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Introduction
Excess calorie consumption and reduced exercise have led to a 
growing number of individuals who are overweight or obese, with 
an estimated prevalence of approximately 65% of US adults and 
over 1.5 billion people worldwide (1). Obesity is associated with sub-
stantial health care burden, with an estimated annual medical cost 
of $210 billion (2). Excess weight gain is accompanied by ectopic fat 
deposition in extra-adipose tissue that contributes to the develop-
ment of hyperlipidemia, insulin resistance (IR), and type 2 diabetes 
(T2D) (3, 4). This disease constellation, in conjunction with addi-
tional cardiovascular (CV) risk factors, significantly increases the 
incidence of CV disease (CVD), such as myocardial infarction and 
heart failure (HF). Thus, understanding the cellular and molecular 
processes that underlie cardiometabolic changes that occur during 
obesity is necessary for the design of optimal medical therapies to 
attenuate or prevent the sequelae of this disease.

Endothelium as an arbiter of homeostasis versus disease. The vas-
cular endothelium is a single layer of cells lining the entire interi-
or surface of all vascular networks. Under normal conditions, the 
healthy endothelium controls vascular homeostasis by modulating 
vascular tone, maintaining blood fluidity and flow, controlling ves-
sel wall permeability, and counteracting vascular inflammation (5). 
As such, endothelial dysfunction, or a failure of the endothelium to  

perform any of these critical functions, is essential in the initia-
tion and progression of atherosclerosis and metabolic disease (6). 
Numerous reports demonstrated that dyslipidemia and hyper-
glycemia result in endothelial dysfunction (7–12). In addition, the 
release of proinflammatory cytokines (IL-6, TNF-α; refs. 5, 13) and 
adipokines (resistin; ref. 14) from inflamed adipose tissue (AT) can 
perturb endothelial function (15). Thus, endothelial dysfunction 
represents a pathophysiological link between metabolic and CV 
disease, and recent discoveries have uncovered an important role 
of the capillary endothelium and microvasculature in regulating 
metabolic functions under homeostatic and pathological conditions 
(16). As cardiometabolic disease progresses, so do vascular inflam-
mation, remodeling, and dysfunction in all segments of the vascula-
ture, including large conduit arteries, resistance vessels (arterioles), 
capillaries, and conductance vessels (veins and lymphatics). These 
changes can exacerbate cardiometabolic disease progression. Thus, 
this Review’s goal is to highlight recent cellular and molecular data 
that implicate the vasculature as an initiating and instigating factor 
in atherosclerosis, IR, and HF development.

Endothelial cells, lipoprotein processing, and 
atherosclerosis
During the fed state, intestine-derived apolipoprotein B-48– 
containing (apoB48-containing) chylomicrons are the primary 
source of dietary lipids. Conversely, during the fasting state, liv-
er-derived apoB100-rich VLDL particles carry endogenous lipids 
to peripheral tissues (17). Chylomicrons and VLDL are triglycer-
ide-rich lipoprotein (TRL) particles that distribute energy-rich free 
fatty acids (FFAs) to metabolically active tissues including the heart, 
AT, and skeletal muscle. Liberation of FFAs from TRLs occurs via 
the interaction of TRLs with lipoprotein lipase (LPL) present on the 
luminal surface of microvascular capillary endothelial cells (ECs) 
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endothelium has negligible levels of GPIHBP1 and low levels of 
LPL. Although provocative, the role of chylomicron remnant par-
ticles in atherosclerosis requires further study.

Endothelium-mediated LDL uptake and atherosclerosis progres-
sion. It is appreciated that LDL uptake, entry, and retention in the 
vessel wall are a key initiating factor in development of athero-
sclerosis (51). Early studies demonstrated that LDL’s passage from 
blood into and across the endothelium occurs via an LDL recep-
tor–independent mechanism and may involve non-clathrin-coat-
ed vesicles, namely caveolae (52). Interestingly, genetic loss of the 
caveolae coat protein, caveolin-1 (CAV-1), reduces LDL uptake into 
ECs and retards atherosclerosis in the presence of elevated TG and 
cholesterol levels (53, 54). Moreover, recent investigation has begun 
to uncover novel mechanisms of receptor-mediated LDL transcyto-
sis during the initiation and progression of atherosclerosis (55).

A study combining genome-wide siRNA screening with 
high-content confocal imaging identified activin A receptor–like 
type 1 (ALK1) as a novel low-affinity, high-capacity receptor for LDL 
particles in ECs that promote LDL transcytosis during hyperlipidem-
ic conditions (56). Accordingly, EC-specific ALK1 depletion in mice 
reduced LDL uptake into vessels in vivo. More recently, the high- 
affinity HDL-binding receptor scavenger receptor class B type 1 (SR-
B1) was identified as a novel player in LDL transcytosis in the aortic 
endothelium, and EC-specific deficiency of SR-B1 reduces athero-
sclerosis in atheroprone mice (57, 58). Interestingly, ALK1 (59) and 
SR-B1 have been localized in caveolae, suggesting that ALK1, SR-B1, 
and CAV-1 may mediate LDL transcytosis across endothelium in a 
complementary way. Indeed, future studies and therapeutic strate-
gies are needed to test this supposition as a novel mechanism to treat 
atherosclerosis in conjunction with lipid-lowering approaches.

ApoM at the interface of lipoprotein metabolism and vascular 
function. ApoM is synthesized in the liver and binds primarily to 
HDL and to a lesser extent to VLDL, LDL, and chylomicrons (60). 
ApoM-containing HDL is atheroprotective and promotes cholester-
ol efflux from macrophages and HDL formation (61). Recent studies 
have shown that apoM/HDL serves as a major molecular chaperone 
in plasma for the biologically active lipid sphingosine-1-phosphate 
(S1P) (62). S1P promotes EC barrier function and endothelial nitric 
oxide synthase (eNOS) activation and protects against inflamma-
tion and atherosclerosis, and many of these actions are mediated 
physiologically by the apoM/S1P complex (63). In addition to its 
vascular actions, apoM/S1P also regulates insulin sensitivity and 
TG metabolism in AT, as discussed elsewhere in detail (63, 64).

