T3-independent manner (James et al. 2009); however,

MCT8 had no effect on NT2 neurodifferentiation in vitro

(Chan et al. 2011). Post-mitotic neurons migrate away

from the proliferative zones and, by 24–28 weeks of

gestation, most cortical neurons have settled to form the

cortical plate, an area comprising predominantly neuronal

cells (Bystron et al. 2008).

During normal human fetal cortical development,

over 70% of neurons undergo programmed cell death after

32 weeks of gestation (Rabinowicz et al. 1996). Magnetic

resonance imaging (MRI) assessments of IUGR premature

infants at 33–34 weeks have shown reduced cerebral

cortical gray matter volume (Tolsa et al. 2004), which

could be due to reduced cell numbers in the cortical plate

(Samuelsen et al. 2003). Similar to that observed in our

IUGR cohort at 24–28 weeks, that study (Samuelsen et al.

2003), however, found no significant differences in

cortical cell numbers compared with AGA samples before

27 weeks.

MCT8 promotes cell death in non-proliferative

cytotrophoblast cells from human placenta
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independently of T3 (Vasilopoulou et al. 2013). It remains

speculative whether MCT8 could also have a similar

effect on neuronal apoptosis. If so, the down-

regulation of MCT8 expression in IUGR neurons could

be a protective mechanism to limit neuronal apoptosis at

the expense of TH transport, of which the latter could be

partially compensated for by other TH transporters

expressed by neurons, as we and others have previously

described in the human fetal cerebral cortex (Wirth et al.

2009, Chan et al. 2011).

Whether the reduction in cortical cell number in the

third trimester is due to reduced neurogenesis, reduced

neuronal migration, or increased cell death in IUGR is not

known. In rats, abnormal neuronal migration in the fetal

CNS in both IUGR (Sasaki et al. 2000) and TH deficiency

(Auso et al. 2004) has been reported. Maternal TH

deficiency in rats has also been reported to lead to

impaired neurogenesis and diminished neocortical

neuronal numbers (Mohan et al. 2012). The extent to

which these altered cellular processes in IUGR, as well as

possibly altered synaptogenesis and dendritic branching,

are mediated by diminished TH action secondary to

reductions in circulating TH concentrations, MCT8

transport, and TR expression remains the subject of

investigation. Other factors such as cerebral hypoxia and

prematurity are also likely to contribute to this neuro-

pathology. Whatever the etiologies, alterations in brain

neural networks assessed by MRI in IUGR infants have

been found to be associated with later neurodevelop-

mental outcomes (Batalle et al. 2012).

Current understanding of the physiological regulation

of MCT8 expression is poor. TH status has been shown to

influence MCT8 expression in some tissues (Capelo et al.

2009) but not in others (Mebis et al. 2009). In IUGR, MCT8

expression in the human placenta is upregulated

(Vasilopoulou et al. 2010) in contrast to that in the fetal

cerebral cortex. These tissue-specific effects argue against a

general alteration in MCT8 activity being part of the

etiology of IUGR, but rather suggest that altered cerebral

MCT8 expression is a local adaptive response to the

growth-restricted state that is associated with chronic

distress, which is supported by our finding that the greater

the growth restriction, the lower the MCT8 expression.

This is in contrast to the AGA fetuses that presumably

suffered from an acute event just before death. The

positive correlation between MCT8 expression in the

cortical plate and that in microvessels suggests that there

may be some common mechanisms regulating MCT8

expression in the CNS.
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Future studies should investigate whether there are

compensatory alterations in the expression of other TH

transporters in neurons and microvessels. Studies could

also extend to other regions of the CNS and at

different gestational ages to obtain a more comprehensive

picture of the effects of IUGR on TH transport and how

this could correlate with observed neurological impair-

ments in IUGR survivors.

In conclusion, our results showing perturbed patterns

of cortical MCT8 expression support the hypothesis

that a reduction in MCT8 expression in the IUGR fetal

CNS could be a contributory factor implicated in the

long-term neurodevelopmental impairments associated

with this condition.
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