Figure 1 summarizes the major findings regarding the relation-
ship between EC lipoprotein processing and atherosclerosis to date.

Current and future approaches to address 
additional CV risk
Statin therapy combined with other cholesterol-lowering strategies 
is the mainstay in reducing risk of atherosclerosis and its sequelae. 
However, some individuals still demonstrate a high risk of athero-
sclerotic incidents despite low to moderate levels of LDL choles-
terol. Thus, “residual risk” in these patients implies that mecha-
nisms beyond cholesterol are important in atherosclerosis disease 
progression (65). Epidemiologically, TRLs are strong independent 
predictors of atherosclerotic CVD (66). Consistently, lowering cir-
culating TG levels with icosapent ethyl (purified eicosapentaenoic 

(18). LPL is transported from subendothelial space to the luminal 
surface of ECs through its interaction with the capillary EC pro-
tein glycosylphosphatidylinositol-anchored HDL-binding protein 1 
(GPIHBP1). GPIHBP1 is essential in anchoring LPL on the surface 
of capillaries during intravascular lipolysis of triglycerides (TGs) 
into FFAs and glycerol. Following lipolysis, FFAs can traverse the 
endothelium passively (flip-flop mechanism), through vectorial 
transport, or via receptor-mediated uptake. Many of these pathways 
of lipoprotein metabolism and FFA uptake mechanisms in ECs were 
recently reviewed in detail (19, 20).

The influx of TRL-derived FFAs in metabolic tissues appears 
within minutes after injection of labeled chylomicron/VLDL-TG 
and is largely dependent on LPL activity (21, 22); loss-of-function 
GPIHBP1 or LPL mutations lead to severe hypertriglyceridemia 
(23–25). LPL activity is negatively regulated by angiopoietin-like 
proteins (ANGPTL3/4/8) (26–29). ANGPTLs are secretory proteins 
that inhibit LPL directly by catalyzing the dissociation of catalyti-
cally active LPL homodimers into inactive monomers (30). These 
proteins are highly expressed in metabolic tissues and have recently 
emerged as modulators of LPL-mediated lipid partitioning under 
differing nutritional states. Genome-wide association, exome 
sequencing, and DiscovEHR human genetic studies associate 
loss-of-function mutations in ANGPTL3 or ANGPTL4 with lower 
plasma TGs and LDL, lower fasting blood glucose, increased insu-
lin sensitivity, and reduced CVD incidence (31–36). Despite being 
secreted proteins, ANGPTL3 and ANGPTL4’s effects appear to be 
tissue specific. ANGPTL3 is exclusively expressed in the human 
and mouse liver, and ANGPTL3 deletion in mice leads to increased 
post-heparin plasma LPL and endothelial lipase activity, reduced 
levels of circulating TGs and LDL, and reduced atherosclerosis 
(37–40). ANGPTL4 is expressed and secreted from AT (both white 
and brown) and rodent and primate liver (32, 41–43). Recent stud-
ies showed that ANGPTL4 deficiency in either adipocytes (Ad-KO 
mice) or hepatocytes (Hmut [hepatocyte mutant] mice) lowers plas-
ma TG and cholesterol levels by increasing LPL or hepatic lipase 
activity, respectively (43, 44). As a result, Ad-KO and Hmut mice 
are protected from atherosclerosis during hyperlipidemic condi-
tions, despite no observable changes in systemic inflammation. 
In addition, Hmut mice have improved glucose tolerance, insulin 
sensitivity, and reduced adiposity during high-fat diet–induced 
(HFD-induced) obesity. Together, these studies indicate that tar-
geting ANGPTL4 in a tissue-specific manner can improve car-
diometabolic health in rodent models of atherosclerosis and T2D. 
Although ANGPTL4 is expressed in ECs and is induced by hypoxia, 
the EC-specific role of ANGPTL4 in TG partitioning and athero-
sclerosis has yet to be studied.

Chylomicron remnants and atherosclerosis. After peripheral lip-
olysis, a major portion of remnant chylomicrons still contain sub-
stantial amounts of lipid. Chylomicron remnants found in human 
atheromas may contribute to atherosclerosis through several 
mechanisms (45–47). First, studies have reported that completely 
lipolyzed chylomicron remnants (~50 nm diameter) can contain 
approximately 40-fold greater cholesterol than LDL (48, 49). Sec-
ond, a recent study revealed that the aorta of LPL-deficient mice 
can take up chylomicron remnants via a receptor-mediated path-
way and transfer FFAs from endocytosed chylomicrons to lipid 
droplets in ECs (50). These findings are interesting, as the aortic 
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oligonucleotide targeting hepatic ANGPTL3 (vupanorsen) led to 
reduction in circulating TGs and LDL in healthy and T2D indi-
viduals (71). In addition, the FDA recently approved evinacumab  
(trade name Evkeeza), a monoclonal antibody against human 
ANGPTL3, following phase III clinical trial results demonstrating 
impressive (49%) reduction in circulating LDL in patients with 
severe, inherited forms of hypercholesterolemia (72, 73). Although 
exciting, whether targeting of ANGPTL3 to enhance TRL clear-
ance can reduce CV events in patients on lipid-lowering therapy 
with atherosclerotic CVD remains undetermined.

Role of the microvasculature in metabolic 
homeostasis
In addition to indirect effects of EC processing of TRL, emerging 
evidence suggests that the microvasculature has a direct role in 
maintaining the function of highly metabolic organs under nor-
mal physiological conditions. Importantly, disruption of micro-
vascular function has been implicated in disease progression of 

acid [EPA]) in patients on a maximally tolerated dose of statins sig-
nificantly reduced risk of CV events/death by 25% compared with 
placebo in CVD patients or patients with diabetes who had elevated 
fasting TGs (135–499 mg/dL) and one additional risk factor (67). 
These results provide supporting evidence that perturbed TG pro-
duction and clearance, as is common in obesity and T2D, increase 
CVD susceptibility. However, these results may be unique to puri-
fied icosapent, as other large studies do not support use of mixed 
omega-3 carboxylic acids for reducing major CV events in high-risk 
patients (68). In addition to its TG-lowering actions, EPA improves 
flow-mediated dilation (an index of endothelial function) by reduc-
ing inflammation and enhancing NO bioavailability in patients with 
mild hypertriglyceridemia (69).

Considering the role of the microvasculature in mediating 
TG clearance, pharmacological targets that promote vascular par-
titioning of TGs have been explored in preclinical models of car-
diometabolic disease and in clinical trials (70–73). Along these 
lines, a recent phase II clinical trial demonstrated that an antisense 

Figure 1. Schematic overview of systemic lipoprotein metabolism. Triglyceride-rich lipoproteins such as VLDL and chylomicron (CM) are produced by the 
liver and gut, respectively, which distribute FFAs to various metabolic tissue(s) like muscle, heart, and adipose by interacting with the GPIHBP1-bound 
endothelial LPL enzyme. LPL activity is regulated by secreted ANGPTL3, ANGPTL4, and ANGPTL8. In subsequent peripheral lipolysis, VLDL and CM are 
converted into intermediate-density lipoprotein (IDL) and chylomicron remnants (CMRs). In the liver, HL liberates FFAs from IDL and converts them into 
LDL particles. HL activity is inhibited by ANGPTL4. The liver clears a large portion of remnants (LDL and CMRs) via hepatic receptors (LDLR and LRP1). Under 
hyperlipidemic conditions, some fractions of LDL or CMRs accumulate and oxidize in the subendothelial space of a large artery, which is subsequently taken 
up by macrophages that develop into foam cells within atherosclerotic plaques. Liver-derived Apo M complexed with sphingosine-1-phosphate (S1P) on HDL 
may modulate atherosclerotic plaque progression, first by interacting with endothelial S1P receptors (S1PRs) to maintain vascular integrity and suppress 
inflammation (lower left), and second, by reducing cholesterol overload of macrophages through the promotion of cholesterol efflux (center of figure).
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binding affinity for VEGFR2. Considering dichotomous outcomes 
depending on the timing of intervention, translation of preclinical 
findings to humans will be challenging, especially since patients with 
IR are often already overweight or obese.

Endothelium-derived NO, blood flow, and metabolism. The 
endothelium elegantly balances the release of vasodilatory and 
vasoconstrictive substances to allow for tight regulation of vascu-
lar resistance, and thus tissue perfusion. The most well character-
ized of these factors is endothelium-derived NO, which promotes 
cGMP signaling, resulting in dilation of vascular smooth muscle in 
resistance vessels (89). Logically, blood flow mediates oxygen and 
nutrient delivery to metabolic tissues at rest, during exercise, and 
during the postprandial period (90, 91). Along these lines, eNOS-
KO mice, deficient in the main enzyme generating circulating NO, 
display impaired skeletal muscle glucose and FFA uptake during an 
acute exercise bout, which is directly related to reduction in tissue 
blood perfusion (90). Interestingly, insulin signaling via endothelial 
insulin receptors (INSRs) leads to eNOS activation and subsequent 
recruitment of skeletal muscle capillaries during the postprandial 
period, which contributes to insulin and glucose delivery to skel-
etal muscle (92). Several studies have demonstrated impairments 
in endothelial insulin signaling during high-fat feeding in rodents 
(93–95). Interestingly, endothelial IR may occur prior to systemic 
IR in mice exposed to a HFD (93), and accumulating evidence sug-
gests that perturbations in endothelial insulin signaling can directly 
contribute to whole-body IR (92, 96). Mechanistically, some groups 
have argued that impairments in skeletal muscle capillary recruit-
ment secondary to reduced eNOS activity are largely responsible 
for this relationship, while others have proposed impaired insulin 
delivery through the nonfenestrated endothelium to underlying 
parenchyma cells as an alternative mechanism (see below).

In addition to regulating blood flow, NO can have both short- 
and long-term effects on systemic metabolism. For example, NO/
cGMP signaling contributes to skeletal (97) and heart (98) muscle 
glucose uptake through partial activation of AMP-activated protein 
kinase (AMPK), which then leads to glucose transporter 4 (GLUT-
4) translocation to the cellular membrane of myocytes. Interesting-
ly, in ECs, AMPK activation was demonstrated to activate eNOS 
(99, 100), thus supporting a bidirectional relationship between 
energy sensing and NO signaling. In addition, NO can toggle the 
enzymatic activity of key metabolic proteins through posttransla-
tional mechanisms. Specifically, cysteine-S-nitrosylation at Cys238  
in liver very long acyl-CoA dehydrogenase (VLCAD), a crucial 
enzyme in β-oxidation of fatty acids, improves its catalytic efficien-
cy (101). Furthermore, NO was demonstrated to exert long-term 
effects on energy homeostasis through the regulation of key ener-
gy sensors and transcription factors. In skeletal muscle, together 
with AMPK, NO/cGMP signaling increases the activity of PPARγ 
coactivator 1α (PGC1α) (102), a transcription factor that stimulates 
mitochondrial biogenesis and oxidative metabolism (103). Con-
sistently, eNOS-KO mice have defective skeletal muscle β-oxida-
tion (104) and reduced activity of several key enzymes involved in 
oxidative metabolism (90). In AT, endothelium-derived NO was 
demonstrated to stimulate PPARα and -γ gene transcription, which 
was associated with increased metabolic activity and differenti-
ation (105). As follows, eNOS overexpression protects mice from 
weight gain during high-fat feeding (105). However, due to the 

obesity-induced IR and T2D. Below, we summarize recent studies 
supporting these concepts.

The vasculature and adipose tissue expansion. The relationship 
between the vasculature network and AT under normal physiology 
and diet-induced obesity has been well described (74, 75). Brief-
ly, AT is highly vascularized with a dense capillary network that 
is essential for tissue homeostasis. During adipogenesis, the vas-
culature can deliver stem cells to AT as well as mobilize adipocyte 
progenitor cells and preadipocytes from mural and perivascular 
compartments, respectively (76–78). Therefore, the vasculature 
supports AT homeostasis and directly contributes to AT expansion.

During initial stages of energy surplus, AT expands to store 
excess energy in the form of TGs. Physiological or “healthy” AT 
expansion is a coordinated response that involves remodeling of 
extracellular matrix (ECM) and angiogenesis to allow for adequate 
adipocyte expansion and maintain oxygen/nutrient delivery, respec-
tively. Local hypoxia is a potent stimulus for angiogenesis leading 
to release of several proangiogenic factors from adipocytes through 
the action of HIF1α (79, 80). Of the angiogenic factors released from 
adipocytes, VEGFA/VEGFR2 signaling accounts for the most angio-
genic activity (81). Endothelial VEGFA/VEGFR2 signaling, through 
paracrine action on progenitor cells, is also important in “beiging” of 
superficial white AT (WAT) to resemble more metabolically active 
brown AT (BAT) in rodent models of obesity (82). HIF1α signaling 
was also implicated in the activation of local immune cells, as well as 
the recruitment of circulating immune cells to AT (80). Importantly, 
macrophages facilitate ECM remodeling, removal of apoptotic or 
necrotic cells, and VEGFA secretion to further support angiogene-
sis. Under states of chronic energy surplus, AT expansion becomes 
pathological and is characterized by impaired angiogenesis, unre-
solved inflammation, tissue fibrosis, and an accumulation of necrot-
ic/apoptotic cells. In addition, inflamed AT is insulin resistant, and 
thus exhibits elevated levels of intracellular lipolysis during the fast-
ing and fed states that contribute to ectopic lipid deposition, inflam-
mation, and IR in other tissues.

Considering that angiogenesis is essential for AT expansion, 
targeting of neovascularization at different stages of diet-induced 
obesity has been explored. Several early studies demonstrated that 
inhibiting angiogenesis in AT resulted in AT regression and improve-
ments in metabolic function in rodent models of advanced obesity 
(83, 84). Recent studies challenge this, since physiological angiogen-
esis during the progression of diet-induced obesity protects AT from 
hypoxia and inflammation, ectopic lipid deposition, and systemic IR 
(81). Most studies (85, 86), but not all (87), support these latter find-
ings. Specifically, deleting Vegfa from adipocytes promoted poor AT 
vascularization during high-fat feeding in mice and was associated 
with AT inflammation and worse systemic IR in comparison with 
wild-type littermates (86). Reciprocally, VEGFA overexpression in 
both BAT and WAT rendered protection against diet-induced AT 
inflammation and systemic metabolic derangements (81, 85, 86). 
More recently, adenoviral gene delivery of Vegfb was demonstrat-
ed to attenuate AT inflammation and prevent systemic IR without 
influencing body weight in mice fed a HFD (88). More interestingly, 
delayed Vegfb gene delivery impeded progression of metabolic dys-
function in mice exposed to HFD for 2 months before gene delivery. 
Mechanistically, VEGFB’s beneficial effects occur through its inter-
action with the decoy receptor VEGFR1, thus improving VEGFA’s 
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these proteins impairs cardiac and skeletal muscle FFA uptake (114, 
115). As the heart largely relies on FFAs to meet its large energetic 
demands, impairing endothelium-mediated cardiac FFA transport/
uptake has been associated with cardiac hypertrophy and dysfunc-
tion (115, 116). Beyond chaperone proteins, recent work has demon-
strated that fatty acid transport protein 4 (FATP4) is localized to 
the endoplasmic reticulum in ECs and mediates cellular uptake 
of FFAs via acyl-CoA synthetase (ACS) activity and mitochondri-
al ATP production (117). These studies align with the hypothesis 
of vectorial transport (118) (or acylation) in that FFA “activation” 
via the ATP-dependent covalent addition of a CoA group by ATP- 
dependent ACS proteins decreases the intracellular FFA concen-
tration and drives FFA uptake by the law of mass action. FATP3  
and other acyl-CoA synthetases (acyl-CoA synthetase long chain 
family member 1 [ACSL1]) expressed in capillary ECs likely mediate 
FFA uptake via similar mechanisms (117).

Early studies demonstrated that PPARγ regulates an EC tran-
scriptional program (FABP4, CD36, and GPIHBP1) that largely 
dictates tissue uptake and clearance of FFAs during fasting and 
the postprandial period (119). More interesting was the fact that 
endothelium-specific PPARγ-KO mice were protected from HFD- 
induced IR, despite increased liver adiposity. Other studies show 
that the transcription factors mesenchyme homeobox 2 (Meox2) 
and transcription factor 15 (Tcf15) regulate the expression of CD36, 
FATBP4, FATBP5, and GPIHBP1, but not FATP3 and FATP4, in 
cardiac capillary ECs (115). As expected, partial deletion of Meox2 
and Tcf15 reduced cardiac FFA uptake and promoted cardiac dys-
function and fibrosis in mice. Similarly, disrupting NOTCH signal-
ing in ECs severely blunted cardiac uptake of FFAs secondary to 
downregulation of endothelial lipase, FABP4, FABP5, and CD36, 
while increasing the expression of the LPL inhibitor ANGPTL4 
(116). The reduction in cardiac FFA uptake led to a compensato-
ry increase in glucose uptake, cardiac hypertrophy, and a dramatic 
reduction in systolic performance.

Although FFA uptake through different pathways is well 
described, the fate of FFAs once internalized is less clear. Recent 
data showed that ECs contain the machinery to transiently form 
and turn over lipid droplets (LDs) in response to FFA loading in both 
micro- and macrovascular vessels (120). In microvascular ECs, LD 
synthesis buffers lipotoxicity mainly through the actions of diacyl-
glycerol O-acyltransferase 1 (DGAT1). Alternatively, LD hydrolysis, 
which is rate-limited by adipose triglyceride lipase (ATGL), provides 
FFAs for mitochondrial oxidation or delivery to parenchymal cells 
(120). Interestingly, EC lipolysis of LDs is negatively regulated by 
CAV-1 in microvessels (121). To date, the function of LD metabolism 
in large-vessel ECs remains unclear. Global ATGL loss can trigger 
EC dysfunction in large vessels (122), suggesting that LD turnover 
may also be important in large-vessel EC homeostasis.

Interestingly, hormone peptides (apelin [ref. 123]), growth fac-
tors (VEGFB [ref. 124], angiopoietin-2 [ref. 125]), and metabolites 
(3-hydroxybutyrate [ref. 127]) released from metabolic tissues can 
alter the expression level or localization of several FFA transport-
ers, demonstrating coordinated regulation between the endothe-
lium, the circulating milieu, and the underlying parenchymal cells. 
For example, 3-hydroxyisobutyrate (3-HIB) is a metabolite released 
from excessive branched-chain amino acid metabolism in skeletal 
muscle of genetically diabetic mice. In a paracrine manner, 3-HIB 

complexities of NO biology, the translational aspect of these stud-
ies is challenging (see below).

Transendothelial insulin transport. Along with blood flow and 
tissue perfusion, transendothelial transport (TET) of insulin con-
tributes to insulin delivery to underlying parenchymal cells in tissue 
where nonfenestrated endothelial networks exist. Notably, intact 
INSR signaling appears to be of paramount importance for mediat-
ing TET in both cell culture and animal models. In vitro, inhibiting 
downstream components of the insulin signaling pathway dramat-
ically impairs insulin uptake in aortic ECs (106). In rodent models, 
endothelium-specific INSR deletion slows the kinetics of insulin 
delivery to underlying peripheral tissue in certain areas of the brain, 
which predisposes animals to overeating and systemic IR when they 
are challenged with HFD (96). Interestingly, evidence suggests that 
CAV-1 is involved in apical-to-basolateral transport of insulin, and 
this process is partially dependent on intact insulin signaling (107). 
A recent study demonstrated that endothelial NOTCH signaling 
reduces CAV-1 levels as well as other proteins involved in caveolae 
formation during high-fat feeding (108). In this study, endothe-
lium-specific NOTCH deletion rendered protection from HFD- 
induced IR in skeletal muscle and AT. Interestingly, CAV-1 was 
demonstrated to stabilize INSRs in AT (109); thus, caveolae forma-
tion may not be necessary for insulin transport in the endothelium. 
In addition to receptor-mediated processes, others have proposed 
that insulin TET occurs via a nonsaturable, INSR-independent flu-
id-phase process (110, 111). Indeed, it is possible that both recep-
tor-dependent and -independent mechanisms are operative in vivo, 
as endothelium-specific INSR deletion only delays insulin signaling 
kinetics, rather than eliciting complete loss of insulin responsive-
ness in parenchymal tissue following insulin injection (96).

Endothelium-mediated fatty acid uptake. As mentioned above, 
FFAs can be liberated from TRLs via local endothelial LPL activity. 
In addition, lipolysis of adipocyte TGs leads to elevated circulating 
FFAs bound to albumin. As with insulin delivery, FFAs must tra-
verse the endothelium before delivery to underlying parenchymal 
cells in tissues with nonfenestrated capillaries. Once believed to be 
a completely passive process, recent in vivo evidence has bolstered 
the idea that active/facilitated endothelial transport is also opera-
tive in delivery of FFAs to underlying parenchymal cells. For exam-
ple, mice with endothelium-specific CD36 deletion have reduced 
tissue FFA uptake during fasting, which in turn renders protection 
against HFD-induced glucose intolerance and IR in comparison 
with control littermate mice (112). Alternatively, studies using 
NanoSIMS technology (CAMECA) to visualize the uptake of chylo-
micron-derived FFAs across capillaries demonstrated an extremely 
rapid uptake process that was not influenced by CD36 deficien-
cy (22). At first glance, these studies seem contradictory, but they 
support early observations that LPL-mediated VLDL hydrolysis or 
albumin-bound FFA fractions utilize CD36 for FFA uptake, whereas 
chylomicron hydrolysis and subsequent FFA transport to cardiac tis-
sue are not mediated by CD36 (113). The mechanisms determining 
the route of FFA entry are unclear, but may arise from differences in 
receptor affinities, concentrations of FFA in its various bound states, 
or the receptor density of other EC fatty acid–binding proteins 
(FABPs). Along these lines, the fatty acid chaperone proteins FABP4 
and FABP5 are abundantly expressed in the capillary endothelium 
of cardiac and skeletal muscle, and deleting or downregulating 
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promotes transendothelial FFA transport via activation of FATP4, 
and consequently contributes to muscle lipid accumulation and IR 
in skeletal muscle (126). Conversely, angiopoietin-2 released from 
superficial AT (SAT) during nutrient overload prevents ectopic lipid 
accumulation in other insulin-sensitive tissues by activating endo-
thelial α5β1 integrin signaling to enhance FFA uptake in SAT. Notably, 
several of these factors have other physiological functions besides 
influencing EC-mediated FFA uptake, such as the role of VEGFB in 
AT angiogenesis (88). Thus, targeting these factors may not be thera-
peutically efficacious in comorbid disease states, and deeper molec-
ular understanding of signaling events that dictate aberrant EC FFA 
delivery in a tissue- and disease-specific context is needed.

Figure 2 summarizes the major findings of the role of the 
microvasculature in mediating metabolic homeostasis.

The vasculature and HF with preserved ejection 
fraction
HF is a major public health problem affecting approximately 6  
million people in the United States. Community-based studies 
indicate that roughly 50% of HF patients present with the clinical 
diagnosis of HF with preserved ejection fraction (HFpEF), while the 

remaining patient population present with HF with reduced ejection 
fraction (HFrEF) (127, 128). While clinical symptoms and mortality 
are similar among patients with HFpEF and HFrEF, these HF pheno-
types display pronounced differences in patient demographics and 
underlying pathophysiology of left ventricular (LV) remodeling (129, 
130). Specifically, myocardial infarction is less common in HFpEF 
compared with HFrEF, whereas older age, female sex, hyperten-
sion, obesity, and T2D are more common in HFpEF (131). In terms 
of cardiac structure/function, HFpEF is characterized by diastol-
ic dysfunction, LV hypertrophy, myocyte stiffening, fibrosis, and 
microvascular dysfunction/rarefaction (131). Despite the increase 
in HFpEF incidence (132), there are limited data to support effective 
therapies for metabolically driven HF, partly because of a lack of 
mechanistic understanding of the cellular and molecular pathways 
that underpin this complex clinical syndrome.

The microvasculature in HFpEF. Myocardial perfusion is largely 
dictated by coronary vascular resistance at the level of the micro-
vasculature (133). Thus, microvascular dysfunction can lead to 
perfusion-demand mismatch and endocardial ischemia, even in 
the presence of angiographically normal coronary arteries (134). 
Invasive studies indicate that up to 80% of HFpEF patients have 

Figure 2. Schematic overview of endothelial microvasculature in fatty acid uptake and systemic metabolism. FFAs, either bound to albumin, or derived 
from LPL-mediated hydrolysis of circulating TRLs, traverse the endothelium by passive diffusion (flip-flop), receptor-mediated uptake (via CD36), and/or 
vectorial transport (via FATP4). FATP3 and ACSL1 and other acyl-CoA synthases likely facilitate vectorial transport, and mitochondrial ATP also appears to 
be important. ECs contain machinery to esterify FFAs into LDs, a DGAT1-dependent process that may protect ECs from ER stress. Conversely, LDs may be 
hydrolyzed, a largely ATGL-dependent process that liberates FFAs for mitochondrial oxidation and/or parenchymal delivery. Circulating bioactive molecules 
such as apelin can regulate FABP4 transcription, and bioactive molecules released from muscle cells, including 3-HIB and VEGFB, can regulate FATP3 and 
FATP4 expression. In addition, adipose tissue–derived ANGPT2 can activate endothelial α5β1 signaling to trigger FFA transport via CD36 and FATP3 into 
superficial adipose tissue. Adipose tissue–derived VEGFA signals via EC VEGFR2 to support both WAT and BAT angiogenesis and also plays a role in WAT 
“beiging” via EC VEGFR2 signaling and PDGF-CC release, which in turn activates preadipocytes to transform into BAT. In addition to FFA uptake, ECs par-
ticipate in systemic metabolism. EC INSR signaling mediates insulin delivery to parenchymal cells via phosphorylation and activation of eNOS, leading to 
the production of NO, a potent vasodilator. INSR signaling also cooperates with CAV-1 to facilitate insulin TET via caveolae-dependent and -independent 
mechanisms. Insulin TET may also occur via a nonsaturable, INSR-independent fluid-phase process. In addition to insulin TET, NO increases blood flow 
and tissue perfusion to facilitate glucose and FFA delivery to parenchymal cells. Beyond blood flow, NO can partially activate AMPK via cGMP signaling, 
leading to GLUT-4 translocation to the plasma membranes of muscle cells. Moreover, via cysteine-S-nitrosylation reactions, NO modulates several key 
metabolic enzymes. Last, NO/cGMP signaling participates in the long-term regulation of mitochondrial metabolism via interactions with AMPK and 
PGC1α, a master transcriptional regulator of mitochondrial biogenesis and oxidative metabolism.
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coronary microvascular dysfunction (135). Importantly, endocar-
dial ischemia due to microvascular dysfunction can impair both 
active and passive relaxation of the ventricle during diastole. 
Specifically, myocyte relaxation is an energy-dependent process 
involving cytosolic calcium uptake by sarcoplasmic/endoplasmic 
reticulum calcium-ATPase (SERCA); thus a reduction in myocar-
dial perfusion can impair this phase of diastole (136). On the other 
hand, chronic ischemia is associated with fibrosis development 
and increased passive stiffness of the heart (137, 138). Several 
studies have demonstrated that coronary microvascular dysfunc-
tion is associated with lower diastolic relaxation velocities and ele-
vated filling pressures in HFpEF patients, either at rest or during 
exertion (139–142). In addition, the magnitude of cardiac fibrosis 
in HFpEF patients is associated with impaired diastolic relaxation 
(143), and some studies show that microvascular rarefaction is 
directly associated with cardiac fibrosis in these patients (138).

Epidemiologically, circulating inflammatory cytokines, obe-
sity, and T2D portend greater risk of developing incident HFpEF 
than HFrEF (144, 145). Endomyocardial tissue biopsy samples 
from HFpEF patients show evidence of microvascular inflamma-
tion/oxidative stress, as well as increased numbers of immune cell 
infiltrates (CD3+, CD11a+, CD45+) (146, 147). Since microvascular 
disease is present in most HFpEF patients (135), impacts LV dys-
function/remodeling (142, 148, 149), and independently predicts 
all-cause mortality (140), it has been hypothesized that micro-
vascular dysfunction caused by systemic inflammation mediates 
pathophysiological cardiac remodeling in HFpEF (150, 151).

Beyond initiating immune cell recruitment to the vasculature, 
inflammatory cytokines contribute to endothelial dysfunction by 
creating an imbalance between antiinflammatory/vasodilatory fac-
tors (i.e., decreased NO) and inflammatory/vasoconstrictive factors 
(i.e., increased endothelin-1) (152, 153). Multiple lines of evidence 
suggest that the reduction in endothelium-derived NO is particularly 
important in driving both systemic and local CV disturbances during 
HFpEF progression. In HFpEF patients, NO bioavailability is reduced 
compared with that in control subjects (154), possibly owing to eNOS 
uncoupling (148). Experimental data show that aged NO-deficient 
mice display hypertension (155, 156) and other features of clinical 
HFpEF (157), including systemic microvascular rarefaction (heart, 
skeletal muscle), LV hypertrophy, myocardial fibrosis, and exer-
cise intolerance (90, 158, 159). In addition to its role in vasomotor 
tone and blood flow regulation, endothelium-derived NO activates 
cardiomyocyte cGMP and protein kinase G (PKG) to elicit antihy-
pertrophic and antifibrotic actions during cardiac stress (160–162). 
Along these lines, lower myocardial PKG signaling was associated 
with larger and stiffer cardiomyocytes in HFpEF patients (163, 164). 
PKG can also modulate the stiffness of the giant cytoskeleton pro-
tein titin, which is responsible for early diastolic recoil and late dia-
stolic distensibility of cardiomyocytes (150). In both rat and human 
samples, increased resting cardiomyocyte tension is attributable to 
hypophosphorylation of the N2B isoform of titin because of low PKG 
activity (163, 164). Given these preclinical and clinical observations, 
there have been efforts to target NO/cGMP/PKG signaling in HFpEF 
patients. Despite some positive results in smaller clinical trials (165, 
166), therapies targeting this axis in HFpEF patients have reported 
mostly negative or neutral outcomes in larger clinical trials (167, 168). 
At a mechanistic level, this suggests that impaired NO signaling is a 

consequence of systemic inflammation and, therefore, attempts to 
increase NO bioavailability without also targeting inflammation may 
be insufficient to produce clinical improvement.

Recent findings suggest that integrated vascular, immune cell, 
and cardiomyocyte responses to multiple metabolic/hemodynam-
ic perturbations may be of more importance in driving the HFpEF 
syndrome than the microvasculature alone. For example, a “two-
hit” model of hypertension (induced by the NO synthase inhibitor 
l-NAME) and HFD-induced obesity/IR (169) was the first mouse 
model that largely recapitulated several aspects of the clinical 
HFpEF phenotype, whereas each intervention alone only elicited 
varying degrees of diastolic dysfunction and LV remodeling. Simi-
larly, a multiple-hit model of chronic salt water, unilateral nephrec-
tomy, and aldosterone infusion (SAUNA mice) elicited diastolic 
dysfunction, cardiac inflammation, and fibrosis (170). In SAUNA 
mice, macrophages recruited from bone marrow and spleen to the 
heart induced collagen deposition via TGF-β1 release and subse-
quent activation of fibroblasts and myofibroblasts. Notably, cardi-
ac microvascular ECs were also activated and expressed TGF-β1 in 
SAUNA mice, thus indicating immune-vascular synergy in driving 
cardiac inflammation and collagen deposition.

Large-artery stiffness in HFpEF. Several studies have demon-
strated that large-artery stiffening is present in HFpEF patients to 
levels beyond normal age-related changes, either at rest or during 
exertion (171–175). Notably, aortic stiffening directly increas-
es afterload as peak blood pressure is increased to overcome the 
reduction in aortic compliance (176). In addition, stiffer arter-
ies generate faster pulse waves, shifting the arrival of reflective 
waves from diastole to late systole, which increases afterload while 
decreasing diastolic perfusion pressures (176). Together, these 
changes stimulate LV remodeling (177) and accentuate diastol-
ic dysfunction (178). Furthermore, ventricular-arterial coupling 
dynamics are worsened in HFpEF patients during exercise, with 
insufficient changes in arterial compliance and increases in wave 
reflection being strongly associated with elevations in LV filling 
pressure and depressed cardiac output reserve (175). Interestingly, 
a component of aortic stiffness and ventricular-arterial coupling 
dysfunction may be due to impaired endothelium-dependent vaso-
dilation in HFpEF patients, as sodium nitrite improved resting and 
exercise arterial load in a small clinical study (175).

The lymphatic system in HFpEF. The lymphatic system is 
responsible for returning most of the fluid filtered through semi-
permeable capillaries into the interstitial space back to the cen-
tral venous system (179). Excess interstitial fluid accumulation 
(edema) is a result of an imbalance between fluid efflux from the 
vasculature and clearance by the lymphatic system. Edema in the 
periphery, abdominal viscera, and lungs is a characteristic feature 
of advanced HF that drives symptoms and adverse outcomes (180). 
Several hemodynamic and cellular mechanisms contribute to tis-
sue edema in HF and were recently described in detail elsewhere 
(180, 181). In summary, vasoconstriction, sodium reabsorption, and 
microvascular dysfunction (rarefaction/activation) increase central 
venous pressure (CVP) that drives excess filtration. As the lymphat-
ic network is a low-pressure system, elevation in CVP also impairs 
lymphatic drainage back into the central venous system. Impaired 
hemodynamic responses during exercise, such as elevated right- 
and left-sided pressures and impaired right ventricular–pulmonary 
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in systemic metabolism, reduce inflammation, and extend lifespan 
(190). Since age-related changes in the microvasculature are accel-
erated in cardiometabolic diseases, therapeutic targeting of the 
VEGFA/VEGFR2 axis may abrogate several features of cardiometa-
bolic diseases. However, to date, evidence supporting the efficacy of 
VEGFA gene transfer in patients with ischemic disease has been lim-
ited (191) because of suboptimal vector delivery (192). Use of modi-
fied mRNA overcomes these issues, and modified mRNA encoding 
VEGFA has shown promise in preclinical models of post-infarct 
remodeling (193, 194) and diabetic wound healing (195), as well as 
small clinical trials in patients with T2D (193). Notably, intradermal 
delivery of modified mRNA encoding VEGFA was well tolerated in 
T2D patients and led to local increases in VEGFA protein and skin 
blood flow for up to 14 days after delivery. Currently, a phase IIa 
clinical trial has shown that direct injection of AZD8601, a synthetic 
mRNA encoding VEGFA165, into the myocardium of HFrEF patients 
with modestly reduced EF (30%–50%) improves EF, reduces circu-
lating N-terminal pro–brain natriuretic peptide (NT-proBNP), and 
improves other patient-reported outcomes (197, 198). The future 
holds promise for further development and use of this technology in 
patients with metabolic disease and HFpEF.

Summary
The inability of AT to store excess nutrients in the form of TGs leads 
to local AT inflammation and ectopic fat deposition in other meta-
bolic tissues. Fat deposition in non-adipose tissue is strongly asso-
ciated with IR and proinflammatory signaling, both of which impair 
tissue clearance of circulating TG-rich lipoproteins and result in a 
state of systemic inflammation. Together, IR and systemic inflam-
mation enhance CVD risk and the incidence of HFpEF. Deeper 
understanding of the vasculature’s complex bidirectional role in the 
pathophysiology of atherosclerosis and cardiometabolic disease will 
reveal new opportunities and insights into whether EC dysfunction 
is a cause or a consequence of the disease pathogenesis. Importantly, 
treating underlying metabolic/inflammatory pathways in addition to 
improving vascular function may be the most efficacious treatment 
strategy to quell the progression of cardiometabolic disease.
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artery coupling, exacerbate fluid filtration/clearance mismatch to 
promote pulmonary congestion, as demonstrated in approximately 
half of stable HFpEF patients (182). Moreover, several features of 
the lymphatic system are dysfunctional in HF patients, including 
impaired lymph vessel integrity/compliance, lymph valve dysfunc-
tion, impaired lymphangiogenesis, and lymph vessel rarefaction 
(181). Notably, a recent study showed lymph vessel rarefaction in 
skin biopsies from HFpEF patients, with residual lymph vessels 
being dilated and exhibiting less expression of markers of lymphat-
ic differentiation and function in comparison with age-matched 
control participants (183). These changes in lymph vessel number/ 
morphology were associated with impaired peripheral lymphatic 
drainage in HFpEF patients. Taken together, therapeutic targeting 
of the lymphatic system may offer additional benefits to standard 
therapy in the treatment of HFpEF. Likewise, stimulating lymph-
angiogenesis via coadministration of recombinant VEGFC156S 
during chronic angiotensin II (Ang II) infusion in mice largely atten-
uated cardiac remodeling; reduced cardiac inflammation, fibrosis, 
and chronic elevations in blood pressure; and improved kidney 
function in comparison with animals receiving Ang II alone (184).  
It will be exciting to test VEGFC156S therapy in models more  
closely aligning with HFpEF.

Current approaches to treat metabolic HFpEF. Considering the 
preclinical modeling strategies in the previous section, therapies 
targeting both metabolic and vascular stress may prove more effi-
cacious than single-target therapies. Along these lines, the SGLT2 
inhibitor empagliflozin was shown to reduce plasma glucose as well 
as blood pressure in hypertensive patients with T2D (185). Physio-
logically, empagliflozin stimulates osmotic natriuresis and reduces 
blood volume in stable, chronic HF patients with T2D (183). Recent 
and exciting findings from the phase III clinical trial EMPER-
OR-PRESERVE demonstrated that empagliflozin reduces the risk 
of the composite endpoint of CVD death or hospitalization for HF 
by 21% in adults with HFpEF with or without diabetes compared 
with placebo-treated patients (187). Interestingly, empagliflozin 
attenuated many features of clinical HFpEF in a three-hit mouse 
model; this was attributed to lessening inflammasome activation 
by increasing β-hydroxybutyrate and improving of mitochondrial 
function (188). Thus, beneficial mechanisms beyond reductions in 
blood volume are likely to occur with empagliflozin therapy, which 
may include improvement in vascular function and attenuation of 
proinflammatory signaling in microvasculature (189).

Targeting the VEGFA/VEGFR2 signaling axis in cardiometabol-
ic disease. VEGFA/VEGFR2 signaling, microvascular density, and 
tissue perfusion are markedly reduced in several organs in aged 
mice (190). A recent study demonstrated, using transgenic mice or 
gene therapy, that a modest VEGFA increase in aged mice to levels 
observed in younger mice was able to alleviate age-related declines 
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